event 24: energy modeling - aia minnesota...energy modeling for early phase design collaboration...

103
ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR [email protected] 612 359 3230 SEAN SONNABEND, MECHANICAL ENGINEER, PE AKF [email protected] 612 567 5005 CHRIS WINGATE, DESIGNER MSR [email protected] 612 375 8706 EVENT 24: AIA MINNESOTA WEDNESDAY, NOVEMBER 15, 2017 MSR | AKF | AIAMN NOVEMBER 15, 2015

Upload: others

Post on 13-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ENERGY MODELING

FOR

EARLY PHASE DESIGN COLLABORATION

SIMONA FISCHER, DESIGNER MSR [email protected] 612 359 3230

SEAN SONNABEND, MECHANICAL ENGINEER, PE AKF [email protected] 612 567 5005

CHRIS WINGATE, DESIGNER MSR [email protected] 612 375 8706

EVENT 24:

AIA MINNESOTA WEDNESDAY, NOVEMBER 15, 2017

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 2: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

LEARNING OBJECTIVESAs energy modeling tools continue to evolve we are finding ways to evolve the design process as well. Engaging engineering early in the process and getting real time feedback on how envelope design and massing affect the HVAC design can help to get projects on track to meet goals like LEED certification, the 2030 Challenge or Net Zero. In addition this workflow can also help to reduce capital budgets and limit redesign costs later in the process. We will discuss possible workflow paths that deliver meaningful feedback to all collaborators.

1. Understand the overlap of enclosure-oriented building performance modeling with mechanical energy modeling in early phase design.

2. Identify where comparative studies can be done to better inform the whole building energy model to increase the speed of feedback.

3. Understand how different workflow approaches between the architects and engineers impact the design process.

4. The timeline and methodology for collaborative energy modeling earlier in project delivery.

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 3: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY EARLY PHASE?MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 4: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

WHY EARLY PHASE?

ENGINEER

scheduled energy models

ARCHITECT

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 5: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

energy modeling at this stage is just verifying decisions that are already made

PD SD DD CD CA Occupancy

ENGINEER

ARCHITECT

WHY EARLY PHASE?MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 6: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

WHY EARLY PHASE?

ENGINEER

ARCHITECT

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 7: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

WHY EARLY PHASE?

ENGINEER

ARCHITECT

Want to use smarter inputs

Not comfortable making claims early on that could potentially be held up later

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 8: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

WHY EARLY PHASE?

ENGINEER

ARCHITECT

Too detailed to quickly test massing strategies other than orientation

Cost-savings driven;No overall carbon footprint reduction info

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 9: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Ability to impact project Cost of design changes

PD SD DD CD CA Occupancy

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 10: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

ENGINEER

ARCHITECT

Baselines and targetsClimate analysis and passive strategiesEnvelope optimizationOrientation / massing / glazingSystems optimization

Handoff

Upfront input on systems alternativesModeling input

Design verification, fine-tuningSetup for comissioningSetup for energy use data collection

THE PATH WE REALLY WANTMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 11: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW METHODOLOGYMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 12: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

Global warming is the unusually rapid increase in Earth’s

average surface temperature over the past century

primarily due to the greenhouse gases released by people

burning fossil fuels.

The impact of global warming is far greater than just

increasing temperatures. Warming modifies rainfall

patterns, amplifies coastal erosion, lengthens the growing

season in some regions, melts ice caps and glaciers, and

alters the ranges of some infectious diseases. Some of

these changes are already occurring.

-Holli Riebeek, NASA Earth Observatory

OVERVIEW GLOBAL WARMING

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 13: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW 350 PPM CO2

2 DEG CELSIUS

Scientists have set the maximum level of C02 in the

atmosphere at 350 ppm to ensure stable climate conditions

globally. We have already exceeded this number and are

at 397 ppm C02. This has led to a global warming that is

already underway. We must reduce the levels of C02 in the

atmosphere to below 350 ppm to avoid permanent global

warming.

If global temperatures rise by more than 2 degrees Celsius,

scientists predict this will set in motion a permanent and

accelerated global warming. We have already recorded a

global temperature increase of 0.8 degrees Celsius in the

past decade. We must keep the global temperature rise

under 2 degrees Celsius to avoid permanent global warming.

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 14: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

-National Oceanic and Atmospheric Administration

350 PPM CO2MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 15: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

2 DEG CELSIUSMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 16: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW IMPACTARE YOU RICH ENOUGH TO SHIELD YOUR DESCENDANTS?

The simple reality is that people are already feeling the

effects, whether they know it or not. Because of sea level

rise, for instance, some 83,000 more residents of New

York and New Jersey were flooded during Hurricane

Sandy than would have been the case in a stable climate,

scientists have calculated. Tens of thousands of people are

already dying in heat waves made worse by global warming.

The refugee flows that have destabilized politics around

the world have been traced in part to climate change.

Of course, as with almost all other social problems, poor

people will be hit first and hardest.

