evaluation of relevant reflector properties

39
Aránzazu FernándezGarcía [email protected] Florian Sutter (DLR) 4 th SFERA Summer School DLR Hornberg, 15 th May 2013 Evaluation of relevant reflector properties

Upload: others

Post on 09-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Aránzazu Fernández‐Garcí[email protected]

Florian Sutter (DLR)

4th SFERA Summer SchoolDLR

Hornberg, 15th May 2013

Evaluation of relevant reflector properties

4th SFERA Summer SchoolHornberg, 15th May 2013

Contents

1. Introduction2. Solar reflectors  3. Reflectance: soiling and 

aging4. Shape

4th SFERA Summer SchoolHornberg, 15th May 2013

Introduction

• Concentrating solar thermal systems  

3

4th SFERA Summer SchoolHornberg, 15th May 2013

Introduction

• Classification

4

Concentrator: reflector with the proper shape

4th SFERA Summer SchoolHornberg, 15th May 2013

• Efficiency

Introduction

5

solar

lossthoverall P

PK ,

ρ

γτ

αPth,loss

Psolar

4th SFERA Summer SchoolHornberg, 15th May 2013

Macroscopic (concentrator shape)  

γ

Microscopic (material scattering)   

ρ

• Efficiency

Introduction

6

solar

lossthoverall P

PK ,

4th SFERA Summer SchoolHornberg, 15th May 2013

Introduction

• The reflector is the first key component in the energy conversion process of concentrating solar technologies

• Any solar radiation that is not reflected by the mirror in the direction of the receiver is lost to the system

• The feasibility of these technologies strongly depends on the material and manufacturing process used to achieve a suitable solar reflector‒ Appropriate optical properties: reflectance‒ Suitable concetrator geometry: shape ‒ Cost effective component

7

ργ

4th SFERA Summer SchoolHornberg, 15th May 2013

Contents

1. Introduction2. Solar reflectors  3. Reflectance: soiling and 

aging4. Shape

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

9

• Reflective metals used in solar reflectors

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

10

• Silvered thick‐glass reflectors

Low-iron glass (<0.015 %). 4 mm thickness

Reflective layer : Silver (0.7-1.2 g/m2) ReflectanceDurabilityShapeCost 

Back layer : Copper (> 0.3 g/m2)

Paint layer (20-2.5% Pb). Pb free: 0.15 %

Paint layer (10-1% Pb). Pb free: 0.15 %

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

11

• Silvered thick‐glass reflectors

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

12

• Silvered thick‐glass reflectors

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

13

• Silvered thin‐glass reflectors

Low-iron glass (<0.015 %). < 1 mm thickness

Reflective layer : Silver (0.8-1.2 g/m2)

Back layer : Cooper

Paint layer (20-2.5% Pb). Pb free: 0.15 %

Paint layer (10-1% Pb). Pb free: 0.15 %

ReflectanceDurabilityCostShape (back)Cost (back)

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

14

• Silvered thin‐glass reflectors

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

15

• Laminated silvered glass reflectors

ReflectanceDurabilityShapeCost

Low-iron glass (<0.015 %). 1.6 mm thickness

Low-iron glass (<0.015 %). 2.3 mm thickness

Reflective layer : Silver

Adhesive layer: Polyvinyl Buytral (PVB)

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

16

• Laminated silvered glass reflectors

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

17

• Aluminum reflectors

Sol-gel SiO2

SiO2

TiO2

Polished Al substrate

Anodization Al2O3

PVD Al (pure)

CostShapeShape (back) ReflectanceDurability

< 5 μm

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

18

• Aluminum reflectors with metal structure

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

19

• Aluminum reflectors with composite material structure

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

20

• Silvered polymer films

(Kennedy, 2010)

< 5 μm

Anti-soiling Layer

Adhesion Promoting LayerPMMA superstrate

Substrate

Metal back layer: Cu

Reflective layer: Silver

Pressure Sensitive Adhesive (PSA)

CostShapeShape (back) ReflectanceDurability

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

21

• Silvered polymer films

4th SFERA Summer SchoolHornberg, 15th May 2013

Solar reflectors

22

Type of reflector Reflectance

Silvered Thin Glass 0.95Silvered Thick GlassLaminated silvered glass 0.93—0.94Silvered Polymer Film 0.90‐0.93Aluminum 0.83‐0.86

