etch damage in magnetic thin film head materials

33
Etch Damage in Magnetic Thin Film Head Materials Lisa Krayer (UCSD, UMD) Mentor: Brian Kirby (NIST Center for Neutron Research) Collaborating with: (Seagate Technology) Anusha Natarajarathinam Mark Kief

Upload: others

Post on 27-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Etch Damage in Magnetic Thin Film Head Materials

Etch Damage in Magnetic Thin Film Head Materials

Lisa Krayer (UCSD, UMD) Mentor: Brian Kirby (NIST Center for Neutron Research) Collaborating with: (Seagate Technology) Anusha Natarajarathinam Mark Kief

Page 2: Etch Damage in Magnetic Thin Film Head Materials

<http://www.ncnr.nist.gov/instruments/dcs/>

Page 3: Etch Damage in Magnetic Thin Film Head Materials

1956: IBM 305 RAMAC (5MB)

Hard Drives, A History

Page 4: Etch Damage in Magnetic Thin Film Head Materials

Hard Drives, A History 1956: IBM 305 RAMAC (5MB)

<http://www.computerhistory.org/revolution/memory-storage/8/259/1044>

24 in.

Page 5: Etch Damage in Magnetic Thin Film Head Materials

Hard Drives, A History 1956: IBM 305 RAMAC (5MB)

2013: Seagate® Enterprise Turbo SSHD (600GB)

<http://www.computerhistory.org/revolution/memory-storage/8/259/1044>

24 in.

Page 6: Etch Damage in Magnetic Thin Film Head Materials

1956: IBM 305 RAMAC (5MB) 2013: Seagate® Enterprise

Turbo SSHD (600GB)

<http://www.computerhistory.org/revolution/memory-storage/8/259/1044>

24 in.

<http://www.seagate.com/internal-hard-drives/enterprise-hard-drives/sshd/enterprise-

turbo-sshd/>

Hard Drives, A History

Presenter
Presentation Notes
The integrated RAMAC 305 system was about two refrigerators in width. 6000 RPM- wikipedia (350 disks) Seek time: 600 milliseconds World’s Fastest Enterprise Hard Drive— boasts ultra-fast speed with up to 3X the increase in random performance over standard 15K-RPM drives. - seagate.com 15k-RPM spindle speed 3x faster then 9ms common drives.
Page 7: Etch Damage in Magnetic Thin Film Head Materials

Read/Write Heads

<http://www.123rf.com/photo_10466519_parts-of-hard-drive-in-close-up-read-write-head-and-

platter.html>

• Determines speed. • Aggressive scaling to 10’s nm. • Fabrication of magnetic

materials includes etching, milling and capping. • This process damages the

interfacial region of the materials!

Page 8: Etch Damage in Magnetic Thin Film Head Materials

CoFeB • Common read head material. ▫ Ferromagnetic

B

H

Page 9: Etch Damage in Magnetic Thin Film Head Materials

CoFeB • Common read head material. • Etching and capping changes

electronic state at the interface.

Page 10: Etch Damage in Magnetic Thin Film Head Materials

CoFeB • Common read head material. • Etching and capping changes

electronic state at the interface.

• Dead layers up to 3.5 nm?

Page 11: Etch Damage in Magnetic Thin Film Head Materials

Use Polarized Neutron Reflectometry (PNR) to determine the nature of interfacial damage to magnetic materials produced by industrially relevant fabrication techniques.

Page 12: Etch Damage in Magnetic Thin Film Head Materials

Reflectometry

2𝜋𝜋∆

2

),()(4)(: ∫= dzezkziQ

QRamplitudereflection ikzzψρπ

“Modern Techniques for Characterizing Magnetic Materials.” Ed. By Yimei Zhu. Kluwer Acad. Publishers (2005).

θλπ sin4

=Q

Δ θ θ

Page 13: Etch Damage in Magnetic Thin Film Head Materials

Why Neutrons? • Highly penetrating with little absorption. • Sensitive to nuclear composition (scatters from

nuclei). • Magnetic ▫ Neutrons are made up of three quarks that

distribute their charge radially creating a magnetic moment with no net charge.

Page 14: Etch Damage in Magnetic Thin Film Head Materials

Polarized Neutron Reflectometry • Non-spin flip scattering length

density:

• Spin flip scattering length density purely magnetic (M⊥H).