- Climate Change Is Complex. We’ve Got Answers to Your Questions. Justin Gillis, The New York Times

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 17: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 18: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 19: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

We’re a non-profit think tank transforming climate change

problems into solutions through the design of the built

environment.

PROBLEM The urban built environment is responsible for

most of the world’s fossil fuel consumption and greenhouse

gas emissions.

SOLUTION Planning and designing collaborative efforts

that pave the way to a sustainable and carbon neutral future

OVERVIEW 2030CHALLENGE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 20: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

BUILDINGS44.6%

TRANSPORTATION34.3%

INDUSTRY21.1%

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW 2030CHALLENGE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 21: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW 2030CHALLENGE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 22: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW AIA2030COMMITMENT

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 23: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

In 2006, Architecture 2030 issued the 2030 Challenge,

a breakthrough vision that calls for all new buildings,

developments, and major renovations to be carbon-neutral

by 2030. To support this call to action, we created the AIA

2030 Commitment—a national framework with simple

metrics and a standardized reporting format—to provide

a structure for tracking progress and help you meet the

challenge.

The mission of The AIA 2030 Commitment is to transform

the practice of architecture in a way that is holistic, firm-

wide, project-based and data-driven, so that the AIA and

the participating firms can prioritize energy performance

and carbon reductions in the design toward carbon neutral

buildings, developments and major renovations by 2030.

OVERVIEW AIA2030COMMITMENT

- https://www.aia.org/resources/6616-the-2030-commitment

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 24: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

SIGN the commitment

REPORT energy performance of all projects you design every year

CONTRIBUTEnational database of project performance

IMPROVEtrack performance, access resources, make progress

OVERVIEW AIA2030COMMITMENT

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 25: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

- https://www.aia.org/resources/6616-the-2030-commitment

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 26: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Page 12

33% increase in reported projects

Page 12

While both overall reported project area (GSF) and the total number of projects continued to grow, the number of projects increased at a greater rate. This reflects an increased reporting of smaller-size projects, with the median size of whole building projects moving from 109k GSF in 2015 to 90k GSF in 2016.

3.0B

2.5B

2.0B

1.5B

1.0B

0.5B

0.0B

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

number of projects

gros

s sq

uare

feet

2012

1.4B

2013

1.6B

2014

2.4B

2015

2.6B

2016

2.7B

2010 2011

0.4B0.7B

*Data for total number of projects is unavailable for years prior to 2011.

Total reported area (GSF) of projects & total number of projects

Total GSF

Total number of projects

- 2016 AIA2030 Progress Report

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 27: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Page 16

An ambitious pEUI% reduction target

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

02010 2011 2012 2013 2014 2015 2016

We are making important progress, but must accelerate our pace in order to meet our goals.

In whole building projects for 2016, pEUI savings aver-aged 42%–a continuation of the positive trend we’ve seen over the past several years, but still short of 70% target.

*Annual project average pEUI % reduction as compared to the Architecture2030 target

pEU

I% re

duct

ion

60% Energy Reduction Target

70% Energy Reduction Target

ANNUAL AVERAGE ENERGY SAVINGS for all reported projects

- 2016 AIA2030 Progress Report

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 28: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

EUI = ENERGY USE INTENSITY

KBTU SF

ANNUAL ENERGY USEPROJECT SIZE

OVERVIEW EUI IS MPGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 29: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

ENERGY+

CLIMATE CONSULTANT

SEFAIRA

HONEYBEE / LADYBUG

REVIT

IESVE

TRANE/TRACE

EQUEST

OVERVIEW SOFTWAREMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 30: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 31: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 32: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEW INTEGRATION +COLLABORATION

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 33: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

WHY ENERGY MODEL?

ENERGY, CARBON, AND GLOBAL WARMING

WHAT RESOURCES ARE AVAILABLE?

2030 CHALLENGE

AIA2030 COMMITMENT

EUI = ENERGY USE INTENSITY

ENERGY MODELING SOFTWARE

WHY ENERGY MODEL IN EARLY DESIGN?

INTEGRATION AND COLLABORATION

WHAT MAKES UP AN ENERGY MODEL?

THE ANATOMY OF AN ENERGY MODEL

OVERVIEWMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 34: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelingInput Category

Design TeamResponsibility1

3

24, 5

6, 7

1) Climate Data

2) Construction Types

3) Building Form

4) Occupancy Types

5) Occupancy Loads

6) Building Systems

7) Building System Schedules

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 35: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Architect

Engineer

Energy ModelingInput Category

Design TeamResponsibility1

3

24, 5

6, 7

1) Climate Data

2) Construction Types

3) Building Form

4) Occupancy Types

5) Occupancy Loads

6) Building Systems

7) Building System Schedules

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 36: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Architect

Engineer

Energy ModelingInput Category

Design TeamResponsibility

1) Climate Data

2) Construction Types

3) Building Form

4) Occupancy Types

5) Occupancy Loads

6) Building Systems

7) Building System Schedules

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 37: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Intelligent Defaults

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 38: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Climate Analysis

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 39: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Climate Analysis Envelope Optimization

