erosion 1 (14)

22
Int. J. Multiphase Flow Vol. 19, No. 2, pp. 347-367, 1993 0301-9322/93 $6.00 + 0.00 Printed in Gre at Britain. All rights reserved Copyright © 1993 Pergamon Press Ltd A LAGRANGIAN MODEL FOR SOLID PARTICLES IN TURBULENT FLOWS Q. Q. Lu,t J. R. FONTAINE and G. AUBERTIN Institut National de Recherche et de S6curit6, Avenue de Bourgogne, 54501 Vandoeuvre C6dex, France (Received 14 March 1991; in revised form 30 November 1992) Abstract--Applying the time series analysis idea to the temporal and spatial fluid velocity correlations, a three-dimensional Lagrangian model for the motion of particles in turbulent flows has been established. This model has been used to simulate the experiments of other workers. The computed results are compared with the experimental data for the particle dispersion, velocity correlations and velocity decay. In the case where the mean turbulent flow has one main direction, this model has been extended to include the Eulerian tem poral velocity correlation; a so-called mixed model has been devised. This model has been used to compute particle dispersion in stationary, homogeneous, isotropic and incompressible turbulence. Comparison is made with the theroetical long-time particle diffusion coefficients for cases where the crossing-trajectory effect is important or unimportant. Good agreement is obtained. Key Words: Lagrangian model, particles, turbulence 1. INTRODUCTION A number of computational methods have been developed to describe turbulent flows laden with particles. These methods use either Eulerian or Lagrangian analyses. In the Eulerian approach, both the fluid carrier and the particulate phase are assumed to be continuous media and sets of coupled differential equations are derived for each phase (e.g. Abbas et aL 1980; Durst et al. 1984; Elghobashi et al. 1984). In the Lagrangian approach, particles are treated individually by solving the dynamic equation of particle motion and the bulk properties of the particulate phase are obtained by averaging over a statistically significant number of particles. This paper models particle motion in turbulence by a Lagrangian m ethod. Gosman & Ioannides (1981) proposed a model to account for the effect of fluid turbulence on particles when the mean fluid velocity is kno wn and the fluctuating part is obtained by sampling from a Gaussian probability distribution function (p.d.f.) whose variance is proportional to the local turbulent kinetic energy. The dynamic equation of particle motion is integrated with the fluid instantaneous velocity unchanged until a particle-eddy interaction time expires. This particle-eddy interaction time is defined to be the minimum of the eddy lifetime and the transit time. In this model, the turbulent instantaneous velocity field is supposed to be uniform within the eddy. In other words, this model does not account for the continuity effect (Csanady 1963) which leads to a difference between the particle longitudinal an d transverse long-time diffusion coefficient s (Csanad y 1963; Reeks 1977; Nir & Pismen 1979). Shuen et al. (1983, 1985) used the same idea. Kallio & Reeks (1989) modified this model by determining the eddy lifetime with an exponential p.d.f, distribution having the mean equal to the Lagrangian integral timescale. Burnage & Moon (1990) advanced further in this direction. Their model contains both a random timescale and a random lengthscale. The dynamic equation of particle motion was integrated with the fluid instantaneous velocity unchanged until either the integrating time or the distance between the particle and a fluid point is greater than the corresponding random scale. The two random scales are given by random selections from two Poisson processes whose means are the turbulent Lagrangian integral timescale and the eddy lengthscale. Orm ancey & Martinon (1984) introduced another way of modeling particle motion in turbulent flows. They constructed a sampling process for the fluctuating velocity of a fluid point during a finite interval of time. For the fluctuating velocity of the fluid at the particle position how ever, they ?Present address: Dep artment of Chemical & Nuclear Engineering, The University of California, Santa Barbara, CA 93106 U.S.A. 47

Upload: shaheen-s-ratnani

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 1/21

Int. J. M ultiphase Flow Vol. 19, No. 2, pp. 347-367 , 1993 0301-9322/93 $6.00 + 0.00Printed in Gre at Britain. All rights reserved Copyrigh t © 1993 Pergam on Press Ltd

A L A G R A N G I A N M O D E L F O R S O L I D P A R T I C L E S I N

T U R B U L E N T F L O W S

Q. Q. Lu,t J. R. FONTAINE an d G . AUBERTINIns t i t u t N a t io na l de R eche rche e t de S6cur it 6, A v enue de B ourgogn e , 54501 V an doeu vre C 6dex, F ranc e

(Received 14 Marc h 1991; in revised fo rm 30 Novemb er 1992)

