error estimates for the logarithmic barrier method in ... · mots-cl es : commande stochastique,...

14
Error estimates for the logarithmic barrier method in stochastic linear quadratic optimal control problems Joseph Fr´ ed´ eric Bonnans, Francisco Silva To cite this version: Joseph Fr´ ed´ eric Bonnans, Francisco Silva. Error estimates for the logarithmic barrier method in stochastic linear quadratic optimal control problems. Systems and Control Letters, Elsevier, 2012, 61 (1), pp.143-147. <inria-00537229> HAL Id: inria-00537229 https://hal.inria.fr/inria-00537229 Submitted on 17 Nov 2010 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destin´ ee au d´ epˆ ot et ` a la diffusion de documents scientifiques de niveau recherche, publi´ es ou non, ´ emanant des ´ etablissements d’enseignement et de recherche fran¸cais ou ´ etrangers, des laboratoires publics ou priv´ es.

Upload: haque

Post on 12-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Error estimates for the logarithmic barrier method in

stochastic linear quadratic optimal control problems

Joseph Frederic Bonnans, Francisco Silva

To cite this version:

Joseph Frederic Bonnans, Francisco Silva. Error estimates for the logarithmic barrier methodin stochastic linear quadratic optimal control problems. Systems and Control Letters, Elsevier,2012, 61 (1), pp.143-147. <inria-00537229>

HAL Id: inria-00537229

https://hal.inria.fr/inria-00537229

Submitted on 17 Nov 2010

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinee au depot et a la diffusion de documentsscientifiques de niveau recherche, publies ou non,emanant des etablissements d’enseignement et derecherche francais ou etrangers, des laboratoirespublics ou prives.

appor t de r ech er ch e

ISS

N02

49-6

399

ISR

NIN

RIA

/RR

--74

55--

FR+E

NG

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Error estimates for the logarithmic barrier method instochastic linear quadratic optimal control problems

J. Frédéric Bonnans — Francisco J. Silva

N° 7455

Novembre 2010

Centre de recherche INRIA Saclay – Île-de-FranceParc Orsay Université

4, rue Jacques Monod, 91893 ORSAY CedexTéléphone : +33 1 72 92 59 00

Error estimates for the logarithmic barriermethod in stochastic linear quadratic optimal

control problems

J. Frederic Bonnans∗ , Francisco J. Silva†

Theme NUM — Systemes numeriquesEquipes-Projets Commands

Rapport de recherche n° 7455 — Novembre 2010 — 10 pages

Abstract: We consider a linear quadratic stochastic optimal control problemwhith non-negativity control constraints. The latter are penalized with the clas-sical logarithmic barrier. Using a duality argument and the stochastic minimumprinciple, we provide an error estimate for the solution of the penalized problemwhich is the natural extension of the well known estimate in the deterministicframework.

Key-words: Stochastic control, linear quadratic problems, non-negativitycontrol constraints, logarithmic barrier, stochastic minimum principle.

∗ INRIA-Saclay and CMAP, Ecole Polytechnique, 91128 Palaiseau, France ([email protected])† INRIA-Saclay and CMAP, Ecole Polytechnique, 91128 Palaiseau, France

([email protected])

Estimations d’erreur de la methode de barrierelogarithmique pour les problemes de controle

optimal stochastique lineaire quadratique

Resume : Nous considerons un problemes de controle optimal stochastiquelineaire quadratique avec contrainte de positivite de la commande. Cette derniereest penalisee avec la barriere logarithmique classique. Utilisant un argument dedualite et le principe du minimum stochastique, nous obtenons des estimationsd’erreur pour la solution du probleme penalise qui apparaıt comme une extensionnaturelle de celle, bien connue, du cas deterministe.