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 40: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Climate Analysis Envelope Optimization Massing Study

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 41: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Define Occupancy

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 42: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Project-Specific Information Envelope Optimization

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 43: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

THE ANATOMY OF AN ENERGY MODEL

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

Project-Specific Information Envelope OptimizationMassing +

Systems Optimization

Energy ModelClimate Data

Construction Types

Building Form

Occupancy Types

Occupancy Loads

Building Systems

Building Systems Schedules

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 44: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGYMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 45: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ESTABLISH BASELINES AND TARGETS

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 46: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

CLIMATE ANALYSIS + PASSIVE STRATEGIESCLIMATE ANALYSIS + PASSIVE STRATEGIES

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 47: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ENVELOPE OPTIMIZATION

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 48: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ORIENTATION / MASSING / GLAZING

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 49: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ENERGY USE

SYSTEMS OPTIMIZATION

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 50: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ESTABLISH BASELINES AND TARGETS

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 51: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

•Establish a baseline to track energy saving strategies against

•Use an industry standard baseline to enable comparison to similar buildings in similar locations

•Facilitate reporting energy performance to LEED, AIA2030 Commitment, ect.

•2003 CBECS Survey

•(Commercial Buildings Energy Consumption Survey)

•Survey of US building stock in 2003 categorized by building type, size, and location

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 52: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

National Average Building EUI (Energy Use Intensity)

•Find your building type and associated average energy use (1 minute)

Regional Average Building EUI

•Use a website to input project type, size, and address (5 minutes)

•Use Regional Average EUI over National Average EUI whenever possible.

Target EUI

•70% below your Regional Average Building EUI (30 seconds)

ESTABLISH BASELINES AND TARGETSMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 53: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

References

LPD

U.S. National Average Site 

EUI2003 CBECS Average* Other

LPD maximum allowance per ANSI/ASHRAE/ IESNA Standard 90.1‐2007 Table 

9.5.1 CodeApproximate % 

Reduction from AverageBank/Financial Institution 77 X 1.0 ASHRAE 90.1‐1999 10%Courthouse 118 X 1.2 ASHRAE 90.1‐2001 10%Data Center ‐ use Target Finder to derive comparison TF ‐‐> 1.0 ASHRAE 90.1‐2004 20%Education ‐ College/University (campus‐level) 120 X 1.2 ASHRAE 90.1‐2007 25%Education ‐ General 76 X 1.2 ASHRAE 90.1‐2010 40%Education ‐ K‐12 School 75 X 1.2 ASHRAE 90.1‐2013 45%Food Sales ‐ Convenience Store (w/ or w/out gas station) 241 X 1.5 California Title 24 2005 for high rise residential 35%Food Sales ‐ General 225 X 1.5 California Title 24 2005 for single family residential 30%Food Sales ‐ Supermarket/Grocery 213 X 1.5 California Title 24 2008 40%Food Service ‐ Fast Food 534 X 1.5 IECC 2003 10%Food Service ‐ General 351 X 1.5 IECC 2006  20%Food Service ‐ Restaurant/Cafeteria 302 X 1.5 IECC 2009 35%Health Care ‐ Clinic 84 X 1.0 IECC 2012 40%Health Care ‐ Hospital Inpatient 227 X 1.2 Older than 1999 0%Health Care ‐ Medical Office 59 X 1.0 Oregon Energy Code 25%Health Care ‐ Nursing/Assisted Living 124 X 1.0 Washington Energy Code 25%Health Care ‐ Outpatient ‐ General 73 X 1.2Laboratory ‐ recommend use of Labs21 370 Labs21 1.4Lodging ‐ General 87 X 1.0Lodging ‐ Hotel/Motel 94 X 1.0Lodging ‐ Residence Hall/Dormitory 89 X 1.0Mixed‐Use ‐ use Calculator tab to derive comparison Calc ‐‐> Calc ‐‐>Office ‐ 10,000 sf 74 X** 1.0

This tab is provided for information only. Following are tables are referenced by calculations embedded within the Worksheets. 

AIA 2030 Commitment Reporting Tool, Version 2014.2 © American Institute of Architects 2014.  Revised January 7, 2015.This file is a collaborative work product of many AIA member firms.  Key participants include an AIA Chicago Chapter Working Group, An AIA National COTE Working Group and individuals from many other member firms.  This file is intended to be shared with AIA member firms for reporting required by the AIA 2030 Commitment. This file is not intended for individual distribution and publication.

AIA 2030 Commitment Reporting Tool ‐ DESIGN YEAR 2014

U.S. National Average Site EUI

Building Type

Source

Code Equivalents

Note: These are estimates of code comparison based on analyses by Pacific Northwest National Laboratory, New Buildings Institute, and Architecture 2030. These percentages are provided to enable the inclusion of non‐modeled projects in analysis for the AIA 2030 Commitment.

