estimating survival from gray's exible model outline · p (y y < y + yjy y) y; (1) where p (:)...

9
First Prev Next Last Go Back Full Screen Close Quit Estimating survival from Gray’s flexible model Zdenek Valenta Department of Medical Informatics Institute of Computer Science Academy of Sciences of the Czech Republic First Prev Next Last Go Back Full Screen Close Quit Outline I. Introduction II. Semi–parametric survival models III. Gray’s model introduction IV. Survival estimates based on semi-parametric models V. Estimating survival from Gray’s model (with examples) VI. Impact of misspecifying the survival model – simulation study results VII. Discussion First Prev Next Last Go Back Full Screen Close Quit I. Introduction Let Y be a random variable capturing time to occurrence of a certain event of interest. The hazard function h(y) is at time y formally defined as follows: h(y) = lim Δy0 P (y Y<y y|Y y) Δy , (1) where P (.) denotes conditional probability, that an event of interest would occur immediately after time y, given it did not prior to this time. It follows from (1) that the hazard function may only take non– negative values. First Prev Next Last Go Back Full Screen Close Quit I. Introduction Let F (Y ) denote a cumulative distribution function of the ran- dom variable Y , i.e. F (Y )= P (Y y). We assume that Y is absolutely continuous with density f (y). The expression (1) may be then written as: h(y) = lim Δy0 P (y Y<y y|Y y) Δy = lim Δy0 P (y Y<y y) P (Y yy = 1 P (Y y) d dy F (y)= f (y) P (Y y) = f (y) S (y) , (2) where S (y) denotes the value of the survival function at time y.

Upload: others

Post on 04-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Estimating survival from Gray’sflexible model

    Zdenek Valenta

    Department of Medical InformaticsInstitute of Computer Science

    Academy of Sciences of the Czech Republic

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Outline

    I. Introduction

    II. Semi–parametric survival models

    III. Gray’s model introduction

    IV. Survival estimates based on semi-parametric models

    V. Estimating survival from Gray’s model (with examples)

    VI. Impact of misspecifying the survival model – simulation studyresults

    VII. Discussion

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    I. Introduction

    • Let Y be a random variable capturing time to occurrence of acertain event of interest. The hazard function h(y) is at timey formally defined as follows:

    h(y) = lim∆y→0

    P (y ≤ Y < y +∆y|Y ≥ y)∆y

    , (1)

    where P (.) denotes conditional probability, that an event ofinterest would occur immediately after time y, given it did notprior to this time.

    • It follows from (1) that the hazard function may only take non–negative values.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    I. Introduction

    • Let F (Y ) denote a cumulative distribution function of the ran-dom variable Y , i.e. F (Y ) = P (Y ≤ y). We assume that Yis absolutely continuous with density f (y). The expression (1)may be then written as:

    h(y) = lim∆y→0

    P (y ≤ Y < y +∆y|Y ≥ y)∆y

    = lim∆y→0

    P (y ≤ Y < y +∆y)P (Y ≥ y)∆y

    =1

    P (Y ≥ y)d

    dyF (y) =

    f (y)P (Y ≥ y)

    =f (y)S(y)

    ,

    (2)

    where S(y) denotes the value of the survival functionat time y.

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    I. Introduction

    • We define a cumulative hazard function H(t) at time t as:

    H(t) =∫ t0

    h(y)dy (3)

    It follows from (2) that S(.) and H(.) capture equivalent infor-mation:

    H(t) = − ln (S(t)) (4)

    • Furthermore, it follows from (4) that we can determine thevalue of the survival function S(t) at time t whenever we areable to evaluate the cumulative hazard function H(t):

    S(t) = exp {−H(t)} (5)

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    II. Semi–parametric survival models

    • Multiplicative models:– Cox PH model:

    h(y|Z) = h0(y) · exp (β ′Z) (6)

    – Gray’s flexible model:

    h(y|Z) = h0(y) · exp {β(y)′Z} (7)

    • Additive models:

    – Aalen’s linear model:

    h(y|Z) = h0(y) + β(y)′Z (8)

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    II. Semi–parametric survival models

    Note: Aalen’s linear model (8) may be embedded in the class ofmultiplicative models:

    • Aalen’s model:

    h(y|Z) = h0(y) + β(y)′Z

    exp (h(y|Z)) = exp{h0(y) + β(y)

    ′Z}

    h1(y|Z) = h10(y) · exp{β(y)′Z

    }(9)

    The class of multiplicative models represented by the Cox PH andGray’s flexible model includes the whole class of models pro-posed by Aalen.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    III. Gray’s model introduction

    • Let us recall the definition of Gray’s flexible model: (7):

    h(y|Z) = h0(y) · exp {β(y)′Z}

    • Gray’s model uses penalized B-splines for modelling time-varying effects β(y). B-splines allow for flexible modelling ofthe covariate effects β(y) and the hazard function over time.