Mots-cles : Commande stochastique, problemes lineaire quadratique, contraintede non-negativite, barriere logarithmique, principe du minimum stochastique

Estimates for the logarithmic barrier method in stochastic LQ problems 3

1 Introduction

The study of stochastic linear quadratic (LQ) optimal control problems is anarea of active research. In fact, many problems arising in engineering designand mathematical finance can be modeled as stochastil LQ problems. Let uscite, for example, the portfolio selection problem ([22, 16]) and the contingentclaim problem ([15]). The stochastic LQ problem, in a finite time horizon [0, T ]and without constraints, can be stated as follows:

Minimize E(∫ T

0

[u(t)>R(t)u(t) + y(t)>C(t)y(t)

]dt+ y(T )>My(T )

)s.t.

dy(t) = [A0(t)y(t) +B0(t)u(t)] dt+ [A1(t)y(t) +B1(t)u(t)] dW (t),y(0) = x0

Assuming that R(t) is positive definite, the problem above was extensively inves-tigated in the 1960s and 1970s (see e.g. [21, 17, 6, 7, 13], the surveys in [2] andreferences therein). In the mid-1990s, using an approach based on a stochasticRiccati equation, Chen-Li-Zhou [11] treated the stochastic LQ problem evenwhen R(t) can be indefinite. See also [12], where the relations between thestochastic LQ problem, the stochastic Pontryagin minimum principle (SPMP)and linear forward-backward stochastic differential equations, are studied.

Even if the unconstrained case is well studied, when control constraints arepresent the only reference that we know is [14]. In fact, the authors consider astochastic LQ problem where the control is constrained in a cone. They obtainexplicit solutions for the optimal control and the optimal cost via solutions of asystem of extended stochastic Riccati equations.

In this work we study a convex stochastic LQ problem with non-negativitycontrol constraints. We consider a family of logarithmic penalized problems,parameterized by ε > 0. This means that the cost function is modified by addinga logarithmic barrier function multiplied by ε, which implies that the solutionof the new problem is strictly positive. Our aim is to study the convergence, asε ↓ 0, of the solution of the penalized problem to the solution of the initial one.In fact, we will obtain error estimates for the cost, control, state and adjointstate in the appropriate spaces. This result extend the classical error estimatesobtained by Weiser [20] in the deterministic framework.

The article is organized as follows: In section 2 we fix the standard nota-tion and the initial and penalized problems are stated. Using the stochasticPontryaguin minimum principle (SPMP) (see [3, 4, 5, 6, 8, 19, 10]), first ordernecessary and sufficient conditions are derived. Our main result is provided insection 3, in which we derive the error estimates. The proof use a simple dualityargument and an application of the SPMP.

2 Problem Statement and Optimality Conditions

Let us first fix some notations. The space Rm (m ∈ N∗) is endowed with itsstandard Euclidean norm denoted by | · |. The ith coordinate of a vector x isdenoted by xi. We set Rm+ := x ∈ Rm : xi ≥ 0, and Rm++ := x ∈ Rm : xi >0. Let T > 0 and consider a filtered probability space (Ω,F ,F,P), on which ad-dimensional (d ∈ N∗) Brownian motion W (·) is defined with F = Ft0≤t≤Tbeing its natural filtration, augmented by all P-null sets in F . For ` ∈ N∗ let us

RR n° 7455

4 J. F. Bonnans, F. J. Silva

defineL2F([0, T ]; R`

):=

v : [0, T ]× Ω→ R` / v is F− adapted and ||v||2 <∞

,

L2,∞F

([0, T ]; R`

):=

v : [0, T ]× Ω→ R` / v is F− adapted and ||v||2,∞ <∞

,

where we assume that all the mappings are B([0, T ])×FT -measurable and ´

||v||2 :=

[E

(∫ T

0

|v(t)|2dt

)] 12

, ||v||2,∞ :=

[E

(supt∈[0,T ]

|v(t)|2)] 1

2

.

It is well known that(L2F([0, T ]; R`

), 〈·, ·〉2

)is a Hilbert space, where

〈u, v〉2 :=∑i=1

E

(∫ T

0

ui(t)vi(t)dt

). (1)

Let x0 : Ω → Rn be F0 measurable and such that E(|x0|2) < ∞. Consider thefollowing affine stochastic differential equation (SDE)

dy(t) = f(t, ω, y(t), u(t))dt+∑di=1 σ

i(t, ω, y(t), u(t))dW (t),y(0) = x0 ∈ R. (2)

