etank2000ex

25
 Page 1 of 25 C EN L - SI N I PE C - 01 - 20 12  TA N K R EPO R T: Pr i nt ed - 2/ 29/ 201 2 4: 53: 04 A M  ETA NK FULL R EPORT - SI NI PEC- 01- 2012 ETank2000 Demo 1. 9. 15 ( 20 J an 2012) TABL E O F CO N TEN TS PAGE 1 ETAN K SETTI NGS SUMMARY PAGE 2 SUM M ARY O F D ESI GN DATA AND REM ARKS PAGE 3 SUM M ARY O F RESULTS PAG E 5 RO O F D ESI G N PAGE 6 BO TTO M D ESI G N PAG E 17 CAPACI TI ES AN D W EI GH TS PAGE 23 M AW P & M AW V SUM M ARY PAGE 24

Upload: aou-ugoh

Post on 17-Jul-2015

108 views

Category:

Documents


0 download

TRANSCRIPT

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 1/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:04 AM

ETANK FULL REPORT - SINIPEC-01-2012

ETank2000 Demo 1.9.15 (20 Jan 2012)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 6

BOTTOM DESIGN PAGE 17

CAPACITIES AND WEIGHTS PAGE 23

MAWP & MAWV SUMMARY PAGE 24

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 2/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:22 AM

ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Options, Behavior Tab.

----------------------------------------------------------------------

No 650 Appendix F Calcs when Tank P = 0 -> Default : False

-> This Tank : FalseShow MAWP / MAWV Calcs : True

Enforce API Minimum thicknesses : True

Enforce API Maximum Roof thickness : True

Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True

Force Non-Annular Btm. to Meet API-650 5.5.1 : FalseSet t.actual to t.required Values : False

Maximum 650 App. S or App. M Multiplier is 1 : True

Enforce API Maximum Nozzle Sizes : True

Max. Self Supported Roof thickness : 0.5 in.

Max. Tank Corr. Allowance : 0.5 in.

External pressure calcs subtract C.A. per V.5 : FalseUse Gauge Material for min thicknesses : False

Enforce API Minimum Live Load : True

Enforce API Minimum Anchor Chair Design Load

= Bolt Yield Load : True

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 3/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:22 AM

SUMMARY OF DESIGN DATA and REMARKS

Job : SINIPEC-01-2012

Date of Calcs. : 2/29/2012 , 04:51 AM

Mfg. or Insp. Date : 3/3/2012

Designer : Ovedje A. UgohProject : Stubb Creek EPF Oil Storage Tank

Tag Number : 02-T-3601A/B

Plant : EPF

Plant Location : Akwa Ibom

Site : Stubb CreekDesign Basis : API-653 4th Edition, April 2009,

& API-650 11th Edition, Addendum 2, Nov 2009

----------------------------------------------------------------------

- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------

- Operating Ratio: 0.7

- Design Standard:

- API-650 11th Edition, Addendum 2, Nov 2009 -

- (None) -- Roof : A-285 Gr C: 0.3937in. -

- Shell (4): A-283 Gr C: 0.2362in. -

- Shell (3): A-283 Gr C: 0.2362in. -

- Shell (2): A-283 Gr C: 0.2362in. -

- Shell (1): A-283 Gr C: 0.2362in. -

- Bottom : A-36: 0.25in. -

----------------------------------------------------------------------

Design Internal Pressure = 0 PSI or 0 IN. H2O

Design External Pressure = 0 PSI or 0 IN. H2O

MAWP = 2.5000 PSI or 69.28 IN. H2O

MAWV = -0.6575 PSI or -18.22 IN. H2O

OD of Tank = 18 ft

Shell Height = 21.6 ft

S.G. of Contents = 0.7381Max. Liq. Level = 16.4 ft

Re-Rate Temperature = 194 °F

Tank Joint Efficiency = 1

Ground Snow Load = 0 lbf/ft^2

Roof Live Load = 25 lbf/ft^2

Design Roof Dead Load = 0 lbf/ft^2

Basic Wind Velocity = 100 mphWind Importance Factor = 1

Using Seismic Method: NONE

DESIGN NOTES

NOTE 1 : There are tank calculation warnings.Search for * * Warning * * notes.