• Reflectance of different solar reflectors

4th SFERA Summer SchoolHornberg, 15th May 2013

Type of reflector Cost ($/m2)Silvered Thick Glass 43‐65Silvered Thin Glass 16‐43Silvered Polymer Film 20‐25Aluminum 20‐22

Solar reflectors

23

• Cost of different solar reflectors

(Kennedy and  Terwilliger, 2005)

4th SFERA Summer SchoolHornberg, 15th May 2013

Contents

1. Introduction2. Solar reflectors  3. Reflectance: soiling and 

aging4. Shape

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance

• To enhance the feasibility of CSP systems, quality and lifetime guarantees of the components must be increased. Those guarantees can only be given with the appropriate testing methods and measurement tools

• The proper optical parameter to evaluate the quality of reflectors is the solar‐weighted specular reflectance

25

Solar‐weighted reflectance:Whole solar spectrum

Specularity:Directed to the receiver

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance

• Scheme of specular reflectance

),,( SWs

26

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance

• Reflectance decrease mechanismsAbsorption Scattering/beam spread

• Both mechanisms are produced by these sources

27

Soiling deposition:cleaning

Aging due to environmental stress: durability

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: soiling/cleaning

28

• Reflectance decrease due to soiling deposition• Cleaning is one of the main of aspect of maintenance tasks• Cleaning strategy depends on the reflector and the location

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: soiling/cleaning

29

• Cleaning methods typically used are mainly based on water ‒ Minimization of the water consumption by:

• Using some additives (mainly detergents)• Applying a brush, a foam, a tissue, etc.• Collect and reuse!!!!

‒ Optimization of the water treatment to reduce the cost‒ Combination of pressure and  temperature of the water to 

have a good compromise between efficiency and cost • Dry cleaning methods in some locations because in wet

ambients particles are strongly attached to the reflector surface

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: soiling/cleaning

30

• Anti‐soiling coatings to reduce soiling rate‒ Easy‐to‐clean effect‒ Dust repellent properties

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: soiling/cleaning

31

• Water based methods

(Abengoa)

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: aging

• Typical guaranties requested involve the goal of 10‐30 years of real time in outdoor exposure with low degradation 

• The materials evolve quickly and their competition in the market is strong accelerated conditions are necessary in service lifetime prediction

• Prediction of outdoor lifetime based on accelerated aging is not an easy task because it depends on:– The failure mechanisms, which is specific for each type of reflector– The real outdoor conditions, which depends on the location

• Commercial reflectors change composition and structure32

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: aging

• Degradation mechanisms:

• Factors:

33

Top coating: degradation and transmittance loss

Back coating: degradationReflective layer: corrosion

TemperatureHumidity

Radiation (UV)

Chemicals:‐ NaCl

‐ SO2, NOX‐ Particles

Abrasion:‐ Part + wind‐ Cleaning

4th SFERA Summer SchoolHornberg, 15th May 2013

Reflectance: aging

34

4th SFERA Summer SchoolHornberg, 15th May 2013

Contents

1. Introduction2. Solar reflectors  3. Reflectance: soiling and 

aging4. Shape

4th SFERA Summer SchoolHornberg, 15th May 2013

Shape

36

• Concentrator shape must be according to the design to focus the reflected radiation onto the receiver

Paraboloid Paraboloid/spherical/cylindrical

(large radius)

Parabola (cross section)

4th SFERA Summer SchoolHornberg, 15th May 2013

Shape

37

• Shape measurement techniques:– Deflectometry (distortion of reflected patterns)– Close‐range photogrammetry (3D point probing)– Flux density measurements (as indirect measurement)– V‐Shot (laser)– Distant observer (inverse optical path)

(Fernández‐Reche and Fernández‐García, 2009)(Ulmer et al., 2008)

(Lüpfert et al., 2007)

4th SFERA Summer SchoolHornberg, 15th May 2013

Shape

38

• Intercept factor is calculated by ray‐tracing, usingmeasured shape of the concentrator and considering:

• Results obtained are useful in:‒ Design process‒ Efficiency assessment‒ Quality control

‐ Sun shape‐ Reflector panel alignment 

geometry‐ Receiver geometry‐ Receiver real position‐ Tracking accuracy‐ Other factors and loads

4th SFERA Summer SchoolHornberg, 15th May 2013

Thank you for your attention!!!!!

[email protected]

39