    • In the context of Gray’s model using piecewise-constanttime-varying regression coefficients the β(y) remain con-stant for y ∈ [τj−1, τj). We can thus write β(y) = βj =(βj1, βj2, . . . , βjp), where p denotes the number of model co-variates and j = 1, . . . ,M + 1 indexes the intervals on timeaxis. Here τj denote the knots that allow for a change of theregression coefficients βj.

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Piecewise-constant vs. quadraticpenalized splines

    500 1000 2000

    −4

    −3

    −2

    −1

    0

    1

    2

    Intervention

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −0.1

    0.0

    0.1

    0.2

    Age

    Days of Follow−upLo

    g H

    azar

    d R

    atio

    500 1000 2000

    −1

    0

    1

    2

    3

    Diabetes Mellitus

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −6

    −4

    −2

    0

    2

    Intervention

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000−0.2

    −0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    Age

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −1

    0

    1

    2

    3

    4

    Diabetes Mellitus

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Piecewise-constant vs. cubicpenalized splines

    500 1000 2000

    −4

    −3

    −2

    −1

    0

    1

    2

    Intervention

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −0.1

    0.0

    0.1

    0.2

    Age

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −1

    0

    1

    2

    3

    Diabetes Mellitus

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −5

    0

    5

    Intervention

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −0.4

    −0.2

    0.0

    0.2

    0.4

    Age

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    500 1000 2000

    −2

    0

    2

    4

    6

    8

    Diabetes Mellitus

    Days of Follow−up

    Log

    Haz

    ard

    Rat

    io

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    IV. Survival estimates based onsemi-parametric models

    • Cox PH model:

    S(t|Z) = exp{−

    ∫ t0

    h0(y) · exp (β ′Z) dy}

    = exp {−H0(t) · exp (β ′Z)}= [S0(t)]

    exp(β′Z), (10)

    where S0(t) represents baseline survival function estimateat time t.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    IV. Survival estimates based onsemi-parametric models

    • Aalen’s linear model:

    h(y|Z) = h0(y) + β(y)′Z

    h(y|Z) =∼β(y)′

    ∼Z,

    (11)

    while∼β(y) = (h0(y), β(y)) a

    ∼Z = (1, Z).

    • Survival function estimates based on Aalen’s model use cumu-lative regression coefficients

    ∼B(t), where

    ∼Bi(t) =

    ∫ t0

    ∼βi(y)dy.

    Estimating survival based on Aalen’s model may then proceedas follows:

    S (t|Z) = exp{−

    ∼B(t)′

    ∼Z

    }(12)

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    V. Estimating survival from Gray’smodel

    • Survival function estimate based on Gray’s modela us-ing piecewise–constant penalized splines may be obtained asfollows:

    S (t|Z) = exp

    {−

    M+1∑j=1

    H0j (t) · exp(β ′jZ

    )}, (13)

    where Z denotes p-dimensional vector of patient’s characteris-tics, and

    H0j(t) =∫

    [τj−1,τj)

    I (u ≤ t) dH0(u) (14)

    represents a contribution to the cumulative baselinehazard function H0(t) on the interval [τj−1, τj), j =1, . . . ,M + 1.

    aValenta Z et al, Statistics in Medicine 2002.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    V. Estimating survival from Gray’smodel

    • Derivation of confidence limits for the survival function esti-mate based on Gray’s model uses the Delta method.

    • Recall the Taylor formulae for a function f (X) of a randomvariable X with expectation µ:

    f (X) =n∑

    k=0

    f (k)(µ)k!(X − µ)k +Rn (15)

    • Delta method:Var(f (X)) ≈ Var [f (µ) + f ′(µ)(X − µ)]

    = [f ′(µ)]2 · Var(X)(16)

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    V. Estimating survival from Gray’smodel

    • If X is a random vector the Delta method G(X) takes theform:

    Var(G(X)) ≈ OG′(µ) · Var(X) · OG(µ), (17)where OG(µ) is a column vector of first partial derivatives of G.

    • Confidence limits estimatesa were derived for a log– andlog(- log)–transformed survival function S(t) and are reportedsimultaneously in R.

    aValenta Z et al, Statistics in Medicine 2002.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    “coxspline” package in R

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    “cox.spline” R-routine

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    “cox.spline” R-routine (cont.)

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    R-function “gsurv.R”

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    R-function “gsurv.R” (cont.)

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Example 1: survival estimates from Gray’s model with95% C.L. (log-transf.)