A bs t r ac t - -A pp ly ing t he t im e se r i e s ana lys i s i dea t o t he t em pora l and spa t i a l f l u id ve loc i t y co r r e l a t i ons ,a t h r ee -d im ens iona l L agran g i an m o de l fo r t he m ot io n o f pa r t i c le s i n tu rbu l en t fl ow s has been e s t ab l i shed .T h i s m o d e l h a s b e e n u s e d t o s i m u l a t e t h e e x p e r i m e n t s o f o t h e r w o r k e r s . T h e c o m p u t e d r e s u l t s a r ecom pared w i th t he ex pe r im en ta l da t a fo r t he pa r t i c l e d i spe r s ion , ve loc i t y co r r e l a t i ons and ve loc i t y decay .I n t h e c a s e w h e r e t h e m e a n t u r b u l e n t f lo w h a s o n e m a i n d i r e c t io n , t h i s m o d e l h a s b e e n e x t e n d e d t o i n c l u d ethe E u le r i an t em pora l ve loc i t y co r r e l a t i on ; a so -ca l led m ixed m ode l has bee n dev i sed . T h i s m ode l has beenused t o com p ute pa r t i c l e d i spe r s ion i n s t a t i ona ry , hom ogene ous , i so t rop i c and i ncom pres s ib l e t u rbu l ence .C om par i so n i s m ade w i th t he t he roe t i ca l l ong- t im e pa r t i c l e d i f fus ion coe ff ic ien ts fo r ca ses w here t hec ros s ing - t r a j ec to ry e f f ec t i s im por t an t o r un im por t an t . G ood ag reem en t i s ob t a ined .

K ey W ords : L agrang i an m ode l , pa r t i c l e s , t u rbu l ence

1 . I N T R O D U C T I O N

A n u m b e r o f c o m p u ta t i o n a l m e th o d s h a v e b e e n d e v e lo p e d t o d e s c r ib e t u r b u l e n t flo ws l ad e n w i th

par t ic les . These methods use e i the r Eu le r ian o r Lagrang ian ana lyses . In the Eu le r ian approach ,

b o th t h e f l uid c a rr i e r a n d t h e p a r t ic u l a t e p h a s e a r e a s s u m e d t o b e c o n t i n u o u s m e d ia a n d s et s o f

coup led d i f fe ren t ia l equa t io ns a re de r ived fo r each phase (e .g . Abb as e t a L 1980 ; Durs t e t a l . 1984;

E lg h o b a s h i e t a l . 1984) . In the Lagrang ian approach , pa r t ic les a re t rea ted ind iv idua l ly by so lv ing

th e d y n a m ic e q u a t i o n o f p a r ti c l e m o t io n a n d t h e b u lk p r o p e r t ie s o f t h e p a r t ic u l a t e p h a s e a r eob ta ined by averag ing over a s ta t i s t ica l ly s ign i f ican t number o f pa r t ic les .

T h i s p a p e r m o d e l s p a r ti c l e m o t io n i n t u r b u l e n c e b y a L a g r a n g i a n m e th o d . Go s m a n & Io a n n id e s

(19 81 ) p r o p o s e d a m o d e l t o a c c o u n t f o r t h e e f f e ct o f f l uid t u rb u l e n c e o n p a r ti c le s wh e n t h e m e a n

f lu id ve loc i ty i s kno wn and the f luc tua t ing pa r t i s ob ta ine d by sampl ing f rom a G auss ian p robab i l i ty

d is t r ibu t ion func t ion (p .d . f . ) whose va r iance i s p ropor t iona l to the loca l tu rbu len t k ine t ic energy .

T h e d y n a m ic e q u a t i o n o f p a r t i c l e m o t io n i s i n t e g r a t e d w i th t h e f l u id i n s t a n t a n e o u s v e lo c i t y

unc han ged un t i l a pa r t ic le -ed dy in te rac t ion t ime exp ires . Th is pa r t ic le -e ddy in te rac t ion t ime i sd e f i n ed t o b e t h e m in im u m o f t h e e d d y l if e tim e a n d t h e t r a n s i t t im e . In t h is m o d e l , t h e t u r b u l e n t

ins tan ta neou s ve loc i ty f ie ld is supposed to be un i fo rm wi th in the eddy . In o th e r words , th i s mod e l

does no t a ccou n t fo r the co n t inu i ty ef fec t (Csa nady 1963) which leads to a d i f fe rence be twee n the

par t ic le long i tud ina l an d t ransverse long- t ime d i f fus ion coef f ic ien ts (Cs anad y 1963 ; Reeks 1977; N i r& P ism en 1979). Shuen e t a l . (1983, 1985) used the s am e idea. Kall io & R eeks (1989) m odif ied th is

m o d e l b y d e t e r m in in g t h e e d d y l if e tim e w i th a n e x p o n e n t i a l p.d .f , d i s t r ib u t i o n h a v in g t h e m e a nequa l to the Lagrang ian in teg ra l t imesca le . Burnage & Moon (1990) advanced fu r the r in th i s

d i r e c ti o n . T h e i r m o d e l c o n t a in s b o th a r a n d o m t im e s c a l e a n d a r a n d o m l e ng th sc a le . T h e d y n a m ic

e q u a t i o n o f p a r t i c le m o t io n wa s i n t e g r a t e d w i th t h e f l u id i n s t a n t a n e o u s v e lo c i ty u n c h a n g e d u n t il

e i the r the in teg ra t ing t ime o r the d i s tance be twee n the pa r t ic le and a f lu id po in t i s g rea te r than the

c o r r e s p o n d in g r a n d o m s c a l e . T h e two r a n d o m s c a l e s a r e g iv e n b y r a n d o m s e l e c t i o n s f r o m two