NOTE 2 : Tank is not subject to API-650 Appendix F.7

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 4/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:22 AM

** NOTE **

A Minimum Liquid Level of 3.28 ft. has been used for this model

as entered on the Shell Design Screen.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 5/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:22 AM

SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)

------------------------------------------------------------------------

Shell Width Material Sd St Weight CA

# (ft) (psi) (psi) (lbf) (in)------------------------------------------------------------------------

4 6.9 A-283 Gr C 25,960 27,000 3,756 0.1181

3 4.9 A-283 Gr C 25,960 27,000 2,667 0.1181

2 4.9 A-283 Gr C 23,595 26,000 2,667 0.1181

1 4.9 A-283 Gr C 23,595 26,000 2,667 0.1181------------------------------------------------------------------------

Total Weight 11,757

Shell API 653 Summary (Bottom is 1)

-----------------------------------------------------------------

Shell t.design(Sd) t.test(St) t.external t.required t.actual# (in.) (in.) (in.) (in.) (in.)

-----------------------------------------------------------------

4 0.1192 0.0014 0 0.2181 0.2362

3 0.1269 0.0114 0 0.2181 0.2362

2 0.1362 0.0222 0 0.2181 0.23621 0.1446 0.0326 0 0.2181 0.2362

-----------------------------------------------------------------

Self Supported Domed Roof; Material = A-285 Gr C

t.required = 0.1963 in.

t.actual = 0.3937 in.

Roof Joint Efficiency = 0.85

Weight = 4,469 lbf

Bottom Type: Flat Bottom: Non-Annular

Bottom Floor Material = A-36

t.required = 0.1 in.

t.actual = 0.25 in.

Bottom Joint Efficiency = 1

Total Weight of Bottom = 2,692 lbf

TOP END STIFFENER: L80x80x8, A-36, 372. lbf

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 6/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

<Roof Design Per API 653>

DOMED ROOF: A-285 Gr C

OTE: Tank Operating Ratio = 0.7

Roof formulas using 0.4 as operating ratio now use this design value.

JEr = Roof Joint Efficiency = 0.85

Lr = Entered Roof Live Load = 25 lbf/ft^2

Lr_1 = Computed Roof Live Load, including External Pressure

S = Ground Snow Load = 0 lbf/ft^2

Sb = Balanced Design Snow Load = 0 lbf/ft^2

Su = Unbalanced Design Snow Load = 0 lbf/ft^2

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load= (0)(0/12) + 16.0611 + 0

= 16.06 lbf/ft^2

Roof Loads (per API-650 Appendix R)

Pe = PV*144 = 0*144 = 0 lbf/ft^2

e.1b = DL + MAX(Sb,Lr) + 0.7*Pe

= 16.06 + 25 + 0.7*0

= 41.06 lbf/ft^2

e.2b = DL + Pe + 0.4*MAX(Sb,Lr)

= 16.06 + 0 + 0.4*25

= 26.06 lbf/ft^2

T = Balanced Roof Design Load (per API-650 Appendix R)

= MAX(e.1b,e.2b)= 41.06 lbf/ft^2

e.1u = DL + MAX(Su,Lr) + 0.7*Pe

= 16.06 + 25 + 0.7*0

= 41.06 lbf/ft^2

e.2u = DL + Pe + 0.4*MAX(Su,Lr)

= 16.06 + 0 + 0.4*25

= 26.06 lbf/ft^2

U = Unbalanced Roof Design Load (per API-650 Appendix R)= MAX(e.1u,e.2u)

= 41.06 lbf/ft^2

Lr_1 = MAX(T,U) = 41.06 lbf/ft^2

Dish Radius (Rs) = 16.4 ft

Alpha = 56.7166 degrees (angle between the Normal to the roof anda horizontal line at the

roof-to-shell juncture)Theta = 33.2834 degrees (angle between the Normal to the roof and

a vertical line at the

roof-to-shell juncture)

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 7/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

Rs = R1 = R2 = 196.8 in.

Rc = ID/2 = 107.7638 in.

<Weight, Surface Area, and Projected Areas of Roof>

Id = OD - 2*t_roof

= 216 - 2*0.3937

= 215.2126 in.

AB = Id /2 - KR

= 215.2126/2 - 0= 107.6063 in.