NATIONAL AVERAGE EUIMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 54: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

References

LPD

U.S. National Average Site 

EUI2003 CBECS Average* Other

LPD maximum allowance per ANSI/ASHRAE/ IESNA Standard 90.1‐2007 Table 

9.5.1 CodeApproximate % 

Reduction from AverageBank/Financial Institution 77 X 1.0 ASHRAE 90.1‐1999 10%Courthouse 118 X 1.2 ASHRAE 90.1‐2001 10%Data Center ‐ use Target Finder to derive comparison TF ‐‐> 1.0 ASHRAE 90.1‐2004 20%Education ‐ College/University (campus‐level) 120 X 1.2 ASHRAE 90.1‐2007 25%Education ‐ General 76 X 1.2 ASHRAE 90.1‐2010 40%Education ‐ K‐12 School 75 X 1.2 ASHRAE 90.1‐2013 45%Food Sales ‐ Convenience Store (w/ or w/out gas station) 241 X 1.5 California Title 24 2005 for high rise residential 35%Food Sales ‐ General 225 X 1.5 California Title 24 2005 for single family residential 30%Food Sales ‐ Supermarket/Grocery 213 X 1.5 California Title 24 2008 40%Food Service ‐ Fast Food 534 X 1.5 IECC 2003 10%Food Service ‐ General 351 X 1.5 IECC 2006  20%Food Service ‐ Restaurant/Cafeteria 302 X 1.5 IECC 2009 35%Health Care ‐ Clinic 84 X 1.0 IECC 2012 40%Health Care ‐ Hospital Inpatient 227 X 1.2 Older than 1999 0%Health Care ‐ Medical Office 59 X 1.0 Oregon Energy Code 25%Health Care ‐ Nursing/Assisted Living 124 X 1.0 Washington Energy Code 25%Health Care ‐ Outpatient ‐ General 73 X 1.2Laboratory ‐ recommend use of Labs21 370 Labs21 1.4Lodging ‐ General 87 X 1.0Lodging ‐ Hotel/Motel 94 X 1.0Lodging ‐ Residence Hall/Dormitory 89 X 1.0Mixed‐Use ‐ use Calculator tab to derive comparison Calc ‐‐> Calc ‐‐>Office ‐ 10,000 sf 74 X** 1.0

This tab is provided for information only. Following are tables are referenced by calculations embedded within the Worksheets. 

AIA 2030 Commitment Reporting Tool, Version 2014.2 © American Institute of Architects 2014.  Revised January 7, 2015.This file is a collaborative work product of many AIA member firms.  Key participants include an AIA Chicago Chapter Working Group, An AIA National COTE Working Group and individuals from many other member firms.  This file is intended to be shared with AIA member firms for reporting required by the AIA 2030 Commitment. This file is not intended for individual distribution and publication.

AIA 2030 Commitment Reporting Tool ‐ DESIGN YEAR 2014

U.S. National Average Site EUI

Building Type

Source

Code Equivalents

Note: These are estimates of code comparison based on analyses by Pacific Northwest National Laboratory, New Buildings Institute, and Architecture 2030. These percentages are provided to enable the inclusion of non‐modeled projects in analysis for the AIA 2030 Commitment.

Office ‐ 10,001 to 100,000 sf 90 X** 1.0Office ‐ 100,001 sf or greater 104 X** 1.0Other ‐ see FAQ #29 104 X 1.0Public Assembly ‐ Entertainment/Culture 95 X 1.6Public Assembly ‐ General 66 X 1.1Public Assembly ‐ Library 104 X 1.3Public Assembly ‐ Recreation 65 X 1.1Public Assembly ‐ Social/Meeting 52 X 1.2Public Safety ‐ Fire/Police Station 78 X 1.0Public Safety ‐ General 90 X 1.0Religious Worship 46 X 1.3Residential ‐ Mobile Homes 73 RECS 0.7Residential ‐ Multi‐Family, 2 to 4 units 58 RECS 0.7Residential ‐ Multi‐Family, 5 or more units 50 RECS 0.7Residential ‐ Single‐Family Attached 44 RECS 0.7Residential ‐ Single‐Family Detached 44 RECS 0.7Residential Mid‐Rise/High‐Rise ‐ see FAQ #29 Calc ‐‐> 0.7Retail ‐ Mall 107 X 1.5Retail ‐ Non‐mall, Vehicle Dealerships, misc. 82 X 1.5Retail Store 72 X 1.5Service (vehicle repair/service, postal service) 77 X 1.4Storage ‐ Distribution/Shipping Center 44 X 0.8Storage ‐ General 26 X 0.8Storage ‐ Non‐refrigerated warehouse 31 X 0.8Storage ‐ Refrigerated warehouse 127 X 0.8Warehouse ‐ Self‐storage 4 X 0.8X ‐ none apply, provide Design Energy Code NA 1.0* CBECS (Commercial Building Energy Consumption Survey) Average calculated as the arithmetic mean of reported EUIs across all survey buildings of the given type. See FAQ for more detailed explanation.** CBECS averages weighted by square footage, within size groups.