P o i s s o n p r o c e s s e s wh o s e m e a n s a r e t h e t u r b u l e n t L a g r a n g i a n i n t e g r a l t im e s c a l e a n d t h e e d d y

lengthscale .O r m a n c e y & M a r t i n o n (19 84 ) i n t r o d u c e d a n o th e r w a y o f m o d e l i n g p a r t ic l e m o t io n i n t u r b u l e n t

f lows . They cons t ruc ted a sampl ing p rocess fo r the f luc tua t ing ve loc i ty o f a f lu id po in t dur ing af in ite in te rva l o f t ime . F or the f luc tua t ing ve loc i ty o f the f lu id a t the p a r t ic le pos i t ion how ever , they

? P r e s e n t a d d re s s : D e p a r t m e n t o f C h e m i c a l & N u c l e a r E n g i n e e ri n g , T h e U n i v e r s i ty o f C a l i fo r n i a , S a n t a B a r b a r a , C A 93106

U.S.A.

47

Page 2: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 2/21

348 Q, Q. LU et a l .

used ano ther r andom process which accoun t s fo r t he f lu id Eu le r i an long i tud ina l and t r ansver se

cor r e l a t ions . A s a r esu l t , t h is mo de l i nc ludes the con t inu i ty e f fec t on p a r t i c le d i sper s ion . Th ey

fo l lowed , s imul t aneous ly , a pa r t i c l e and a f lu id po in t un t i l t he d i s t ance be tween them exceeds

a ce r t a in g iven l eng thsea l e . Ber l emont et a l . (1990) pur sued th i s approach bu t expressed the

f luc tua t ing f lu id ve loc i ty a long the f lu id t r a j ec to ry as t he we igh ted sum of i t s pas t va lues p lus a

r and om var i ab le , a s sugges t ed by Par tha sa ra th y & Fae th (1990). These two m ode l s fo l lowed a flu id

po in t du r ing a f i n i t e t ime in t e rva l and used no i se t e rms in the t empora l and spa t i a l co r r e l a t ionre l a t ions tha t a r e mean-zero , Gauss i an va r i ab les .

The s t a r t ing po in t o f the p r esen t s tudy i s the t ime se r ies ana lys i s i dea (Box & Jenk ins 1976) . By

app ly ing i t t o bo th the f lu id Lagrang ian and the Eu le r i an spa t i a l co r r e l a t ions , t he f luc tua t ing f lu id

ve loc i ti e s a t two success ive pos i t i ons o f t he p a r t i c le a r e spec if ied . In t he p r esen t m ode l , t he f lu id

loca t ion a nd ve loc i ty change a t every t ime s t ep . The c o r r e l a t ion func t ions a r e speci fi ed on ly fo r

o n e t i m e s t e p o f c o m p u t a t i o n , A t , a n d f o r t h e d i s t a n c e d e v e l o p e d b e t w e e n t h e p a r ti c le a n d a f l ui d

p o i n t d u r i n g A t. A n a p p r o p r i a t e l i n e a r c o m b i n a t i o n o f n o is e t e rm s i s u s e d s o th a t t h e y a r e

mean-zero , Gauss i an va r i ab les .

Th i s pap er i s o rgan ized as fo l lows . Sec t ion 2 i s dev o ted to t he es t ab l i shm ent o f mode l 1 . The

cho ice o f t he co r r e l a t ion fun c t ions and the assoc ia t ed pa ram ete r s a r e d i scussed in subsec t ion 3 .1 .

The p red ic t ed r esu l ts f o r pa r t i c le d i sper s ion , f o r t he dec ay o f fl uc tua t ing ve loc i ty and fo r t hev e l o c it y c o r r e l a ti o n a r e c o m p a r e d w i t h e x p e r im e n t a l d a t a o f S n y d e r & L u m l e y ( 1 97 1) a n d o f W e l ls

& S tock (1983) in subsec t ions 3 .2 and 3 .3 . In subsec t ion 3 .2 , a compar i son i s a l so made wi th the

theore t i ca l r e su l t s o f Ni r & P i smen (1979) fo r ve loc i ty co r r e l a t ions o f t he copp er pa r t i c le o f the

e x p e r i m e n t o f S n y d e r & L u m l e y . T h e s e n s it iv i ty o f m o d e l 1 t o t h e t i m e s t e p a n d a n u m e r ic a l

pa ra me te r i s exam ined in subsec t ion 3 .4 . In subsec t ion 3 .5 , an ex tens ion o f m ode l 1 i s i n t rodu ced

tha t i nco rpora t es t he Eu le r i an t em pora l ve loc i ty co r r e l a t ion . Th i s es t ab l i shes mod e l 2 ( the mixed

mode l ) . Th i s mode l i s app l i ed to pa r t i c l e d i sper s ion in a s t a t i onary , homogeneous , i so t rop ic and

incomp ress ib l e t u rbu len t f l ow. The p red ic t ed long- t ime p ar t i c l e d if fus ion coef f ic i en ts a r e com pare d

wi th the theore t i ca l r e su l ts o f Csan ady (1963) , Ni r & P i smen (1979) and P i smen & N i r (1978), b o th

in the p r esence and the absence o f t he c ross ing- t r a j ec to ry e f f ec t .

