(error control) coding for wireless networks · block-fading incremental redundancy harq...

45
(Error Control) Coding for Wireless Networks IAB 2005 Predrag Spasojevic WINLAB, Rutgers University

Upload: duongtruc

Post on 04-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

(Error Control) Coding for Wireless Networks

IAB 2005

Predrag Spasojevic

WINLAB, Rutgers University

Page 2: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

reliability

adaptability

Wireless Networks: Performance Analysis

link quality

spectral efficiency

radio processing capabilities

layered information

service requirements

observability

can radios collaborate?

topology

low delay

performance evaluation

multiple access

performance prediction

Page 3: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

channel model

signaling schememodulation

Parallel Channel Modeling

+

=> parallel channel model

network topology

+

performance analysis

=>

Page 4: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

block-fading

frequency hopping

multi-carrier

incremental redundancy HARQ

time hopping

frequency diversity

time diversity

unequal error protection

spatial diversity

multi-user diversity

cooperative diversity

multi-path

MIMO

cooperative multi-hop

multilevel codingBICM layered signaling

broadcast/multicast

multiplexing

puncturing

rate adaptation

collision channel

orthogonal signaling

adaptive modulation

Parallel Channels: Models

Page 5: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

block-fading

incremental redundancy HARQ

cooperative diversitycooperative multi-hop

multilevel codingBICM layered signaling

broadcast/multicast

puncturing

rate adaptation

adaptive modulation

Parallel Channels: Performance of Good Codes for

Page 6: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Codeword transmission over parallel channels

Rcv

Tx

mother codeword (n bits)

Ch 1

Ch 2

Ch 3

Page 7: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

On the Performance of Good Codes over Parallel Channels

This work has been supported in part by the NSF Grant SPN-0338805.

Ruoheng Liu, Predrag Spasojevic Emina SoljaninWINLAB, Rutgers University Bell Labs, Lucent

Page 8: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

What is a “good” code?

• good codes:– a sequence of binary linear codes

– achieve arbitrarily small word error probability (WEP) over a noisy channel at a nonzero threshold rate.

– include turbo codes, LDPC codes, and RA codes

• capacity achieving codes – good codes

– rate threshold is equal to the channel capacity

∞== 1)}({ iinΧΧ=

MacKay 99

Page 9: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

0)( ,0)(lim Γ>Γ=Γ

∞→

nWn

-2 0 2 4 6

10-3

10-2

10-1

100

Es/N0 (R=0.7)

WE

P

n=500n=5000

-2 0 2 4 6

10-3

10-2

10-1

100

Es/N0 (R=0.7)

WE

P

n=500n=5000

-2 0 2 4 6

10-3

10-2

10-1

100

Es/N0 (R=0.7)

WE

P

n=500n=5000

Threshold behavior of good codes

• an example of turbo codes– R=0.7– n=500, 5000– binary input AWGN channel

• code goodness implies there exists a threshold Γ0

Γ: received SNR.

Receiver SNR Γ

Page 10: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Code Goodness (Liu etal. 2004)

codebook design requirement(transmitting a codeword x)

– distance from x to other codewords is large

– the number of x’s neighbors is small(low weight spectrum slope of a good code)

)(min ∞→nd Χ

∞<∞→

)(suplim )(n

n

nfS Χ

Page 11: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

-2 0 2 4 6

10-3

10-2

10-1

100

Es/N0 (R=0.7)

WE

P

n=500n=5000 • single channel

– Richardson and Urbankeiterative decoding

– Jin, McEliece, et. al. typical pair decoding

– Sason and Shamaimaximum likelihood (ML) decoding

– Ashikhmin, et. al. (Exit chart)

• parallel channel model?

?

Receiver SNR Γ

R=0.7

Threshold calculation

Page 12: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

αj : (asymptotic) assignment rate 11

=∑=

J

jjα

Parallel channel model

• under what channel conditions will the communication be reliable?

• codeword is partitioned and transmitted over parallel channels

Page 13: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Reliable channel regionTurbo codes with R=1/3, two parallel AWGN channel, α1=α2=1/2

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

1.2

1.4

Channel 1: Es/N0

Cha

nnel

2: E

s/N

0

TC k=3840, WEP=10-2

TC k=3840, WEP=10-3

Pw[Χ(n)] 0

Pw[Χ(n)]≈1

Channel 1: Γ1

Chan

nel 2

: Γ 2

Page 14: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Union Bhattacharyya (UB) threshold