BC = R - KR

= 196.8 - 0

= 196.8 in.

hR = Height of Roof (Depth of roof)

= R - SQRT[BC^2 - AB^2] + KR= 196.8 - SQRT[196.8^2 - 107.6063^2] + 0

= 2.669 ft

t_ins = Thickness of Roof Insulation

= 0 ft

Ap_Vert = Vertical Projected Area of Roof= PI*([R + t_ins]^2)(Alpha/360) - OD*([R + t_ins] - hR)/2

= PI*(16.4^2)(66.4858/360) - 18*(16.4 - 2.669)/2

= 32.471 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof

= 0.5*OD

= 0.5*18

= 9 ftAp = Projected Area of roof for wind moment

= PI*R^2

= PI*9^2

= 254.469 ft^2

Roof_Area = 288*PI*R*hR= 288*PI*16.4*2.669

= 40,064 in^2

Weight = (Density)(t)(Roof_Area)

= (0.2833)(0.3937)(40,064)= 4,469 lbf (New)

= 3,129 lbf (Corroded)

< Uplift on Tank > (per API-650 F.1.2)

OTE: This flat bottom tank is assumed supported by the bottom plate.

If tank not supported by a flat bottom, then uplift calculations

will be N.A., and for reference only.

For flat bottom tank with self supported roof,Net_Uplift = Uplift due to design pressure less

Corroded weight of shell and roof plates.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 8/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

= P * PI / 4 * D ^ 2 * 144 «

- Corr. shell - Corr. roof weight

= 0 * 3.1416 / 4 * 324 * 144 «

- 5,881 - 3,129

= -9,010 lbf

< Uplift Case per API-650 1.1.1 >

P_Uplift = 0 lbf

W_Roof_Plates (corroded) = 3,129 lbfW_Shell (corroded) = 5,881 lbfSince P_Uplift <= W_Roof,

Tank Roof does not need to meet App. F requirements.

<Minimum Thickness of Roof Plate>

ME = 28,799,999/28,799,999 = 1 (per API-650 App. M.5.1)

<Section 5.10.6.1>

t-Calc1 = ME * SQRT[T/45]*R/200 + CA

= 1 * SQRT[41.06/45]*16.4/200 + 0.118

= 0.1963 in.

t-Calc2 = ME * SQRT[U/45]*R/230 + CA= 1 * SQRT[41.06/45]*16.4/230 + 0.118

= 0.1861 in.

t-CalcExt = MAX(t-Calc1,t-Calc2)

= 0.1963 in.

t-Calc = 0.1963 in.

Max_f (due to roof thickness)

= 200(t-CA)/ME/R

= 200(0.2757)/1/16.4

= 3.3622

Max_T1 (due to roof thickness)

= Max_f^2 * 45

= 3.3622^2 * 45

= 508.6975 lbf/ft^2

P_ext_1 (Vacuum limited by roof thickness)

= -[Max_T1 - DL - 0.7 * Max(Snow_Load,Lr)]/144

= -[508.6975 - 16.06 - 0.7 * Max(0,25)]/144

= -1 PSI (per API-650 Section V.1)

P_max_ext = -1 PSI or -27.71 IN. H2O

<Actual Participating Area of Roof-to-Shell Juncture>

(From API-650 Figure F-2)Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course)

= 0.6 * SQRT[107.7638 * (0.2362 - 0.1181)]

= 2.1405 in.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 9/25

Pag

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

(From API-650 Figure F-2)

Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less)

= 0.3 * SQRT[196.8 * (0.3937 - 0.118)]

= MIN(2.2098, 12)

= 2.2098 in.

Top End Stiffener: L80x80x8

Aa = (Cross-sectional Area of Top End Stiffener)

= 1.906 in^2

Using API-650 Fig. F-2, Detail c End Stiffener Detail

Ashell = Contributing Area due to shell plates

= Wc*(t_shell - CA)

= 2.1405 * (0.2362 - 0.1181)

= 0.253 in^2

Aroof = Contributing Area due to roof plates

= Wh*(t_roof - CA)

= 2.2098 * (0.3937 - 0.118)

= 0.609 in^2

A = Actual Part. Area of Roof-to-Shell Juncture (per API-650)= Aa + Aroof + Ashell

= 1.906 + 0.609 + 0.253

= 2.768 in^2

MINIMUM PARTICIPATING AREA Dome Roof ( Per API-650 Section 5.10.6.2 )p = MAX(U,T)

Fa = Min(Fy_roof,Fy_shell,Fy_stiff)

= Min(30,000,30,000,36,000)

= 30,000 psi

A_min = Minimum Participating Area

= p*D^2/(8*Fa*TAN(Theta))= 41.06*18^2/(8*30,000*TAN(33.2834))