2. E S T A B L I S H M E N T O F TH E M E T H O D

2 . I . Pa r t i c l e m o t i o n

The p resen t s tudy neg lec t s t he Ba sse t t e rm a nd the t emp ora l de r iva t ives o f the f luc tua t ing f lu id

ve loc i ty a long the t r a j ec to r i es o f so l id an d f lu id pa r ti c l es. Such a s imp l i fi ca t ion h as been jus t if i ed

f o r l o w tu r b u l e n c e i n te n s it ie s a n d m o d e r a t e d e p a r t u r e f r o m h o m o g e n e i t y ( O r m a n c e y 1 9 8 4 ) . T h e

cor r espond ing der iva t ives o f t he f lu id mean ve loc i ty , however , a r e p r ese rved . By neg lec t ing the

in f luence o f s t reaml ine cu rva tu re and the in t e r ac t ion be tw een par ti c l es , t he mo t ion o f a spheri ca l

and r ig id pa r t i c l e i s p r esen ted by the fo l lowing equa t ions :

dV 3 O(V - U)

PP "~- = 4dp PrCD(V -- U)IV - UI - 0.5pf dt + (pp - Pr)g [1]

a n d

d X- - = V [ 2 ]d t

where pp and p f a r e t he pa r t i c l e and f lu id dens it i es , r e spec t ive ly , V and U a r e the ins t an tane ous

ve loc i ti e s o f pa r t i c l es a nd f lu id , r e spec t ive ly , dp i s t he pa r t i c l e d i am ete r and g i s t he g r av i t a t iona l

acce l e r a t ion . The coef f i c i en t CD i s i n t roduc ed fo r t he d r ag t e rm and i s g iven by

24C D ~-- (-~C)p[1 + 0 .1 5 (R e) °'687] for (Re)p < 200,

where (Re)p , t he pa r t i c l e Reyno lds number , i s de f ined as

IU -- VldpR e ) p =

V

Page 3: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 3/21

A LAGRANGIANMODEL FOR SOLIDPARTICLES IN TURBULENT FLOWS 349

In th i s s tudy , t he l i f t f o r ces , due to e i the r pa r t i c l e ro t a t ion (Rub inow & Kel l e r 1961) o r t o f l u id

ve loc i ty g r ad ien t (Saf fman 1965) , a r e no t i nc luded , bu t t he v i r tua l mass t e rm i s .

The e f f ec t o f f lu id tu rbu lence on the pa r t i c les i s cons ide red bu t t he mo di f i ca t ion o f t he tu rbu le n t

f ie ld d ue to t he p r esence o f pa r t ic l es i s i gnored , There fo re , a l l t he mea n da t a o f t he f lu id fi eld,

i n c lu d i n g t h e m e a n v e l o c it y , t h e m e a n t u r b u l e n t k i n e t ic e n e r g y a n d t h e m e a n t u r b u l e n t k i n et ic

energy d i ss ipa t ion r a t e , a r e r egarded as known a priori. T h e y c o u l d b e o b t a i n e d b y m e a s u r e m e n t s

o r b y a t u rbu len t mo de l . To kn ow the s t a t is t i c p roper t i e s o f pa r ti c l es , each par t ic l e i s f o l lowed a longi ts t r a j ec to ry by in t eg ra t ing [1 ] and [2] . To do th i s, i t is necessa ry to kn ow the ins t an tane ous ve loc i ty

o f t he f lu id a t t he loca t ion p o in t s o f the pa r t i c le . S ince the f lu id mea n v e loc i ty i s supp osed to be

known, i t i s on ly necessa ry to es t imate the f luc tua t ing f lu id ve loc i ty a t t he loca t ion po in t o f t he

par t ic le .

2 . 2 . Mode l 1

At the ins t an t t , t he pa r t i c l e and a f lu id pa r t i c l e s t a r t ou t f rom the same pos i t i on X~. Af t e r one

t ime s t ep o f com puta t ion , At , they a r r ive a t Xp and Xr , r e spec tive ly , and the d i s t ance b e twee n Xp

and Xf i s As , a s sho wn in figu re 1 . A r e l a tive coord ina t e sys t em O -O Sf ~ i s de f ined . The r e l a tive

coo rd ina t e sys t em O -O ~f ~ i s chosen such tha t i t s o r ig in i s l oca t ed a t Xr and the e ax i s passes

th rou gh the tw o pos i t i ons Xf and Xp . He re Xs , Xf and Xp a r e the pos i t i on vec to r s i n t he abso lu t ec o o r d i n a t e s y s t e m o - x y z .