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Follow−up time (in days)

    Est

    imat

    ed s

    urvi

    val w

    ith 9

    5% C

    L

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Time−varying hazards dataIncreasing hazards (0.2,1,2)Decreasing hazards (2,1,0.2)Constant hazard (1,1,1)

    Hazard change points are 0.6 and 0.8 years

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Example 1: survival estimates from Gray’s model with95% C.L. (log-log-transf.)

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Follow−up time (in days)

    Est

    imat

    ed s

    urvi

    val w

    ith 9

    5% C

    L

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 1 2 3 4 5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Time−varying hazards dataIncreasing hazards (0.2,1,2)Decreasing hazards (2,1,0.2)Constant hazard (1,1,1)

    Hazard change points are 0.6 and 0.8 years

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Example 2: Secondary prevention trial of CHD inLitomerice men after MI (Cox PH model results)

    Cox

    's s

    urvi

    val p

    roba

    bilit

    y

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice StudyIntervention GroupControl Group

    Men 45 years of age

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice StudyIntervention GroupControl Group

    Men 50 years of age

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice StudyIntervention GroupControl Group

    Men 56 years of age

    Follow−up time in days

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice StudyIntervention GroupControl Group

    Men 60 years of age

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Example 2: Secondary prevention trial of CHD inLitomerice men after MI (Gray’s model results)

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Gra

    y's

    surv

    ival

    pro

    babi

    lity

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice studyIntervention GroupControl Group

    Men 45 years of age

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice studyIntervention GroupControl Group

    Men 50 years of age

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice studyIntervention GroupControl Group

    Men 56 years of age

    Follow−up time in days

    500 1000 1500 2000

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Litomerice studyIntervention GroupControl Group

    Men 60 years of age

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    V. Estimating survival from Gray’smodel

    • Implementation of the “coxspline” package for R statisti-cal system is available from the Dr. Gray’s website (HarvardUniversity and Dana-Farber Cancer Institute, Boston, USA).

    • Web address:

    http://biowww.dfci.harvard.edu/~gray/

    • Package “coxspline”, version 1.0-2, implements Gray’s modelin R, including the survival function estimation using R-function“gsurv.R”.

    • Current version of the “coxspline” package is compatiblewith the latest release of R 2.3.1. (2006-06-01):

    http://www.r-project.org/

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    VI. Impact of misspecifying thesurvival modela

    • In three simulation studies we generated right-censored survivaldata that would satisfy exactly one of the semi-parametric sur-vival models under consideration (i.e. Aalen, Cox, Gray).

    • The data obtained were subsequently analyzed using each ofthe three models considered.

    • The performance of each model was assessed using the BiasandMean Square Error (MSE) of the estimated (conditional)survival distribution.

    aValenta Z et al, Model misspecification effect in univariable regression models for right-censored survival data, Proceedings of the 2002 Joint Statistical Meeting of the AmericanStatistical Society.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    VI. Impact of misspecifying thesurvival model

    • Bias of the survival estimator Ŝ(t|Z):

    Bias(Ŝ(t|Z)

    )=1ns

    ns∑i=1

    Ŝ(i)(t|Z)− S(t|Z) (18)

    • Mean Square Error of the estimated survival Ŝ(t|Z):

    MSE(Ŝ(t|Z)

    )=1ns

    ns∑i=1

    (Ŝ(i)(t|Z)− S(t|Z)

    )2(19)

    • Bias-variance trade-off:

    MSE(Ŝ(t|Z)

    )= var(Ŝ) +

    2

    Bias(Ŝ) (20)

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Aalen’s model with constant β

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20Time

    Bia

    s0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    ●●●●●●●●●●●●

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    ●●●●●●●●●●●● ●

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    Aalen

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    Time

    Bia

    s

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    ●●●●●●●●● ●●● ●●

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    ●●●●●●●●●

    ●●●

    ● ●●

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    Cox

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    Time

    Bia

    s

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    ●●●●●●●●● ●●● ●

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    ●●●●●●●●●

    ●●●

    ●●

    0.0 0.2 0.4 0.6 0.8

    −0.

    050.

    050.

    100.

    150.

    20

    Gray

    Percentile of z 1% 10% 25% 50% 75% 90% 99%

    Legend

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    Time

    MS

    E R

    elat

    ive

    to A

    alen

    's m

    odel

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    ●●●●●●

    ●●●

    ●●●

    ●●

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    ●●

    ●●

    ●●●

    ●●

    ● ●

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    Cox

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    Time

    MS

    E R

    elat

    ive

    to A

    alen

    's m

    odel

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    ●●

    ●●●●●● ●

    ●●●

    ●●

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    ●●●●●

    ●●

    ● ●

    0.0 0.2 0.4 0.6 0.8

    −0.