NATIONAL AVERAGE EUIMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 55: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Office ‐ 10,001 to 100,000 sf 90 X** 1.0Office ‐ 100,001 sf or greater 104 X** 1.0Other ‐ see FAQ #29 104 X 1.0Public Assembly ‐ Entertainment/Culture 95 X 1.6Public Assembly ‐ General 66 X 1.1Public Assembly ‐ Library 104 X 1.3Public Assembly ‐ Recreation 65 X 1.1Public Assembly ‐ Social/Meeting 52 X 1.2Public Safety ‐ Fire/Police Station 78 X 1.0Public Safety ‐ General 90 X 1.0Religious Worship 46 X 1.3Residential ‐ Mobile Homes 73 RECS 0.7Residential ‐ Multi‐Family, 2 to 4 units 58 RECS 0.7Residential ‐ Multi‐Family, 5 or more units 50 RECS 0.7Residential ‐ Single‐Family Attached 44 RECS 0.7Residential ‐ Single‐Family Detached 44 RECS 0.7Residential Mid‐Rise/High‐Rise ‐ see FAQ #29 Calc ‐‐> 0.7Retail ‐ Mall 107 X 1.5Retail ‐ Non‐mall, Vehicle Dealerships, misc. 82 X 1.5Retail Store 72 X 1.5Service (vehicle repair/service, postal service) 77 X 1.4Storage ‐ Distribution/Shipping Center 44 X 0.8Storage ‐ General 26 X 0.8Storage ‐ Non‐refrigerated warehouse 31 X 0.8Storage ‐ Refrigerated warehouse 127 X 0.8Warehouse ‐ Self‐storage 4 X 0.8X ‐ none apply, provide Design Energy Code NA 1.0* CBECS (Commercial Building Energy Consumption Survey) Average calculated as the arithmetic mean of reported EUIs across all survey buildings of the given type. See FAQ for more detailed explanation.** CBECS averages weighted by square footage, within size groups.

National Average Building Energy Use

•Residential Single Family Home 44 EUI

•Office 10,001 to 100,000 sf 90 EUI

•Lab 370 EUI

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 56: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

REGIONAL AVERAGE EUI + TARGET EUI

ZERO TOOL

•https://zerotool.org

•building address

•building type

•building size

11/14/2017 2030 Baseline

https://zerotool.org/zerotool/ 1/3

ABOUT YOUR BUILDING

BUILDING USE DETAILS

Building Name Building Name

Country *United States

City | State/Prov. madison * *Wisconsin

Postal Code 53704 *

Degree Days HDD * CDD 568 *7369

New construction Existing Building

In order to provide you with an appropriate comparison foryour building, we need to know how spaces in this buildingwill be used. If your building has multiple uses, add thembelow.

Add AnotherUse

Selected Use Type(s):

Commercial Residential

Adult Education

RESULTS

Target EUI is based on a 70% reduction25

BASELINE84 EUI100 Zero Score

TARGET25 EUI30 Zero Score

0100 80 60 40 20 -20

BUILDING SUMMARY

LOCATION madison, WI 53704

USES Adult Education 8,900 sq.ft (100.0%)

RESULTS BASELINE TARGETYOUR

BUILDING

EUI % Reductionfrom Baseline 0% 70% N/A

Zero Score 100 30 N/A

Site EUI(kBtu/ft²/yr) 84 25 N/A

Source EUI(kBtu/ft²/yr) 142 43 N/A

Total GHGEmissions(metric tons CO₂e/yr)

77 24 N/A

imperial metric print

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 57: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ENERGY CODE BASELINE

- 0% CBECS 2003 average

-20% ASHRAE 90.1 2004 -25% ASHRAE 90.1 2007

-40% ASHRAE 90.1 2010-45% ASHRAE 90.1 2013

IECC 2006 -20%

IECC 2003 -10%

IECC 2009 -35% IECC 2012 -40%

AIA2030 2010 -60%

AIA2030 2015 -70%

AIA2030 2020 -80%

AIA2030 2025 -90%

AIA2030 2030 -100%

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 58: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

105kBTU/sf

Code Baseline (IECC 2009)-35% from Regional Average

LEEDv3 Prereq. Min-3% from Code Baseline

2030 Challenge-70% from Regional Ave Baseline

68kBTU/sf

66kBTU/sf

32kBTU/sf

24kBTU/sf

Net-Zero EnergySite Net Zero

35kBTU/sf

Regional Ave BaselineSchool K-12

LEEDv3 Max Points-48% from Code Baseline

EAc1 1-18 points

ESTABLISH BASELINES AND TARGETSMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 59: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