In the notation above y(t) ∈ Rn denotes the state function, which is controlledby u(t) ∈ Rm, and

f : [0, T ]× Ω× Rn × Rm → Rn, σi : [0, T ]× Ω× Rn × Rm → Rn×d

are defined by

f(t, ω, y, u) := A0(t, ω)y +B0(t, ω)u+D0(t, ω),σi(t, ω, y, u) := Ai(t, ω)y +Bi(t, ω)u+Di(t, ω),

where, for i = 0, ..., d, Ai : [0, T ] × Ω → Rn×n, Bi : [0, T ] × Ω → Rn×m andDi : [0, T ]× Ω→ Rn. We assume that:(H1) The random matrices Ai, Bi, Di are progressively measurable with respectto F and bounded uniformly in (t, ω) ∈ [0, T ] by a constant D > 0.We take as state and control space, respectively,

Y := L2,∞F ([0, T ]; Rm), U := L2

F ([0, T ]; Rm). (3)

It is well known that for every u ∈ U , equation (2) has a unique solution yu ∈ Yand the following estimate hold:

||y||22,∞ ≤ L1

(E(y2

0) + ||u||22 +d∑i=0

||Di||22

), (4)

for some positive constant L1. Denote respectively by Sm+ and Sm++ the setsof symmetric positive semidefinite and symmetric positive definite matrices oforder m. Now, let us consider the set

U+ := u ∈ U / u(t, ω) ≥ 0 for a.a. (t, ω) ∈ [0, T ]× Ω , (5)

and the random matrices R : [0, T ]× Ω→ Sm++, C : [0, T ]× Ω→ Sn+, M : Ω→Sn+. We assume:(H2) The matrices R,C,M are bounded uniformly in (t, ω) ∈ [0, T ] by aconstant C. In addition, we assume that R is uniformly positive definite, i.e.there exists α > 0 such that for a.a. (t, ω) ∈ [0, T ]× Ω

v>R(t, ω)v ≥ α|v|2 for all v ∈ Rm. (6)

Estimates for the logarithmic barrier method in stochastic LQ problems 5

2.1 The initial problem

Let y ∈ Y be a reference state function and define g0 : [0, T ]×Ω×Rn×Rm → Ras

g0(t, ω, y, u) := 12u>R(t, ω)u+ [y − y(t, ω)]>C(t, ω)[y − y(t, ω)]. (7)

The cost function J0 : U → R is defined as

J0(u) := E

(12

∫ T

0

g0(t, y(t), u(t))dt+ 12yu(T )>Myu(T )

). (8)

We consider the following stochastic optimal control problem:

Min J0(u) subject to u ∈ U+. (CP)0

Assumptions (H1), (H2) imply that J0 is a strongly convex continuous func-tion. Since U+ is closed and convex, we have that (CP)0 has a unique solutionu0. We denote y0 := yu0 its associated state.

As usual in optimal control theory, optimality conditions can be expressedin terms of a Hamiltonian and an adjoint state. In fact, let

H0 : [0, T ]× Ω× Rn × Rn × Rn×d × Rm → R

be the Hamiltonian of problem (CP)0, defined as

H0(t, ω, y, p, q, u) := g0(t, ω, y, u) + p · f(t, ω, y, u) +d∑i=1

qi · σi(t, ω, y, u),

where qi denotes the ith column of q. For u ∈ U let (pu, qu) ∈ L2,∞F ([0, T ]×Rn)×

L2F ([0, T ]×Rn×d), called the adjoint state associated to u, be the unique solution

of the following linear backward stochastic differential equation (BSDE)(see [5]):

dp(t) = −DyH0(t, yu(t), p(t), q(t), u(t))dt+ q(t)dW (t),p(T ) = Myu(T ). (9)

It is well known (see e.g. [18, Proposition 3.1]) that there exists L2 > 0, suchthat

||pu||22,∞ + ||qu||22 ≤ L2

(E(yu(T )2) + ||u||22

). (10)

Let us set p0 := pu0 and q0 := qu0 . Since g0(t, ω, y, ·) is strictly convex, thestochastic Pontryagin minimum principle (SPMP) for linear convex optimalcontrol with random coefficients [10, Theorem 3.2], yields that u0 is a solutionof (CP)0 if and only if for a.a. (t, ω) ∈ [0, T ]× Ω,

u0(t, ω) = argminw∈Rm+H0(t, ω, y0(t, ω), p0(t, ω), q0(t, ω), w). (11)

A straightforward computation (see [1, Section 2.1 ]) yields that

u0(t, ω) = π0 (R(t, ω), z0(t, ω)) for a.a. (t, ω) ∈ [0, T ]× Ω, (12)

where

z0(t, ω) := −R(t, ω)−1

[B0(t, ω)>p0(t, ω) +

d∑i=1

B>i (t, ω)>qi0(t, ω)

]and for (R, z) ∈ Sm++ × Rm the map π0(R, z) is defined as the unique solutionof

Min 12 (x− z)>R(x− z), s.t. x ∈ Rm+ .