)(.,

,,

,

HMionmagnetizatplaneinMconstC

CMlengthscatteringbdensitynumberN

bN

magnetic

iiinuclear

magneticnuclear

==

===

=

±=

∑±

ρ

ρ

ρρρ

reflection amplitude : R(Q) =4πiQ

ρ(z)ψ(kz,z)eikzdz∫2

θλπ sin4

=Q

H

Page 15: Etch Damage in Magnetic Thin Film Head Materials

Expected Sample Structure

1nm Magnesium Oxide (MgO)

Page 16: Etch Damage in Magnetic Thin Film Head Materials

Etch Methods Ion Beam Etching

(IBE) Plasma Etching

(PLSM)

Reactive Ion Beam Etching

(RIE)

Ion Source

Substrate Holder Accelerated

Ions

Tilt Rotation

Substrate

Accelerated Ions

Ground

Electrode for RF Excitation

Accelerated Ions

Ground

Electrode for RF Excitation

Substrate

Page 17: Etch Damage in Magnetic Thin Film Head Materials

Results

0.00 0.05 0.10 0.15 0.20 0.25

1E-71E-61E-51E-41E-30.010.1

1

0.00 0.05 0.10 0.15 0.20 0.250.00.51.01.52.02.53.03.54.0

Log(

Ref

lect

ivity

)

Q (1/A)

IBE Spin Up IBE Spin Down PLSM Spin Up PLSM Spin Down RIE Spin Up RIE Spin Down

Ref

lect

ivity

(100

Q)4

Q (1/A)

IBE Spin Up IBE Spin Down PLSM Spin Up PLSM Spin Down RIE Spin Up RIE Spin Down

Page 18: Etch Damage in Magnetic Thin Film Head Materials

Step 1: Calculate what we expect

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

5

0.00 0.05 0.10 0.15 0.20 0.250.0

0.5

1.0

1.5

2.0

2.5

Ref

lect

ivity

(100

Q)4

Q (1/A)

IBE PLSM RIE Expected

Spin Up Comparison

Ref

lect

ivity

(100

Q)4

Q (1/A)

Spin Down Comparison

Page 19: Etch Damage in Magnetic Thin Film Head Materials

Step 2: Modify structure

1nm Magnesium Oxide (MgO)

Page 20: Etch Damage in Magnetic Thin Film Head Materials

PLSM

1nm Magnesium Oxide (MgO)

Page 21: Etch Damage in Magnetic Thin Film Head Materials

IBE

0.00 0.05 0.10 0.15 0.20 0.250.00.51.01.52.02.53.03.5

0 500 1000 1500 2000 2500 3000

0123456

Ref

lect

ivity

(100

Q)4

Q (1/A)

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

Cr2O3

Cr

CoFeBMgOTaSiO2

ρ(1E

-6/A

2 )

Thickness (A)

ρ(z) ρM(z)

𝜒𝜒2=3.06421

Page 22: Etch Damage in Magnetic Thin Film Head Materials

IBE

0.00 0.05 0.10 0.15 0.20 0.250.00.51.01.52.02.53.03.5

2750 2800 2850 2900 2950 3000 3050 3100 3150 3200

0123456

Ref

lect

ivity

(100

Q)4

Q (1/A)

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

ρ(1E

-6/A

2 )

Thickness (A)

ρ(z) ρM(z)

SiO2Ta

MgO CoFeB

CrCr2O3

𝜒𝜒2=3.06421

Page 23: Etch Damage in Magnetic Thin Film Head Materials

RIE

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

2850 2900 2950 3000 3050 3100 3150 3200

0123456

Ref

lect

ivity

(100

Q)4

Q (1/A)

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

ρ(1E

-6/A

2 )

Thickness (A)

ρ(z) ρM(z)

SiO2

Ta

MgO CoFeB

CrCr2O3

𝜒𝜒2=2.64126

Page 24: Etch Damage in Magnetic Thin Film Head Materials

PLSM

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

2850 2900 2950 3000 3050 3100 3150 3200 3250

0123456

Ref

lect

ivity

(100

Q)4

Q (1/A)

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

ρ(1E

-6/A

2 )

Thickness (A)

ρ(z) ρΜ(z)