Since , i n p rac t i ca l app l i ca t ions , f l ow f ie lds a r e o f t en non-ho m oge neo us an d no n- s t a t ionary ,

the f luc tua t ing ve loc i ty u~ i s no rmal i zed by the squa re ro o t o f i t s loca l va r i ance to l e ssen the

e f fe c ts o f r e f er e n c e ti m e a n d p o s i ti o n . T h e n o r m a l i z e d f l u c t u at in g c o m p o n e n t i n t h e / - d i r e c t i o n

by W~, i.e.

UiW, = ~u~u: (i = 1, 2, 3),

whe re the su bsc r ip t s 1 , 2 and 3 r ep resen t , r e spec t ive ly , t he d i rec t ions o f the r e l a t ive O , ~ and [~

axes . The quan t i t i e s wi th overbar s i nd ica t e t he ensemble average va lues .

In the r e l a t ive coord ina t e sys t em O-O,~ ,D , t he normal i zed f luc tua t ing ve loc i t i e s a t pos i t i ons X , ,

X / , Xp a r e ass um ed to hav e the fo l lowing co r r e l a t ion r e l a tions :

a n d

Wi (X f )Wj (X s ) = W ~ ( X s ) W y ( X s ) f b ( A t ) ( i , j = 1, 2, 3) [ ]

Wi(Xp)Wj(Xf) .~. Wi(Xf)Wj(Xf)gij(A8) ( i , j ---- 1, 2 , 3) . [ 4 ]

Rela t ion s [3] and [4 ] a r e ca l l ed , re spec t ive ly , t he L agrang ian au to -co r r e l a t ion and Eu le r i an spa t i a l

ve loc i ty co r r e l a t ion func t ions . I t shou ld be po in t ed tha t t he two r e l a t ions a r e pos tu l a t ed fo r one

t im e s t e p o f c a l c u la t io n , A t. T h r o u g h o u t t h is p a p e r , n o s u m m a t i o n c o n v e n t i o n i s u s ed .

O

Figure I. The locations of the particle and a fluid particle at the instants t and t + At.

Page 4: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 4/21

350 Q.Q . LU et al.

O n l y t h e i s o t r o p i c c a s e is c o n s i d e r e d . T h e R e y n o l d s s t r es s c o m p o n e n t s u~uj a r e , t h u s , ze r o f o r

i ~ j an d th e co r r e l a t i o n r e l a t i o n s [3] an d [4 ] b eco m e :

Wj(Xf)W~(Xs) = W I ( X s ) W i ( X , ) f L ( A t ) (i = 1, 2, 3) [5]

a n d

W i ( X p ) W i ( X f ) = Wi(Xf)Wi(Xf)gi i (A$) (i = 1, 2, 3). [6]

Th e id ea o f a t im e se r i e s an a ly s i s (B o x & J en k in s 1 9 7 6) i s u sed f o r t h e s to c h as t i c p r o cess o f th e

f lu id p o in t f r o m X s t o X f . Th u s ,

W~(Xf) = a, W,.(Xs) + ~, (i = 1, 2, 3), [7]

wh ere a j ( i = 1 , 2 , 3) a re c oef f ic ien ts ye t to be de te rm ined and ~t~ ( i = 1 , 2 , 3 ) a re mea n-ze ro , ran do m

v ar i ab l e s i n d e p en d en t o f W, .(Xs) b u t n o t n ecessa r i l y Gau ss i an , w h o se p r o p e r t i e s w i l l b e d i scu ssed

la t e r. T o d e t e r m in e th e co e f f ic i en t s a~ , t h e tw o s id es o f [7 ] a r e m u l t ip l i ed b y W~ (X ~) an d th e en sem b le

av e r ag e i s t ak en . Af t e r acco u n t in g f o r t h e i n d ep e n d en c e o f ~t; an d W~ (X ,) , t h e f o l lo w in g r e l a t i o n

i s o b ta in ed :

W~ (Xf)W~(X~ ) = a~ W,(X~ )W~(X~ ) (i = 1, 2, 3). [8]Subst i tu t ion of [5] in to [8] g ives

at = f ~ ( A t ) . [9]

S qu a r in g b o th s id es o f [7 ] an d t ak in g th e en sem b le av e r ag e , t h e v a r i an ce o f a~ i s d e t e r m in ed to b e

( ¢ , ) ~ = x / 1 - a ~ ( i = 1 , 2 , 3 ) .