CLIMATE ANALYSIS + PASSIVE STRATEGIESCLIMATE ANALYSIS + PASSIVE STRATEGIES

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 60: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CLIMATE ANALYSIS + PASSIVE STRATEGIES

high solar radiation

very high solar radiation

medium solar radiation

low solar radiation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

900

1000

800

700

600

500

400

300

200

100

0

50 % loss in solar power

75 % loss in solar power

25 % loss in solar power

10 % loss in solar power

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

90 %

100 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

light and calm

breeze

strong breezegale force winds

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

36

40

32

28

24

20

16

12

8

4

0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

97˚F

110˚F

84˚F

71˚F

58˚F

45˚F

32˚F

19˚F

6˚F

-7˚F

-20˚F

winter comfort zonesummer comfort zone

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

comfort zone

90 %

100 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

percent relative humidity

desert

dry

temperatewet

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

9 in

10 in

8 in

7 in

6 in

5 in

4 in

3 in

2 in

1 in

0 in

Climate StudyLocation Pittsburgh, PA

Weather File Pittsburgh International Air Port, TMY3

Climate Type 5A - Cool Humid

Heating (HDD) 5834.6

Cooling (CDD) 2972.5

Pittsburgh lies in the humid continental climate zone as it transitions to the humid subtropical climate. The area has four distinct seasons: winters are cold, cloudy, and moderately snowy, springs and falls generally mild with moderate levels of sunshine, and summers warm to hot and humid. As measured by percent possible sunshine, summer is by far the sunniest season.

The warmest month of the year in Pittsburgh is July, with a 24-hour average of 72.6 deg F. Conditions are often humid, and combined with highs reaching 90 deg F. on average 9.5 days a year, a considerable heat index arises. Pittsburgh averages 112 days of at or below freezing temperatures, and lows of 0 deg F or below can be expected on average 2.6 nights per year.

Average annual precipitation is 28.3 inches and total precipitation is greatest in May while least in October. Snowfall averages 41.4 inches per season. There is an average of 59 clear days, 103 partly cloudy days, and 203 cloudy days per year. In terms of annual percent-average possible sunshine received, Pittsburgh (455) is similar to Seattle (43%).

0%

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

20%

10%

0 5

1015

2025

0%

AVG

100% MIN

AVG

MAX

WINDSPEED(mph)MAX

AVG

MIN

HOURS

RH

TEMP

0%

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

20%

10%

0 5

1015

2025

0%

AVG

100% MIN

AVG

MAX

WINDSPEED(mph)MAX

AVG

MIN

HOURS

RH

TEMP

Summer Wind Rose0%

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

20%

10%

0 5

1015

2025

0%

AVG

100% MIN

AVG

MAX

WINDSPEED(mph)MAX

AVG

MIN

HOURS

RH

TEMP

Winter Wind Rose

Solar direct normal radiation (Wh/m2)

Cloud Cover percent cloud cover

Wind Speed miles per hour

Temperature degree F

Humidity

Precipitation monthly percipitation

relative humidity

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 61: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CLIMATE ANALYSIS + PASSIVE STRATEGIES

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

97˚F

110˚F

84˚F

71˚F

58˚F

45˚F

32˚F

19˚F

6˚F

-7˚F

-20˚F

winter comfort zonesummer comfort zone

Temperature degree F

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 62: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CLIMATE ANALYSIS + PASSIVE STRATEGIES

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

comfort zone

90 %

100 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

percent relative humidityHumidity relative humidity

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 63: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CLIMATE ANALYSIS + PASSIVE STRATEGIES

PSYCHROMETRIC CHART

human comfort 6.9%

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 64: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CLIMATE ANALYSIS + PASSIVE STRATEGIES

PSYCHROMETRIC CHART

natural ventilation 10.7%

human comfort 6.9%

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 65: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CLIMATE ANALYSIS + PASSIVE STRATEGIES

PSYCHROMETRIC CHART

natural ventilation 10.7%

human comfort 6.9%

internal heat gain22.8%

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 66: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ENVELOPE OPTIMIZATION

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 67: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ENVELOPE OPTIMIZATION

Why?

•stop guessing about how much insulation we should use

•help make early, informed decisions about envelope using a simple energy model

•bring engineering to the table as early as possible.

•facilitate simultaneous energy analysis between architects and engineers

Tools

•simple shoebox energy model required (about 12 hours)

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 68: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

code baseline (IECC 2009) regional average baseline 105 eui

code baseline energy model 67 eui

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) 20roof (r value) 20slab (r value) 12.5glazing (uvalue) 0.45glazing (shgc) 0.3infiltration (cfm/sf) 0.394

heating 62%

interior 28%

cooling 6%

36%

ENVELOPE OPTIMIZATIONMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 69: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

R20

wall r value 0%

roof r value 4%

slab r value 2%

envelope

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) 20roof (r value) 20slab (r value) 12.5glazing (uvalue) 0.45glazing (shgc) 0.3infiltration (cfm/sf) 0.394

R30 R35

R15 R20

R20

R12

ENVELOPE OPTIMIZATIONMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 70: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

R20

wall r value 0%

roof r value 4%

slab r value 2%

envelope

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) 20roof (r value) 20slab (r value) 12.5glazing (uvalue) 0.45glazing (shgc) 0.3infiltration (cfm/sf) 0.394

R30 R35

R15 R20

R20

R12

ENVELOPE OPTIMIZATION

R20

wall r value 0%

roof r value 4%

slab r value 2%

envelope

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) 20roof (r value) 20slab (r value) 12.5glazing (uvalue) 0.45glazing (shgc) 0.3infiltration (cfm/sf) 0.394