SiO2Ta

MgOCoFeB

CrCr2O3

Unknown Oxide

𝜒𝜒2=3.2559

Page 25: Etch Damage in Magnetic Thin Film Head Materials

-250 -200 -150 -100 -50 0 50 100 150

0

1

2

3

4

5

6

-225 -150 -75 0 75 150

0

1

2

3

4

5

-225 -150 -75 0 75 150

0

1

2

3

4

5

6

7

8

Cr2O3

CrCr

Unknown Oxide

CoFeB

MgOTaSiO2

ρ(1E

-6/A

2 )

Thickness (A)

IBE ρ(z) IBE ρΜ(z) RIE ρ(z) RIE ρΜ(z) PLSM ρ(z) PLSM ρΜ(z)

Normalized Profileρ(

1E-6

/A2 )

Thickness (A)

IBE RIE PLSM

Magnetic Profile

ρ(1E

-6/A

2 )

Thickness (A)

IBE RIE PLSM

Nuclear Profile

Page 26: Etch Damage in Magnetic Thin Film Head Materials

-250 -200 -150 -100 -50 0 50 100 150

0123456

-30 -20 -10 0 10

0123456

Cr2O3

CrCr

Unknown Oxide

CoFeBMgO

TaSiO2

ρ(1E

-6/A

2 )

Thickness (A)

IBE ρ(z) IBE ρΜ(z) RIE ρ(z) RIE ρΜ(z) PLSM ρ(z) PLSM ρΜ(z)

Normalized Profileρ(

1E-6

/A2 )

Thickness (A)

Etch Method

• IBE • RIE • PLSM

Dead Layer

• 8.97129 A • 6.378326 A • 4.153826 A

Page 27: Etch Damage in Magnetic Thin Film Head Materials

Step 3: Verify model • Are we sure the differences are magnetic and not

structural? ▫ Constant dead layer. ▫ No dead layer.

Page 28: Etch Damage in Magnetic Thin Film Head Materials

IBE

0.00 0.05 0.10 0.15 0.20 0.250.00.51.01.52.02.53.03.5

0.00 0.05 0.10 0.15 0.20 0.250.00.51.01.52.02.53.03.5

0.00 0.05 0.10 0.15 0.20 0.250.00.51.01.52.02.53.03.5

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

Unique Dead Layer

Ref

lect

ivity

(100

Q)4

Constant Dead Layer

Q (1/A)

No Dead Layer

Page 29: Etch Damage in Magnetic Thin Film Head Materials

RIE

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

Unique Dead Layer

Ref

lect

ivity

(100

Q)4

Constant Dead Layer

Q (1/A)

No Dead Layer

Page 30: Etch Damage in Magnetic Thin Film Head Materials

PLSM

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

0.00 0.05 0.10 0.15 0.20 0.250

1

2

3

4

Data Spin Down Theory Spin Down Data Spin Up Theory Spin Up

Unique Dead Layer

Constant Dead Layer

Ref

lect

ivity

(100

Q)4

Q (1/A)

No Dead Layer

Page 31: Etch Damage in Magnetic Thin Film Head Materials

Trend • Dead layer does not match expected • Comparison of integrated magnetization with

magnetic flux.

B

H

456789

23

24

25

2.3

2.4

2.5

PLSMRIEDea

d La

yer (

A)IBE

gM

agne

tizat

ion

(nW

b)

IBE RIE PLSM

Flux

(nW

b)

SampleIBE RIE PLSM

Page 32: Etch Damage in Magnetic Thin Film Head Materials

In Conclusion • Fit is sensitive to dead layer, not just structural

differences. • Ion Beam Etching appears to have the most damage

while Plasma Etching has the least. • Magnetization consistent with Seagate data.

Future Considerations • X-Ray Reflectometry to verify nuclear structure. • TEM for a better image of the depth profile

Page 33: Etch Damage in Magnetic Thin Film Head Materials

Acknowledgements • Brian Kirby • Seagate Collaborators: ▫ Anusha Natarajarathinam ▫ Mark Kief

• NIST/CHRNS • Julie A. Borchers, Robert D. Shull and Terrell A.

Vanderah (Directors, MML/NCNR Materials Science SURF Program)

• Dan Neumann, Rob Dimeo