6 J. F. Bonnans, F. J. Silva

2.2 The penalized problem

For ε > 0 define the function Jε : U+ → R ∪ +∞ by

Jε(u) := E

(12

∫ T

0

[g0(t, yu(t), u(t)) + εL(u(t))

]dt+ yu(T )> 1

2Myu(T )

),

(13)where L : Rm+ → R∪+∞ is defined as L(u) := −

∑mi=1 log ui. Let us consider

the penalized problem

Min Jε(u) subject to u ∈ U+. (CP)ε

Using the arguments of [1, Lemma 1], we have that

u ∈ U+ → E

(∫ T

0

L(u(t))dt

)∈ R ∪ +∞

is convex lower-semicontinuous (l.s.c), hence Jε is a strongly convex l.s.c. func-tion. Therefore, (CP)ε has a unique solution uε with associated state yε := yuε

.The Hamiltonian for (CP)ε

Hε : [0, T ]× Ω× Rn × Rn × Rn×d × Rm+ → R ∪ +∞

is defined as

Hε(t, ω, y, p, q, u) := H0(t, ω, y, p, q, u) + εL(u).

We set (pε, qε) := (puε , quε) for the unique solution of the following BSDE:

dp(t) = −DyHε(t, yε(t), p(t), q(t), uε(t))dt+ q(t)dW (t),p(T ) = Myε(T ). (14)

As for the initial problem, the SPMP implies that uε is the solution of (CP)ε ifand only if for a.a. (t, ω) ∈ [0, T ]× Ω

uε(t, ω) = argminw∈Rm+Hε(t, ω, yε(t, ω), pε(t, ω), qε(t, ω), w), (15)

Since Hε(t, ω, ·) is convex and differentiable in u, condition (15) is satisfied ifand only if for a.a. (t, ω) ∈ [0, T ]× Ω,

DuH0(t, ω, yε(t, ω), pε(t, ω), qε(t, ω), uε(t, ω))− ε 1uε(t, ω)

= 0, (16)

where 1/uε(t, ω) ∈ Rm denotes the vector whose ith component is 1/uiε(t, ω).Equation (16) implies that (see [1, Section 2.2])

uε(t, ω) = πε (R(t, ω), zε(t, ω)) for a.a. (t, ω) ∈ [0, T ]× Ω, (17)

where

zε(t, ω) := −R(t, ω)−1

[B0(t, ω)>pε(t) +

d∑i=1

B>i (t, ω)>qiε(t)

]and for (R, z) ∈ Sm++×Rm the map πε(R, z) is defined as the unique solution of

Min 12 (x− z)>R(x− z) + εL(x), s.t. x ∈ Rm+ .

Estimates for the logarithmic barrier method in stochastic LQ problems 7

3 Main Result

In this section we provide error estimates for the cost, control, state and adjointstate of the penalized problem. We denote by 1/uε : [0, T ] × Ω → Rm themapping (1/uε(t, ω))i := 1/uiε(t, ω).

Lemma 1. For every ε > 0 we have that 1/uε ∈ U+.

Proof. The proof is based on (15). For notational convenience we assume thatn = m = d = 1. The proof for the general case can be easily adapted. First,note that integrability problem comes when uε(t, ω) is small. Thus, fix K0 > 0and set

ΩK0 := (t, ω) ∈ [0, T ]× Ω / uε(t, ω) ≤ K0 .Now, let η ∈ (0,K0) and set

Hε(t, ω, w) := Hε(t, ω, yε(t, ω), pε(t, ω), qε(t, ω), w).

If uε(t, ω) ≤ η/2 we have for a.a. (t, ω) ∈ ΩK0 , omitting the (t, ω) argument,

Hε(η)− Hε(uε) = 12R(η + uε)(η − uε) + [B0pε +B1qε] (η − uε)+ε [log(uε)− log(η)]

On the other hand, using that log(·) is concave,

log(uε)− log(η) ≤ 1η

(uε − η) ≤ 1η

−η2

= − 12 .