= 0.084 in^2

MaxT_A = Max Roof Load due to Participating Area

( reversing API-650 Section 5.10.6.2 )

= 1500*45*A/(D*R)= 1500*45*2.768/(18*16.4)

= 632.927 lbf/ft^2

P_ext_2 (Due to MaxT_A)= -[Max_T1 - DL - 0.7 * Max(Snow_Load,Lr)]/144

= -[632.927 - 16.06 - 0.7 * Max(0,25)]/144

= -1 PSI (per API-650 Section V.1)

P_max_ext = -1 PSI or -27.71 IN. H2O

t.required = t-Calc = 0.1963 in.

< ROOF DESIGN SUMMARY >

t.required = 0.1963 in.

t.actual = 0.3937 in.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 10/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

P_max_internal = 2.5 PSI or 69.28 IN. H2O

P_max_external = -1 PSI or -27.71 IN. H2O

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 11/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

SHELL COURSE RE-RATING (Bottom Course is #1)

Course # 1; Material: A-283 Gr C; Width = 4.9ft

API-653 ONE FOOT METHOD

Sd = 23,595 PSI (allowable design stress per API-653 4.3.3.1)

RE-RATE CONDITION

G = 0.7381 (per API-653)

< Re-Rate Condition G = 0.7381 >

H' = Effective liquid head at design pressure

= H + 2.31*P(psi)/G

= 16.4 + 2.31*0/0.7381 = 16.4ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2.6*18*(16.4 - 1)*0.7381/(23,595*0.85) + 0.1181

= 0.1446 in.

hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1

= 0.85*23,595*(0.2362 - 0.1181) / (2.6 * 18 * 0.7381) + 1= 69.569 ft.

Pmax_1 = (hMax_1 - H) * 0.433 * G

= (69.569 - 16.4) * 0.433 * 0.7381

= 16.9927 PSI

Pmax_int_shell = Pmax_1

Pmax_int_shell = 16.9927 PSI

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2.31*P(psi)/G

= 16.4 + 2.31*0/1 = 16.4ft

t.test = 2.6*18*(16.4 - 1)/(26,000*0.85) = 0.0326 in.

Course # 2; Material: A-283 Gr C; Width = 4.9ft

API-653 ONE FOOT METHOD

Sd = 23,595 PSI (allowable design stress per API-653 4.3.3.1)

RE-RATE CONDITION

G = 0.7381 (per API-653)

< Re-Rate Condition G = 0.7381 >

H' = Effective liquid head at design pressure= H + 2.31*P(psi)/G

= 11.5 + 2.31*0/0.7381 = 11.5ft

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 12/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2.6*18*(11.5 - 1)*0.7381/(23,595*0.85) + 0.1181

= 0.1362 in.

hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1

= 0.85*23,595*(0.2362 - 0.1181) / (2.6 * 18 * 0.7381) + 1= 69.569 ft.

Pmax_2 = (hMax_2 - H) * 0.433 * G

= (69.569 - 11.5) * 0.433 * 0.7381

= 18.5587 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_2)

= Min(16.9927, 18.5587)

Pmax_int_shell = 16.9927 PSI

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2.31*P(psi)/G= 11.5 + 2.31*0/1 = 11.5ft

t.test = 2.6*18*(11.5 - 1)/(26,000*0.85) = 0.0222 in.

Course # 3; Material: A-283 Gr C; Width = 4.9ft

API-653 ONE FOOT METHOD

Sd = 25,960 PSI (allowable design stress per API-653 4.3.3.1)

RE-RATE CONDITION

G = 0.7381 (per API-653)

< Re-Rate Condition G = 0.7381 >

H' = Effective liquid head at design pressure= H + 2.31*P(psi)/G

= 6.6 + 2.31*0/0.7381 = 6.6ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2.6*18*(6.6 - 1)*0.7381/(25,960*0.85) + 0.1181= 0.1269 in.

hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1

= 0.85*25,960*(0.2362 - 0.1181) / (2.6 * 18 * 0.7381) + 1

= 76.4419 ft.

Pmax_3 = (hMax_3 - H) * 0.433 * G

= (76.4419 - 6.6) * 0.433 * 0.7381

= 22.3213 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_3)= Min(16.9927, 22.3213)

Pmax_int_shell = 16.9927 PSI

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 13/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2.31*P(psi)/G= 6.6 + 2.31*0/1 = 6.6ft

t.test = 2.6*18*(6.6 - 1)/(27,000*0.85) = 0.0114 in.