    50.

    00.

    51.

    01.

    5

    Gray

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Aalen’s model with time-varying β(t)

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    Time

    Bia

    s

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    ●●●●●● ●● ● ●● ●

    ● ●

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    ●●●●●● ● ● ● ●● ● ●

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    Aalen

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    TimeB

    ias

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    ●●●●●● ● ● ● ●● ● ●●

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    ●●●

    ●●● ● ●●

    ●●●

    ● ●●

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    Cox

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    Time

    Bia

    s

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    ●●●●●● ● ● ● ●●● ● ●

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    ●●●

    ●●●● ● ●

    ●●●

    ●● ●

    0.0 0.1 0.2 0.3 0.4

    −0.

    050.

    000.

    050.

    100.

    15

    Gray

    Percentile of z 1% 10% 25% 50% 75% 90% 99%

    Legend

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    Time

    MS

    E R

    elat

    ive

    to A

    alen

    's m

    odel

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    ●●●●●●

    ●● ●

    ●● ●

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    ●●

    ●●

    ●● ●

    ●●

    ●●

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5Cox

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    Time

    MS

    E R

    elat

    ive

    to A

    alen

    's m

    odel

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    ●●●

    ●●● ● ● ● ●

    ● ● ●

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    ●● ● ● ●

    ●●

    ●●

    0.0 0.1 0.2 0.3 0.4

    −0.

    50.

    00.

    51.

    01.

    5

    Gray

    censoring limit −>

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    Time

    Bia

    s

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    ●●

    ●●●● ● ●

    ●●●●

    ● ● ●

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    ●●●

    ●● ●●● ● ● ●

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    Cox

    median survivaltime −>

    censoring limit −>

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    Time

    Bia

    s

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    ● ● ● ●●● ● ● ● ●●● ● ● ●

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    ●● ● ●●

    ● ●● ● ●●● ● ● ●

    0.05 0.10 0.15

    −0.

    10.

    10.

    20.

    30.

    40.

    5

    Gray

    median survivaltime −>

    0.05 0.10 0.15

    010

    2030

    4050

    Time

    MS

    E R

    elat

    ive

    to G

    ray'

    s m

    odel

    0.05 0.10 0.15

    010

    2030

    4050

    ● ●● ●●● ● ● ● ●●● ● ● ●

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    ●● ● ●●●

    ● ● ●●●

    0.05 0.10 0.15

    010

    2030

    4050

    Aalen

    median survivaltime −>

    censoring limit −>

    0.05 0.10 0.15

    010

    2030

    4050

    Time

    MS

    E R

    elat

    ive

    to G

    ray'

    s m

    odel

    0.05 0.10 0.15

    010

    2030

    4050

    ●● ● ●●● ● ● ● ●●● ● ● ●

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    0.05 0.10 0.15

    010

    2030

    4050

    ● ● ● ●●●●

    0.05 0.10 0.15

    010

    2030

    4050

    Cox

    median survivaltime −>

    censoring limit −>

    Percentile of z 1% 10% 25% 50% 75% 90% 99%

    Legend

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    VII. Discussion

    • When the data satisfied Aalen’s linear model, both Cox’s aGray’s model rendered biased survival estimates. They have,however, often shown a lower MSE than the native model forthe data at hand.

    • When analyzing Cox PH model data using the Gray’s rou-tine, we observed no dramatic increase in bias and MSE relativeto native model, while using the same criteria the survival esti-mates based on Aalen’s model appeared to be highly distorted.

    • When the data followed Gray’s model with time-varying co-variate effects, both Cox’s and Aalen’s model rendered in termsof bias and MSE highly unreliable estimates of the conditionalsurvival distribution. In other words, there was no alternativeto using the native model in this instance.

  • •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    References

    [1] Cox DR: Regression Models and Life Tables (with discussion), Journal of theRoyal Statistical Society, 1972, Vol. 34, pp. 187–220.

    [2] Aalen OO: A linear regression model for the analysis of life times, Statistics inMedicine, 1989, Vol. 8, pp. 907–925.

    [3] Gray RJ: Flexible methods for analyzing survival data using splines, with ap-plication to breast cancer prognosis, Journal of the American Statistical Associ-ation, 1992, Vol. 87, pp. 942–951.

    [4] Gray RJ: Spline-based tests in survival analysis, Biometrics, 1994, Vol. 50., pp.640–652.

    [5] Valenta Z and Weissfeld LA: Estimation of the Survival Function for Gray’sPiecewise-Constant Time-Varying Coefficients Model, Statistics in Medicine,2002, Vol. 21(5), pp. 717-727.

    •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

    Thank you for your attention!