Therefore, by optimality of uε,

0 ≤ Hε(η)− Hε(uε) ≤ CK0η + D(|pε|+ |qε|)η −ε

2≤ ηK1(1 + |pε|+ |qε|)− 1

2ε,

where K1 := maxCK0, D

. Thus, we conclude that

uε ≤ 12η ⇒ η ≥ ε

2K1 (1 + |pε|+ |qε|).

Henceforth, for a.a. (t, ω) ∈ ΩK0 ,

uε ≥ε

4K1 (1 + |pε|+ |qε|)and thus

1uε≤ 4K1 (1 + |pε|+ |qε|)

ε. (18)

The result follows from (10) using that uε ∈ U and that yε ∈ Y is almost surelycontinuous.

Remark. Estimate (18) generalizes [9, Theorem 1] obtained in the deterministicframework. In the deterministic case we have that uε is uniformly positive,whereas in our setting we can prove only (18).

Consider the Lagrangian L : U × U → R, associated to problem (CP)0,defined by

L(u, λ) := J0(u)− 〈λ, u〉2, (19)

where we recall that 〈·, ·〉2 is defined in (1). Define the dual function d : U+ → Rby d(λ) := infu∈U L(u, λ). We have:

8 J. F. Bonnans, F. J. Silva

Lemma 2. For every ε > 0,

d

1uε

)= J0(uε)− εmT.

Proof. Consider the following auxiliary problem

Min J0(u)− ε〈1/uε, u〉2 subject to u ∈ U . (CP)aux

Lemma 1 implies that the above problem is well-defined. Since the cost functionis strongly convex and continuous, problem (CP)aux admits a unique solutionuaux, with associated state yaux := yuaux

. The Hamiltonian Haux of problem(CP)aux is defined as

Haux(t, ω, y, p, q, u) = H0(t, ω, y, p, q, u)− εm∑i=1

1uiε(t, ω)

ui.

We let (paux, qaux) be the unique solution of the following BSDE:

dp(t) = −DyHaux(t, yaux(t), p(t), q(t), uaux(t))dt+ q(t)dW (t),p(T ) = Myuaux

(T ). (20)

Define Haux : [0, T ]× Ω× Rm → R as

Haux(t, ω, u) := Haux(t, ω, yuaux(t, ω), puaux

(t, ω), quaux(t, ω), u).

The SPMP yields that uaux is a solution of (CP)aux if and only if

uaux(t, ω) = argminw∈RmHaux(t, ω, w). for a.a. (t, ω) ∈ [0, T ]× Ω. (21)

Using that Haux(t, ω, ·) is convex and differentiable, (21) is satisfied if and onlyif

DuH0(t, ω, yuaux(t, ω), puaux(t, ω), quaux(t, ω), u)− ε 1uε(t, ω)

= 0. (22)

Therefore, noting that (ommiting the (t, ω) argument)

DyHaux(t, ω, yaux, paux, qaux, uaux) = DyHε(t, ω, yaux, paux, qaux, uaux),

equations (14), (16) imply that (yε, pε, qε, uε) satisfies (20)-(22). Therefore,uaux = uε solves (CP)aux. Finally,

Min u∈U J0(u)− ε〈1/uε, u〉 = J0(uε)− ε〈1/uε, uε〉 = J0(uε)− εmT.

Now, we can prove our main result, which yields error bounds for (yε, pε, qε, uε),usually referred as the central path. In particular, we obtain the convergence of(yε, pε, qε, uε) to (y0, p0, q0, u0) in the appropriate spaces.

Theorem 3. Assume that (H1) and (H2) hold. Then for every ε > 0, thefollowing estimates hold

J0(uε)− J0(u0) ≤ εmT (23)||uε − u0||22 + ||yε − y0||22,∞ + ||pε − p0||22,∞ + ||qε − q0||22 ≤ O(ε) (24)

Estimates for the logarithmic barrier method in stochastic LQ problems 9

Proof. By lemma 2, we have

J0(uε)− εmT ≤ maxλ∈U+

minu∈UL(u, λ) ≤ min

u∈Umaxλ∈U+

L(u, λ) = minu∈U+

J0(u) = J0(u0),

from which (23) follows. The strong convexity of J0(·) implies that

||uε − u0||22 = O(ε).