Course # 4; Material: A-283 Gr C; Width = 6.9ft

API-653 ONE FOOT METHOD

Sd = 25,960 PSI (allowable design stress per API-653 4.3.3.1)

RE-RATE CONDITION

G = 0.7381 (per API-653)

< Re-Rate Condition G = 0.7381 >

H' = Effective liquid head at design pressure= H + 2.31*P(psi)/G

= 1.7 + 2.31*0/0.7381 = 1.7ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653)

= 2.6*18*(1.7 - 1)*0.7381/(25,960*0.85) + 0.1181= 0.1192 in.

hMax_4 = E*Sd*(t_4 - CA_4)/(2.6*OD*G) + 1

= 0.85*25,960*(0.2362 - 0.1181) / (2.6 * 18 * 0.7381) + 1

= 76.4419 ft.

Pmax_4 = (hMax_4 - H) * 0.433 * G

= (76.4419 - 1.7) * 0.433 * 0.7381

= 23.8873 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_4)

= Min(16.9927, 23.8873)

Pmax_int_shell = 16.9927 PSI

HYDROSTATIC TEST CONDITION

< Re-Rate Condition G = 1 >

H' = Effective liquid head at design pressure

= H + 2.31*P(psi)/G

= 1.7 + 2.31*0/1 = 1.7ft

t.test = 2.6*18*(1.7 - 1)/(27,000*0.85) = 0.0014 in.

Wtr = Transposed Width of each Shell Course= Width*[ t_thinnest / t_course ]^2.5

Transforming Courses (1) to (4)

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 14/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

Wtr(1) = 4.9*[ 0.2362/0.2362 ]^2.5 = 4.9 ft

Wtr(2) = 4.9*[ 0.2362/0.2362 ]^2.5 = 4.9 ft

Wtr(3) = 4.9*[ 0.2362/0.2362 ]^2.5 = 4.9 ft

Wtr(4) = 6.9*[ 0.2362/0.2362 ]^2.5 = 6.9 ft

Hts (Height of the Transformed Shell)

= SUM{Wtr} = 21.6 ft

INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7)

V (Wind Speed) = 100 mphVe = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944Re-Rate PV = 0 PSI, OR 0 In. H2O

<TOP END STIFFENER CALCULATIONS>

Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e)

= 0 in^3

Top Comp. Ring is not required for Self-Supported Roofs

if the requirements of either Section 5.10.5

or 5.10.6 are met.

Actual Z = 0.895 in^3Using L80x80x8, Wc = 3.0311

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

* * * NOTE: Using the thinnest shell course, t_thinnest,instead of top shell course.

* * * NOTE: Not subtracting corrosion allowance per user setting.

ME = 28,799,999/28,799,999

= 1

Hu = Maximum Height of Unstiffened Shell

= {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve)

= {1*600,000*0.2362*SQRT[0.2362/18]^3} / 0.6944

= 306.7643 ft

Wtr = Transposed Width of each Shell Course

= Width*[ t_thinnest / t_course ]^2.5

Transforming Courses (1) to (4)

Wtr(1) = 4.9*[ 0.2362/0.2362 ]^2.5 = 4.9 ft

Wtr(2) = 4.9*[ 0.2362/0.2362 ]^2.5 = 4.9 ft

Wtr(3) = 4.9*[ 0.2362/0.2362 ]^2.5 = 4.9 ft

Wtr(4) = 6.9*[ 0.2362/0.2362 ]^2.5 = 6.9 ft

Hts (Height of the Transformed Shell)= SUM{Wtr} = 21.6 ft

L_0 = Hts/# of Stiffeners + 1= 21.6/1 = 21.6 ft.