R30 R35

R15 R20

R20

R12

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 71: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

daylight

energy

U.4

glazing u value 10%

glazing shgc value 0%

glazing window to wall ratio

envelope

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) 20roof (r value) 20slab (r value) 12.5glazing (uvalue) 0.45glazing (shgc) 0.3infiltration (cfm/sf) 0.394

V.3 V.4

U.45U.3U.16

ENVELOPE OPTIMIZATIONMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 72: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

lighting power density 5%

equipment power density

space use

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) 20roof (r value) 20slab (r value) 12.5glazing (uvalue) 0.45glazing (shgc) 0.3infiltration (cfm/sf) 0.394

EPD 0.9

LPD 1.5LPD 0.4

equipment selectionstaff habits

infiltration envelope tightness 5%

DIR 0.394DIR 0.2

ENVELOPE OPTIMIZATIONMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 73: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

code baseline (IECC 2009) regional average baseline 105 eui

code baseline energy model 67 eui

SPACE USEoccupant density (sf / per) 90equipment power density (W/sf) 0.9lighting power density (W/sf) 1.4outside air rate / person (cfm/per) 21.2outside air rate / unit area (cfm/sf) 0

ENVELOPEwindow to wall ratio 40%wall (r value) -roof (r value) -slab (r value) -glazing (uvalue) -glazing (shgc) 0.3infiltration (cfm/sf) -

better envelope 1 59 euiglazing (u value) 0.4roof (r value) 30wall (r value) 20slab (r value) 15infiltration (cfm/sf) 0.2

better envelope 2 56 euiglazing (u value) 0.3roof (r value) 35wall (r value) 20slab (r value) 15infiltration (cfm/sf) 0.2

better envelope 3 52 euiglazing (u value) 0.16roof (r value) 35wall (r value) 20slab (r value) 15infiltration (cfm/sf) 0.2

36%

44%

46%

12%

16%

22% 50%

ENVELOPE OPTIMIZATIONMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 74: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ORIENTATION / MASSING / GLAZING

ENERGY USE

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 75: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ORIENTATION / MASSING / GLAZING

Why?

•form should respond to more than aesthetics

•form should respond to more than energy analysis

•visualize the impact of form on energy performance and respond accordingly

•design with an emphasis on daylight

•collaborate with engineers - massing / orientation / glazing choices can impact peak loads, system selection, system sizing, and system balance

Tools

•energy modeling software - time required varies widely according to your iterative process, depth of study, and graphic presentation

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 76: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

2030 CHALLENGE METRICS

2030 Challenge Energy Metrics

Location

Building Type

National Average EUI

Regional Average EUI

percent reduction

0%

50%

60%

70%

80%

90%

100%

kbtu/sf

97

49

39

29

19

10

0

year

base

2005

2010

2015

2020

2025

2030

Climate Zone 4

Library

104 kbtu/sf

97 kbtu/sf

2030 Challenge Energy Targets

This project will pursue a projected energy use intensity

of 29 kbtu/sf in accordance with the 2030 Challenge

targets. The project will seek to minimize heating and

cooling loads through passive design strategies and

developing a robust building envelope, using efficient

mechanical and electrical systems, and implementing

renewable energy sources.

2030 Challenge Energy Goal

Target EUI = 29 kbtu/sf

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 77: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating124

BASELINE MASSING ENERGY

Baseline Energy Model Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Baseline Massing

Baseline Concept

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.53

0.6

15

20

6

Central Boiler

0.2 cfm/ft2

0.85

3.0

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 78: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Wall R Value Roof R Value Slab R Value

Glazing U Value Glazing SHGC Value Orientation Value

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 73

BASELINE MASSING ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Baseline Massing

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 79: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Spatial Daylight Autonomy Scale

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 73

BASELINE MASSING DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

81% of floor area

3 points

91% of floor area

3.3%

43% of floor area

89% of floor area

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 80: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 75

MASSING 3A ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3A

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 81: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 75

MASSING 3A DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

88% of floor area

3 points

93% of floor area

6.9%

50% of floor area

75% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 82: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 98

MASSING 3B ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3B

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 83: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 98

MASSING 3B DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

99% of floor area

3 points

98% of floor area

10.7%

99% of floor area

7% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 84: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 75

MASSING 3C ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3C

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 85: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 75

MASSING 3C DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

96% of floor area

3 points

95% of floor area

5.8%

65% of floor area

81% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 86: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 82

MASSING 3D ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3D

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 87: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 82

MASSING 3D DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

99% of floor area

3 points

96% of floor area

5.0%

63% of floor area

78% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 88: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 76

MASSING 3F ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3F

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 89: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 76

MASSING 3F DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

99% of floor area

3 points

95% of floor area

4.1%

60% of floor area

88% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 90: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 92

MASSING 3G ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3G

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 91: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 92

MASSING 3G DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

99% of floor area

3 points

98% of floor area

13.5%

94% of floor area

41% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 92: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 85