UB reliable channel region

if

then average ML decoding WEP

– UB threshold

– normalized weight spectrum

– average Bhattacharyya noise parameter

δδ

δ

)( suplim max)]([

10

][0

n

n

rcΧ

Χ

∞→≤≤=

0lim )]([ =∞→

nWn

P Χ

][0ln Χc>− γ

∑=j

jjγαγ

⎣ ⎦( )

ln)(

)]([)]([

nnA

rn

n δδ

ΧΧ =

effectiveBhattacharyya distance

Page 15: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Two code parameter description

if

then average ML decoding word error probability

average channel mutual infomation

.0lim )]([ =∞→

nWn

P Χ

][][ and ln ΧΧPP RIc ζγ +>>−

∑=

=J

jjj II

Page 16: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Single parameter description: simple threshold (Liu etal. 2004)

if

then the average ML decoding word error probability

{ }][][][][ )exp(1 : min ΧΧΧΧPPPP

Rccc ζ+≥−−=∗

0lim)]([=

∞→

nW

nP

Χ

][*ln Χc>− γ

Page 17: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

UB threshold vs simple threshold

• an example of turbo code (R=1/7, k=768, and J=3 RSC encoders)

– UB threshold

– simple threshold

dBc 77.6 21.0][0 −⇒=Χ

dBc 70.7 17.0][* −⇒=Χ

Page 18: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Puncturing and Block Fading Channel• punctured simple code threshold

– : punctured rate

• simple threshold bound on block fading channel coding

– decoding is done with full channel state information (CSI)

)1()exp(ln)(

][*

][* τ

ττ−+−

=C

C

cc P

τ−1

[ ]{ } )1(ln

)()(][

*

)]([)]([

ocPPP n

W

nW

+≤−≤

ΧΧ

γγγ E

Page 19: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Adaptive Modulation for Variable-Rate Turbo-BICM

Ruoheng Liu, Jianghong Luo and Predrag SpasojevicWINLAB, Rutgers University

This work has been supported in part by the NSF Grant SPN-0338805.

Page 20: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Motivationkey requirements in 4G or B3G communications systems:

a wide range of data rates according to economic and service demands

QoS for packet oriented services

high-speed wireless systems: bandwidth efficient turbo coding scheme

Turbo BICM -- Goff 94’ [simplicity]

Parallel concatenated TCM -- Benedetto 95’

Turbo-TCM -- Roberton, 98’

channel fluctuating in the wireless propagation environment

communication reliability and error prediction

lack of closed-form expressions for error probability of turbo coded modulation

Page 21: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

mother TCencoder

randompuncturing

bitinterleaver

Gray-mappingM-QAM

mother code rater0

code rater0/(1-λ)

punctured rateλ

demodulationdeinterleaverdepunctureriterativedecoder

channeltransmission rate

m r0/(1-λ)

System model

Page 22: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Rate threshold for VR-Turbo-BICM

Theorem:

For a VR-Turbo-BICM coding scheme using a mother code ensemble [C] of rate r0employed over an AWGN channel with a channel SNR ρ we define the rate threshold

If

then the average ML decoding word error probability approaches zero.

⎪⎩

⎪⎨

>−≤≤⋅

<=°

∞ )()],(1[)()(),()(

)(0),(

mmrmmmImmb

mmr

m ςρργςρηρ

ηρρ

),( mrr ρ°≤

Page 23: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

-5 0 5 10 15 20 250

0.5

1

1.5

2

2.5

3

SNR ρ (dB)

rate

thre

shol

ds (b

it/re

al d

imen

sion

)

simulation (m=1)simulation (m=2)simulation (m=3)rate thresholdsAWGN capacity

vs. simulation results (FER=0.01)

Rate Threshold vs SNR

64 QAM

16 QAM

QPSK

) ,( mr ρ°

Page 24: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

-5 0 5 10 15 20 250

0.5

1

1.5

2

2.5

3

Pav (dB)

Rav

(bits

/real

dim

ensi

on)

Near-optimum power allocationergodic capacity

Adaptive Turbo-BICM in slow fading

( )[ ][ ]

{ }.,...3,2,1,0)( ,0)( )(

)(),(max )(),(

∈≥≤

°

gmgPPgPE

gmgPrE

av

nmnP

to subject

Allocation Problem:

given an average power constraint Pav, the optimum power and modulation index maximize the expected rate threshold

Page 25: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Cooperative Diversity with Incremental Redundancy (IR) Turbo Coding

for Quasi Static Wireless Networks

This work has been supported in part by the NSF Grant SPN-0338805.

Ruoheng Liu, Predrag Spasojevic Emina SoljaninWINLAB, Rutgers University Bell Labs, Lucent

Page 26: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

broadcast

Source Sink

traditional multi-hop transmission

Source Relay Sink

direct transmission

Source

Relay

Sinkcooperative transmission

Page 27: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Cooperation benefit: reliability

wireless communications

Reliable transmission

Deep fading

Diversity ☺

Error rate ~ SNR-2

Error rate ~ SNR-1

Page 28: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

M-user Cooperation

– M users share radio channel

– orthogonal frequency-division multiple access scheme

– 2 Hops scheme (for each user)

Page 29: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

M-user Cooperation (cont.)• Large SNR (asymptotic result)