No Intermediate Wind Girders Needed Since Hu >= L_0

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 15/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

SHELL COURSE #1 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)

= MAX(0.1446, 0, 0)

= 0.1446 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.2181 in.

t.required = MAX(t.design, t.min653)

= MAX(0.1446,0.2181) = 0.2181 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0.2181 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.178100 in.

t.actual = 0.2362 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0.2833*PI*[(12*18)-0.2362]*12*4.9*0.2362

= 2,667 lbf (New)

= 1,334 lbf (Corroded)

SHELL COURSE #2 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)

= MAX(0.1362, 0, 0)

= 0.1362 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.2181 in.

t.required = MAX(t.design, t.min653)

= MAX(0.1362,0.2181) = 0.2181 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)t1 must be >= t.required = 0.2181 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.178100 in.

t.actual = 0.2362 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t= 0.2833*PI*[(12*18)-0.2362]*12*4.9*0.2362

= 2,667 lbf (New)

= 1,334 lbf (Corroded)

SHELL COURSE #3 SUMMARY

-------------------------------------------

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 16/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)

= MAX(0.1269, 0, 0)

= 0.1269 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.2181 in.

t.required = MAX(t.design, t.min653)

= MAX(0.1269,0.2181) = 0.2181 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.2181 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.178100 in.t.actual = 0.2362 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*18)-0.2362]*12*4.9*0.2362

= 2,667 lbf (New)

= 1,334 lbf (Corroded)

SHELL COURSE #4 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)

= MAX(0.1192, 0, 0)

= 0.1192 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.2181 in.

t.required = MAX(t.design, t.min653)

= MAX(0.1192,0.2181) = 0.2181 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.2181 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.178100 in.t.actual = 0.2362 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*18)-0.2362]*12*6.9*0.2362

= 3,756 lbf (New)

= 1,879 lbf (Corroded)

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 17/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

FLAT BOTTOM: NON-ANNULAR PLATE DESIGN

Bottom Plate Material : A-36

Annular Bottom Plate Material : A-36

<Weight of Bottom Plate>

Bottom_Area = PI/4*(Bottom_OD)^2

= PI/4*(220.)^2

= 38,013 in^2

Weight = Density * t.actual * Bottom_Area= 0.2833 * 0.25 * 38,013

= 2,692 lbf (New)

= 2,692 lbf (Corroded)

< API-653 >

Calculation of Hydrostatic Test Stress & Product Design Stress

(per API-653 Table 4-5 footnote b)

t_1 : Original Bottom (1st) Shell Course thickness.

H'= Max. Liq. Level + P(psi)/(0.433)

= 16.4 + (0)/(0.433) = 16.4 ft

St = Hydrostatic Test Stress in Bottom (1st) Shell Course

= (2.34)(OD)(H' - 1)/t_1= (2.34)(18)(16.4 - 1)/(0.2362)

= 2,746 PSI. (Within 24900 PSI limit for Non-Annular Bottom)

Sd = Product Design Stress in Bottom (1st) Shell Course

= (2.34)(OD)(H' - 1)(G)/(t_1 - ca_1)

= (2.34)(18)(16.4 - 1)(0.7381)/(0.1181)= 4,054 PSI. (Within 23200 PSI limit for Non-Annular Bottom)

--------------------------

<Non-Annular Bottom Plates>

t_min = 0.1 + 0 = 0.1 in. (per API-653 Table 4-4)

t-Calc = t_min = 0.1 in.

t-Actual = 0.25 in.

< Vacuum Calculations > (per ASME Section VIII Div. 1)

Weight Resisting External Vacuum (Corr. Btm. Plate + Min. Liq. Level)

P_btm = 0.2833 * 0.25 + 1.0483

= 1.1191 PSI or 31.02 IN. H2O

P_ext = PV + P_btm = 0 + 1.1191 = 1.1191 PSI or 31.01 IN. H2OSince P_ext > 0, P_ext = 0

td_ext = (t-Calc - CA) (1st course)

= (0.1446 - 0.1181)

= 0.0265 in.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 18/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

ts = (t.actual - CA) (1st course)

= (0.2362 - 0.1181)

= 0.1181 in.

C = 0.33 * td_ext / ts

= 0.33 * 0.0265 / 0.1181= 0.074

since C < 0.2, set C = 0.2

t-Vac = OD*SQRT(C*P_ext/SE) + CA= (216)*SQRT[(0.2)(0)/(24,882)(1)] + 0= 0 in.

t-Calc = MAX(t-Calc, t-Vac)

= MAX(0.1,0)

= 0.1 in.P_max_external= -1 PSI (per API-650 Section V.1)

-------------------

< FLAT BOTTOM: NON-ANNULAR SUMMARY >

t.required = t-Calc = 0.1 in.

t.actual = 0.25 in.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 19/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

ET UPLIFT DUE TO INTERNAL PRESSURE

(See roof report for calculations)

Net_Uplift = -9,010 lbf

Anchorage NOT required for internal pressure.