MASSING 3G SHADE ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing %

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3G Shade

Improved Envelope + HVAC

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

40%

0.10

0.3

35

40

6

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 93: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 85

MASSING 3G SHADE DAYLIGHT

Daylight Performance

Spatial Daylight Autonomy(DA300 lux > 50%)

LEED v4 Daylight Points?(sDA>55% = 2 points. sDA >75% = 3 points)

Continuous Daylight Autonomy(DA300 lux > 50% + partial credit <50% )

Mean Daylight Factor(% of exterior daylight available in interior)

Daylight Factor Analysis(DF > 2%)

Useful Daylight Illuminance (UDI 100-2000lux>50%)

98% of floor area

3 points

95% of floor area

8.7%

72% of floor area

59% of floor area

Spatial Daylight Autonomy Scale

Spatial Daylight Autonomy is represented as a percentage of annual daytime hours that a given point in a space is above a specified illumination level.

The Daylight Autonomy threshold is 300 lux (30 fc).

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 94: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

MONTHLY ENERGY CONSUMPTION

0

100000

200000

300000

400000

500000

600000

J F M A M J J A S O N D

appliances

lighting

fan

cooling

hot water

space heating

electric heating

Monthly Energy ConsumptionMONTHLY HEAT GAIN

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat GainsMONTHLY HEAT LOSS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9 10 11 12

equipment

lighting

occupant

infiltration

ventilation

conduction

solar

Monthly Heat LossesEUI (kbtu/sf)ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating

ANNUAL ENERGY USE

0

1000000

2000000

3000000

4000000

5000000

6000000

Baseline  This Option

appliances

lighting

fan

cooling

hot water

space heating

electric heating124 75

Wall R Value Roof R Value

Glazing U Value Glazing SHGC Value Roof Glazing SHGC Value

Roof Glazing U Value

MASSING 3G SHADE ENERGY

Improved Envelope + HVAC Values

Massing

Concept

Location

Building Type

Occupancy

Operational Hours

Lighting Power Density

Plug Load Density

Heating Setpoint

Cooling Setpoint

Glazing U value

Glazing SHGC value

Wall R value

Roof R value

Slab R value

HVAC System Type

Ventilation Rate

Heating Equipment COP

Cooling Equipment COP

Massing 3G Shade

Optimized Envelope

Climate Zone 4

Library

330 people

6am - 10pm daily

1.3 W/ft2

1.1 W/ft2

66 deg F

72 deg F

0.4

0.2

15

20

2

GSHP

0.2 cfm/ft2

2.5 - Electric GSHP

4.5 - Water cooled chiller

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 95: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

Direct Savings• Reduces energy cost by 0.1%Indirect Savings• Reduction to peak cooling load• 10% reduction in solar load (Whole Building) • 25% less cooling energy (South facing room)• Smaller ductwork and fewer diffusers• Smaller HVAC equipment• Reduced electrical service

Timing of ECM Analysis

Vertical Window Fins

ORIENTATION / MASSING / GLAZINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 96: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGY

ENERGY USE

SYSTEMS OPTIMIZATION

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 97: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

SYSTEMS OPTIMIZATIONEarly Design: Massing

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 98: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

ESTABLISH BASELINES AND TARGETS

CLIMATE ANALYSIS + PASSIVE STRATEGIES

ENVELOPE OPTIMIZATION

ORIENTATION / MASSING / GLAZING

SYSTEMS OPTIMIZATION

METHODOLOGYMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 99: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

ENGINEER

ARCHITECT

Baselines and targetsClimate analysis and passive strategiesEnvelope optimizationOrientation / massing / glazingSystems optimization

Handoff

Upfront input on systems alternativesModeling input

Design verification, fine-tuningSetup for comissioningSetup for energy use data collection

COLLABORATIVE ENERGY MODELINGMSR | AKF | AIAMN NOVEMBER 15, 2015

Page 100: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CONCLUSIONS

1. AIA 2030 COMMITMENT

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 101: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CONCLUSIONS

1. AIA 2030 COMMITMENT

2. TALK ENERGY SOONER

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 102: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

CONCLUSIONS

1. AIA 2030 COMMITMENT

2. TALK ENERGY SOONER

3. TALK ENERGY SOONER TOGETHER

MSR | AKF | AIAMN NOVEMBER 15, 2015

Page 103: EVENT 24: ENERGY MODELING - AIA Minnesota...ENERGY MODELING FOR EARLY PHASE DESIGN COLLABORATION SIMONA FISCHER, DESIGNER MSR simona@msrdesign.com 612 359 3230 SEAN SONNABEND, MECHANICAL

PD SD DD CD CA Occupancy

ENGINEER

ARCHITECT

Baselines and targetsClimate analysis and passive strategiesEnvelope optimizationOrientation / massing / glazingSystems optimization

Handoff

Upfront input on systems alternativesModeling input

Design verification, fine-tuningSetup for comissioningSetup for energy use data collection

THANK YOUMSR | AKF | AIAMN NOVEMBER 15, 2015