– Using cooperative coding each user can achieve full (M) diversity gain

• Medium and low SNR (how to get benefit ? cooperation criteria …)– the user-to-destination channel quality is good (same to two user case)– partners are sufficiently close (cluster behavior)

Page 30: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

non-cooperative routingcooperation enhanced routing

Wireless cooperative routing in networkswith quasi-static fading

collaborating cluster

Page 31: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Frame error rate of the cooperative routing scheme

• simple threshold upper bound

– θ(F): effective cluster-to-destination SNR

• asymptotic upper bound (small c*[TC] and large ρ, λ)

∑−

=

+−++−

+−⋅

⎟⎟⎠

⎞⎜⎜⎝

⎛ −≤

1

0

)1()1(][

*,, )!1)((

)(1][

*

M

k

kkMM

c(M)

kkMcM

kM

λρρλ

TC

CFER

( ){ }kcPkPk

MM

k

(M) =≤⋅=⎟⎟⎠

⎞⎜⎜⎝

⎛ −≤ ∑

=

FFF TC |)(1 ][

*

1

0

θFER

Page 32: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Diversity Gain vs M

-10 -5 0 5 10 15 20 2510-6

10-5

10-4

10-3

10-2

10-1

100

cluster-to-destination SNR λ (dB)

FER

simulationupper bound

M=1

M=2

M=5

fast fading

13 dB8 dB8 dB

Page 33: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Cluster-to-destination SNR vs. M

0 1 2 3 4 50

5

10

15

20

25

cluster size M

clus

ter-t

o-de

stin

atio

n S

NR

λ (d

B) FER=10-3

Page 34: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Rate Design for Layered Broadcast using Punctured LDPC Codes and Multilevel Coding

Ahmed Turk    and Predrag Spasojević

Page 35: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Coding for Broadcast

• superposition structure– successive refineable

sources

– hierarchical channel coding

• code rate selection– different channel conditions

– unequal error protection

Page 36: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Multilevel Broadcast System Encoder

21 RRRt +=

Graymapping4‐ASK

C2

C1

a

q2 Regular LDPCencoder

R0,2

Random puncturing

λ2

Punctured LDPC encoder

R2

q1 Regular LDPCencoder

R0,1

Random puncturing

λ1

Punctured LDPC encoder

R1

2

2,02 1 λ−=

RR

1

1,01 1 λ−=

RR

Page 37: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Goodput vs worst user SNR(n,3,4) mother code in each level

minδ

Page 38: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Incremental Multi-Hop based on Punctured Turbo Codes

Ruoheng Liu, Predrag Spasojevic Emina SoljaninWINLAB, Rutgers University Bell Labs, Lucent

Page 39: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

System Model

• one-dimensional multi-hop network with P nodes

• equal distance between the neighboring nodes

0,13,22,1 dddd PP ==== −L

Page 40: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Performance Analysis (1)

Given:

Step 2Step 1

)1(1)exp(1 ][

01 γ

α−

−−>

Χc [ ])1(1

)2(1)exp(1 1][

02 γ

γαα−

−−−−>

Χc

Page 41: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Performance Analysis (cont.)

Step 3 Step 4

[ ])1(1

)1(1)exp(11

1

][0

γ

γαα

+−−−−−>

∑−

=

j

kk

j

kjc Χ

Given: 11 ,, −jαα L

Page 42: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

IR multi-hop transmission scheme (2)

Node 2

Node 3

Node 4

Node 1

mother codeword (n bits)

Hop 1: α1n bits

Hop 2: α2n bits

Hop 3: α3n bits

Page 43: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

• High SNR0:QSNR

1lim0

=∞→η

Energy Savings

• low SNR0: ∑ =−→

= Q

jmSNR j1

0

1lim0

η

• energy ratios:∑ =

−−

=== Q

j

Q

total

Qtotal

jQEE

1)1(

)(

)1(

)(

)()1(1γ

γααη

Page 44: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

-10 -5 0 5 100

0.2

0.4

0.6

0.8

1

SNR0 (dB)

ener

gy ra

tio

Q=1Q=2Q=4Q=10

Traditional vs. IR Multi-hop Transmissions

-10 -5 0 5 100

0.2

0.4

0.6

0.8

1

SNR0 (dB)

ener

gy ra

tioQ=1Q=2Q=4Q=10

m=3m=2energy savings

Page 45: (Error Control) Coding for Wireless Networks · block-fading incremental redundancy HARQ cooperative diversity cooperative multi-hop multilevel coding BICM layered signaling broadcast/multicast

Repetition Coding vs. IR Schemes

5 10 15 200.5

0.6

0.7

0.8

0.9

1

1.1

index of node j (m=2)

ener

gy ra

tio E

tota

lj

/Eto

tal

1

5 10 15 200.5

0.6

0.7

0.8

0.9

1

1.1

index of node j (m=3)

Repetition codingIncremental redundancy

Repetition codingIncremental redundancy

• SNR0=0 dB

• m=2,3

coding gain