WIND MOMENT (Per API-650 SECTION 5.11)

OTE: Tank Operating Ratio = 0.7

Wind formulas using 0.4 as operating ratio now use this design value.

vs = Wind Velocity = 100 mphvf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944

Wind_Uplift = Iw * 30 * vf

= 1 * 30 * 0.6944

= 20.8333 lbf/ft^2

API-650 5.2.1.k Uplift Check

P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h)

P_F41 = WCtoPSI(0.962*30,000*2.768*1.3667/18^2 + 8*0.2757)

= 12.2384 PSI

Limit Wind_Uplift/144+P to 1.6*P_F41Wind_Uplift/144 + P = 0.1447 PSI

1.6*P_F41 = 19.5814 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41)

Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P)Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144)

= MIN(20.8333,2,820)

= 20.8333 lbf/ft^2

Id = OD - 2*t_roof

= 216 - 2*0.3937= 215.2126 in.

AB = Id /2 - KR

= 215.2126/2 - 0

= 107.6063 in.

BC = R - KR

= 196.8 - 0= 196.8 in.

hR = Height of Roof (Depth of roof)

= R - SQRT[BC^2 - AB^2] + KR

= 196.8 - SQRT[196.8^2 - 107.6063^2] + 0

= 2.669 ft

t_ins = Thickness of Roof Insulation

= 0 ft

Ap_Vert = Vertical Projected Area of Roof

= PI*([R + t_ins]^2)(Alpha/360) - OD*([R + t_ins] - hR)/2

= PI*(16.4^2)(66.4858/360) - 18*(16.4 - 2.669)/2= 32.471 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 20/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

Xw = Moment Arm of UPLIFT wind force on roof

= 0.5*OD

= 0.5*18

= 9 ft

Ap = Projected Area of roof for wind moment

= PI*R^2= PI*9^2

= 254.469 ft^2

M_roof (Moment Due to Wind Force on Roof)

= (Wind_Uplift)(Ap)(Xw)= (20.8333)(254.469)(9) = 47,713 ft-lbf

Xs (Moment Arm of Wind Force on Shell)

= H/2 = (21.6)/2 = 10.8 ft

As (Projected Area of Shell)= H*(OD + t_ins / 6)

= (21.6)(18 + 0/6) = 388.8 ft^2

M_shell (Moment Due to Wind Force on Shell)

= (Iw)(vf)(18)(As)(Xs)

= (1)(0.6944)(18)(388.8)(10.8) = 52,488 ft-lbf

Mw (Wind moment)

= M_roof + M_shell = 47,713 + 52,488

= 100,201 ft-lbf

W = Net weight (PER API-650 5.11.3)

(Force due to corroded weight of shell and

shell-supported roof plates and weight of

Minimum Liquid less 40% of F.1.2 Uplift force.)

W_net_tank_weight = W_shell + W_roof - 0.7*P*(PI/4)(144)(OD^2)= 5,881 + 3,129 - 0.7*0*(PI/4)(144)(18^2)

= 9,010 lbf

W_min_Liquid = 38,256 lbf

W = W_net_tank_weight + W_min_Liquid= 47,266 lbf

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

An unanchored Tank must meet these two criteria:1) 0.6*Mw + MPi < (MDL + MF_min_liq)/1.5

2) Mw + 0.4MPi < (MDL + MF)/2

Mw = Destabilizing Wind Moment = 100,201 ft-lbf

MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design «Pressure.

= P*(PI*OD^2/4)*(144)*(OD/2)

= 0*(3.1416*18^2/4)*(144)*(9)= 0 ft-lbf

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 21/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and «

Roof weight supported by the Shell.

= (W_shell + W_roof)*OD/2

= (5,881 + 3,129)*9

= 81,090 ft-lbf

tb = Bottom Plate thickness less C.A. = 0.25 in.

wl = Circumferential loading of contents along Shell-To-Bottom Joint.

= 4.67*tb*SQRT(Sy_btm*H_liq)

= 4.67*0.25*SQRT(36,000*16.4)= 897.08 lbf/ft

wl = 0.9 * H_liq * OD (lesser value than above)

= 0.9*16.4*18

= 265.68 lbf/ft

wl_min_liq = Circumferential loading of Minimum-Level contents along «

Shell-To-Bottom Joint.