Taking u = uε − u0 in (4) yields that

||yε − y0||22,∞ = O(ε).

Finally, using the estimates above and that yε− y0 is almost surely continuous,estimate (10) implies that

||pε − p0||22,∞ + ||qε − q0||22 ≤ L2

(E[(yε(T )− y0(T ))2

]+ ||uε − u0||22

)= O(ε).

References

[1] F. Alvarez, J. Bolte, J.F. Bonnans, and F. Silva. Asymptotic expansions forinterior penalty solutions of control constrained linear-quadratic problems.INRIA Report RR-6863, 2009.

[2] M. Athens. Special issues on linear-quadratic-gaussian problem. IEEETrans. Auto. Control., AC-16:527–869, 1971.

[3] A. Bensoussan. Lectures on stochastic control. Lecture Notes in Math. Vol.972, Springer-Verlag, Berlin.

[4] A. Bensoussan. Stochastic maximum principle for distributed parametersystem. J. Franklin Inst., 315:387–406, 1983.

[5] J.M. Bismut. Analyse convexe et probabilites. PhD thesis, Faculte desSciences de Paris, 1973.

[6] J.M. Bismut. Theorie probabiliste du controle des diffusions. Mem. Amer.Math. Soc., 4:1–130, 1976.

[7] J.M. Bismut. On optimal control of linear stochastic equations with alinear-quadratic criterion. SIAM J. Control Optim., 15:1–4, 1977.

[8] J.M. Bismut. An introductory approach to duality in optimal stochasticcontrol. SIAM Rev., 20:62–78, 1978.

[9] J.F. Bonnans and Th. Guilbaud. Using logarithmic penalties in the shoot-ing algorithm for optimal control problems. Optimal Control, Applicationsand Methods, 24:257–278, 2003.

[10] A. Cadenillas and I. Karatzas. The stochastic maximum principle for lin-ear convex optimal control with random coefficients. SIAM J. Control ,Optimization, 33:590–624, 1995.

10 J. F. Bonnans, F. J. Silva

[11] S. Chen, X. Li, and X.Y. Zhou. Stochastic linear quadratic regulators withindefinite control weight costs. SIAM J. Control and Optimization, 36,1998.

[12] S. Chen and J. Yong. Stochastic linear quadratic optimal control problems.Appl. Math. Optim., 43, 2001.

[13] M. Davis. Linear Estimation and Stochastic Control. Chapman and Hall,1977.

[14] Y. Hu and X.Y. Zhou. Constrained stochastic LQ control with randomcoefficients, and application to mean–variance portfolio selection. SIAMJournal on Control and Optimization, 44, 2005.

[15] M. Kohlmann and X.Y. Zhou. Relationship between backward stochasticdifferential equations and stochastic control. SIAM J. Control Optim., 38,200.

[16] A.E.B. Lim and X.Y. Zhou. Mean-variance portfolio selection with randomparameters in a complete market. Math. Oper. Res., 29:101–120, 2002.

[17] P.J. McLane. Optimal stochastic control of linear systems with state- andcontrol-dependent disturbances. IEEE Trans. Auto. Control, 16:793–798,1971.

[18] L. Mou and J. Yong. A variational formula for stochastic controls and someapplications. Pure and Applied Mathematics Quarterly, 3:539–567, 2007.

[19] S. Peng. A general stochastic maximum principle for optimal control prob-lems. SIAM J. on Control and Optimization, 28:966–979, 1990.

[20] M. Weiser. Interior point methods in function space. SIAM J. on Controland Optimization, 44:1766–1786 (electronic), 2005.

[21] W. M. Wonham. On a matrix Riccati equation of stochastic control. SIAMJ. Control, 6:681–697, 1968.

[22] X.Y. Zhou and D. Li. Continuous-time mean-variance portfolio selection:A stochastic LQ framework. Appl. Math. Optim., 42:19–33, 2000.

Centre de recherche INRIA Saclay – Île-de-FranceParc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence CedexCentre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’AscqCentre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy CedexCentre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay CedexCentre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

ÉditeurINRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399