I t i s ev iden t f rom the def in i t ion of a~ tha t wh en Xf ap pro ac he s X~, a~ --* 1 and thus (a, )~ - -* 0 . In fac t ,

i f ~t~ i s r ep r e sen ted b y a G au s s i an wh i t e n o i se , f o r h o m o g e n eo u s tu r b u len t f l o ws , [7 ] w i l l r ed u ce

t o t h e e q u a t i o n u s e d b y P a r t h a s a r a t h y & F a e t h ( 1 99 0 ). F u r t h e r m o r e i f a~ i s r e p r e s e n t e d b y a n

ex p o n en t i a l f u n c t io n , [7 ] w i l l b e i d en t i ca l t o t h e equ a t io n o f K a p lan & D in a h (1 9 88) an d i f A t is

v e r y sm a l l co m p ar ed to t h e Lag r an g ian in t eg r a l t im esca l e , [7 ] w i l l b e equ iv a l en t t o t h e Lan g e v inequ a t io n (W ax 1 9 54 ; D u r b in 1 9 80 ; S aw f o r d & H u n t 1 9 86 ) . F o r t h e c lo se s im i l a r i t y o f [7 ] w i th t h e

L a n g e v i n e q u a t i o n , t h e s iz e o f th e c o m p u t a t i o n t i m e s t e p A t m a y b e s u b j e c t e d t o c e rt a i n l i m i t a t io n s

( see D u r b in 1 9 80 ) .

I f t h e co n cep t o f a tim e se r i e s an a ly s i s i s ex t en d ed to r ep r e sen t t h e e f f ec t o f sp a t i a l d i sp l a cem en t

o n th e f l u c tu a t in g v e lo c i t ie s o f t h e f l u id a t t h e p o in t s X f an d X p ,

W~(Xp) = b, W ,(Xf ) + fl, (i = 1, 2, 3), [10]

w h e r e b~(i = 1 , 2 , 3 ) an d f l; ( i = 1 , 2 , 3 ) has the sam e sense as a~ and a~ in [7]. By the pro ce du re

a l r ead y ad o p ted f o r [7 ] , i t i s f r o m [1 0 ] t h a t

b i = g i i ( A s ) . [ l l ]

In t r od uci ng [7] in to [10] to e l iminate W~(Xf) ,

W,(X p) = a,b,W~(X~) + b,~t ,+ fl, (i = l, 2, 3). [12]

D e n o t in g th e t e r m s u n d e r l in ed in [12 ] b y ~ ,~ , [ 12 ] can b e r ewr i t t en a s

W ~ ( X p ) = a , b , W ~ ( X ~ ) + ~ , ( i = 1 ,2 ,3) . [13]

H er e ~b~ ( i = l , 2 , 3 ) a r e a ssu m e d to b e m ea n - ze r o , Ga u ss i a n r an d o m v a r i ab l e s . T o co m p le t e [1 3] ,

t h e s t an d a r d d ev ia t io n s ( tr ~)~ o f ~b~ a r e n eed ed . B y squ a r in g b o th s id es o f [13 ] an d t ak in g th e

en sem b le av e r ag e , a s su m in g th e in d e p en d e n ce o f W, .(X, ) an d ~O~, t h e f o l lo win g i s o b ta in ed :

(a~,),- = ~/ 1 2 2- a , b , i = 1 , 2 , 3 ) . [14]Eq u a t io n [13 ] t o g e th e r w i th [14 ] i s c a l l ed m o d e l 1. Th e m e th o d e s t ab l i sh ed ab o v e i s b a se d o n th e

f lu i d L a g r a n g i a n t e m p o r a l v e l o c it y c o r r e l a t io n o f th e s t o c h a s t ic p r o c e s s r e p r e s e n ti n g t h e m o t i o n

o f t h e f lu id p a r ti c l e f r o m X , t o Xr . I t w i l l b e ca l led th e L ag r an g ian t em p o r a l co n s t r u c t io n .

Page 5: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 5/21

A LAGRANGIAN MODEL FOR SOLID PARTICLES IN TURBULENT FLOWS 351

In the p rese n t s tudy , [13] i s used as the m ode l equa t ion . I t rep resen ts the f luc tua t ing ve loc i tie s

o f the f lu id a t successive loca t ions o f the pa r t ic le and inc ludes bo th the t ime a nd space e f fec ts o f

the tu rbu le n t f ie ld v ia the coef f ic ien ts a i and b~. Th is m ode l , in co n t ras t to the con ven t io na l t ime

ser ies m etho d , ha s no res t r ic t ion tha t u~ and f li a re m ean-ze ro , G auss ian va r iab les . Ho wev er , ther e q u i r e m e n t t h a t t h e a p p r o p r i a t e l i n e ar c o m b in a t i o n h a s t h e s e p r o p e r ty , d o e s p l a c e t h e r e s tr i c ti o n

on the p roper t ie s o f ~ ; and fl~ .

I t i s no te d th a t th e coord ina te sys tem emp loyed in f igure 1 i s on ly es tab l ished fo r one t im e s tepa n d i t s h o u ld b e c h a n g e d c o n t i n u o u s ly i n t h e c o u r s e o f c o m p u ta t i o n .