= 4.67*ta*SQRT(Sy_btm*H_min_liq)

= 4.67*0.25*SQRT(36,000*3.28)

= 401.1853 lbf/ft

MF_min_liq = wa_min_liq*PI*OD

= 401.1853*3.1416*18

= 401.1853 lbf

MF = Stabilizing Moment due to Bottom Plate and Liquid Weight.= (OD/2)*wl*PI*OD

= (9)(265.68)(3.1416)(18)

= 135,215 ft-lbf

Criteria 1

0.6*(100,201) + 0 < (81,090 + 22,686)/1.5Since 60,121 < 69,184, Tank is stable.

Criteria 2

100,201 + 0.4 * 0 < (81,090 + 135,215)/2

Since 100,201 < 108,153, Tank is stable.

RESISTANCE TO SLIDING (per API-650 5.11.4)

F_wind = vF * 18 * As

= 0.6944 * 18 * 388.8

= 4,860 lbf

F_friction = Maximum of 40% of Weight of Tank

= 0.4 * (W_Roof_Corroded + W_Shell_Corroded +

W_Btm_Corroded + W_min_Liquid)

= 0.4 * (3,129 + 5,881 + 2,692 + 38,256)

= 19,983 lbf

No anchorage needed to resist sliding since

F_friction > F_wind

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 22/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

<Anchorage Requirement>

Anchorage NOT required since Criteria 1, Criteria 2, and Sliding

ARE acceptable.

ANCHOR BOLT CHAIRS NOT SPECIFIED.

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 23/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) : 40,938 gal

Design Capacity (to Max Liquid Level) : 31,082 gal

Minimum Capacity (to Min Liquid Level) : 6,216 gal

NetWorking Capacity (Design - Min.) : 24,866 gal

New Condition Corroded

-----------------------------------------------------------

Shell 11,757 lbf 5,881 lbf

Roof Plates 4,469 lbf 3,129 lbfBottom 2,692 lbf 2,692 lbfStiffeners 372 lbf 372 lbf

Nozzle Wgt 0 lbf 0 lbf

Misc Roof Wgt 0 lbf 0 lbf

Misc Shell Wgt 0 lbf 0 lbf

Insulation 0 lbf 0 lbf-----------------------------------------------------------

Total 19,290 lbf 12,074 lbf

Weight of Tank, Empty : 19,290 lbf

Weight of Tank, Full of Product (SG=0.7381): 271,457 lbf

Weight of Tank, Full of Water : 360,934 lbfet Working Weight, Full of Product : 172,458 lbf

et Working Weight, Full of Water : 226,807 lbf

Foundation Area Req'd : 254 ft^2

Foundation Loading, Empty : 75.94 lbf/ft^2

Foundation Loading, Full of Product (SG=0.7381) : 1,069 lbf/ft^2

Foundation Loading, Full of Water : 1,421 lbf/ft^2

SURFACE AREAS

Roof 278 ft^2Shell 1,221 ft^2

Bottom 254 ft^2

Wind Moment 100,201 ft-lbf

Seismic Moment 0 ft-lbf

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 24/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

MAWP & MAWV SUMMARY FOR SINIPEC-01-2012

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 2.5 PSI or 69.28 IN. H2O (per API-650 App. F.1.3 & F.7)

MAWP = Maximum Calculated Internal Pressure (due to shell)

= 2.5 PSI or 69.28 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to roof)

= 2.5 PSI or 69.28 IN. H2O

TANK MAWP** = 2.5 PSI or 69.28 IN. H2O

5/14/2018 ETank2000ex - slidepdf.com

http://slidepdf.com/reader/full/etank2000ex 25/25

Page

CENL - SINIPEC-01-2012

TANK REPORT: Printed - 2/29/2012 4:53:23 AM

* This MAWP calculation assumes a minimum liquid level of 3.28 FT. in the tank.

MAXIMUM CALCULATED EXTERNAL PRESSURE

MAWV = -1 PSI or -27.71 IN. H2O (per API-650 V.1)

MAWV = Maximum Calculated External Pressure (due to shell)

= -0.6575 PSI or -18.22 IN. H2O

MAWV = Maximum Calculated External Pressure (due to roof)= -1 PSI or -27.71 IN. H2O

MAWV = Maximum Calculated External Pressure (due to bottom plate)

= -1 PSI or -27.71 IN. H2O

TANK MAWV = -0.6575 PSI or -18.22 IN. H2O