2.3. The calculation procedures

(1) At t = 0 , the part ic le posi t ion and veloci ty are given. The ini t ia l f luctuat ing f lu id veloci tyco m po ne nts ui ( i = 1 , 2 , 3) a t th e part ic le positi__on are o btain ed fro m th e G aus sian variables

sa t i s fy ing the p .d . f , wi th the loca l va r iances u 2 . The ins tan tan eous f lu id ve loc i ty can thenb e o b t a in e d b y a d d in g t h e k n o w n m e a n v e lo c i ty a n d t h e f l u c tu a t in g p a r t .

(2 ) From the ins tan taneous f lu id ve loc i ty found above , the f lu id po in t pos i t ion a t t ime At , Xf

c a n b e c a l c u l a te d b y t h e E u l e r - Ca u c h y m e th o d ( r e fe r r in g t o f i gu r e 1 ). U s in g t h e g iv e n

par t ic le in i t ia l ve loc i ty and the ins tan taneou s f lu id ve loc i ty jus t ob ta ined , th rou gh [1 ] and

[2] , the pos i t ion o f the pa r t ic le a t the ins tan t At , Xv , i s ob ta ine d by the R un ge -K ut t a m etho d .Disp lacement As can then be ca lcu la ted (see f igure 1 ) .

(3) Es tab l i sh the re la t ive coord in a te sys tem O -O.=f~ . Fr om [9 ] and [11] , the coef f icien ts a t andb~ in [13] a re es t ima ted . Th e ran do m te rms ~ hav ing the s tand ard dev ia t ions g iven by [14]

a r e g e n e r a t e d b y c o m p u te r w i th t h e a id o f t h e s o f twa r e GAS D E V (Ve t t e r l i n g et al. 1988).The f luc tua t ing ve loc ity o f the f lu id po in t a t Xp ( the new par t ic le pos i t ion com pute d a t s tep 2 )

c a n b e f o u n d f r o m [1 3 ] .

(4) Le t Xp be the s ta r t ing po in t , i . e. X , fo r the nex t t ime s tep and re pea t s teps 2 and 3 un t i lc o m p l e t io n o f t h e c o m p u t a t io n .

3. V E R I F I C A T I O N O F M O D E L 1

3.1. Choice of the correlation functions and the associated parameters

In w h a t f o ll o ws , th e f o l l o win g f o r m s o f t h e t e m p o r a l a n d s p a ti a l c o r r e la t i o n f u n c t i o n s p r o p o s e d

by Frenk ie l (1948) a re adop ted :

W~ (Xf)W,(X,) -- W,(Xs)W ~(X,) exp (i = 1, 2, 3) [15]

a n d

Wi(Xp)W t(Xr) = W~(Xf)W~(Xf)exp cos (i = 1, 2, 3). [161

where AI i s the long i tud ina l l eng thsca le and A 2 a n d A 3 a r e the t ransv erse leng thsca les . Of course ,

o th e r fo rm s o f the co r re la t io n func t ion s can be used to rep lace [16], e .g . expon en t ia l func t ions . In

th e p r e s e n t s t u d y , a l l t h e s a m p le c o m p u ta t i o n s a r e c o n d u c t e d f o r i s o t r o p i c a n d i n c o m p r e s s ib l etu rbu lence . T here fo re , the Lag rang ian in teg ra l t imesca les eL and Eu le r ian leng thsca les Ai in [15]and [16] can be es t ima ted by

a n d

U 2

TL= ~2 = z3 = C e , - - , [17]

L 2

AI = Cc2"r ~ [18]

A 3 -- A2 -- Ce3A I, [19]

I JMF 19 /2 H

Page 6: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 6/21

352 Q . Q . L U et al.

w h e r e u = ~ (u ~ + u z + u ] ) a r e 8 i s th e t u r b u l e n t k i n e t i c e n e r g y d i s s i p a t i o n r a t e . R e l a t i o n s [ 1 7 ] a n d

[18] ca n be fo un d in Hinz e (1975) . A cco rd in g to Hin z e (1975, p . 398) , Ce l a nd Ce2 a re no t

i n d e p e n d e n t b u t s a t is f y th e f o l l o w i n g r e la t io n :

0.588C e 2 = - - [2 0]

Ce~

A g a i n , b a s e d o n t h e d i s c u s s i o n o f t h e t h e o r y o f i s o t r o p i c , i n c o m p r e s s i b l e t u r b u l e n c e b y H i n z e ( 19 75 ,

p . 4 2 6) , C e , = 0 .2 3 5 a n d C e3 = 0 . 5 . F o r c o n v e n i e n c e , t h e v a l u e s o f t h e a s s o c i a t e d p a r a m e t e r s u s e d

t h r o u g h o u t t h e p r e s e n t s t u d y a r e l is t e d i n t a b l e 1 .

I n e a s e s o f i s o t ro p i c o r w e a k l y a n i s o t r o p i c t u r b u l e n c e , t h e f o l l o w i n g re l a t io n s h o l d b e t w e e n t h e

f l u c t u a t in g f lu i d v e l o c it y v a r ia n c e s i n t h e a b s o l u t e c o o r d i n a t e s y s t e m o - x y z a n d i n t h e r e l a t i v e

c o o r d i n a t e s y s t em O - O , F f l :

U l 2 m 2 2 2 2 2 2l ~ u x + m l u y + n , u ~

U2. .~_ 2 2 2 2 2 212U x + m 2u~ + n2uz

U 2 ~ 2 2 2 2 2 2 .13Ux q- m 3 u y - k n 3 u z ,

[21]

[ 2 2 ]

[23]

wh ere 1 ,, m m, n l ; 12, m 2 , n2 an d / 3 , m 3 , n3 a re the d i r ec t io n cos ines o f the O, ~ an d f l a xes r e la t ive

to the x , y and z axes , r espec t ive ly .

3.2. Simulat ion o f the experiment o f Snyde r & Lum ley (1971)

O n e o f t h e m o s t c o m p r e h e n s i v e e x p e r i m e n t s o n p a r t ic l e m o t i o n i n t u r b u l e n t f lo w s i s t h a t m a d e b y

S n y d e r & L u m l e y (1 97 3) . W i t h t h e u s e o f a g r i d s y s t e m , t h e y p r o d u c e d a n e a r l y i s o t ro p i c d e c a y i n g

t u r b u l e n t a i r f l o w ( a i r d e n s i t y = 1 .2 05 x 1 0 - 3 g / c m 3 an d k in em at ic v i s co s i ty = 14 .937 x 10 -2 cm 2/s ).

T h e p a r t i c l e s r a n g e d f r o m l i g h t p a r t i c l e s w h i c h f o l l o w t h e t u r b u l e n t f l o w t o h e a v y p a r t i c l e s w h i c h

e x p e r i e n c e b o t h i n e r t i a a n d c r o s s i n g - t r a j e c t o r y e f f e c t s . T h e i r d i a m e t e r s , d e n s i t i e s a n d k i n e m a t i c

v i s c o s i ty a r e g i v e n i n t a b l e 2 . T h e p a r t i c le s w e r e i n j e c t e d i n t o t h e t u r b u l e n t f l o w a t x / M = 20 . The

m e a s u r e m e n t w a s c a r r ie d a t o r b e y o n d x / M = 6 8 , w h e r e x r e p r e s e n t s t h e d i s t a n c e f r o m t h e g r i da n d t h e g r i d s p a c i n g M = 2 .5 4 c m .

T h e p r i n c i p a l d i r e c t i o n o f t h e f l o w w a s v e r t i c a l l y u p w a r d . T h e e x p e r i m e n t a l m e a n t u r b u l e n c e

d a t a a r e g i v e n b y

U x = 655 (cm /s), U , = 0, U~ = 0, [24]

-5 - (Ux)2 [25]

42.4 - 16

- 5 u x ) ~ [2 61

u Y = x )3 9 . 4 ~ - - 1 2

nd

2 ~ 2u~ - u,.. [27]

F r o m T a y l o r ' s f r o z e n h y p o t h e s i s a n d t h e r e l a t i o n d k / d t = - 8 , w h e r e k, t h e t u r b u l e n t k i n e t ic

e n e r g y , i s d e f i n e d a s

k -- ½(u~ + u~ + u2), [28]

Table 2 . Parameters of the par t ic les used in the exper imento f S nyde r & Luml ey 0971)

Table I . Values of the associa ted coeff ic ients and the t ime Ho l low Corns tep At glass pol len Glass Cop per

Ce I Ce, Ce3 At (s) Diam eter ~ m ) 46.5 87.0 87.0 46.5

0.235 2.5 0.5 0.001 De nsity (g/cm 3) 0.26 1.00 2.50 8.90

Page 7: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 7/21

A L A G R A N G I A N M O D E L F O R S O L I D P A R T IC L E S I N T U R B U L E N T F L O W S 353

t

6

5

4

3

2

1

Hol low glassCorn pollen .... /

Glass ..... o /C o p l ~ T

Hol low glass 0 /

Corn pollen +Glass [ ] =C opper × y . . . . . ~ . . . . . . . .

+ . . . - . . . . . ...2...'..'..2 ..2 :~'222222. . . . . . . . . . . . . .

0 0.1 0.2 0.3 0.4 0.5Time (s)

Figure 2a. Pred icted and experimentalparticle transverse dispersions.

t h e t u r b u l e n t k i n e t ic e n e r g y d i s s i p t io n r t e i s o b t i n e d s

e = ~ 4 2 . 4 : X 1 6) 2 ' x 2 [29]- 3 9 . 4 \ ~ - 12

In a l l the fo l lowing com par i son s , the l ine s r epre sent the com pu ted re su l ts , whi le the sym bols

a re expe r imenta l da ta . F igure 2a compares the pred ic ted and expe r imenta l t r ansve r se pa r t i c l e

d i spe r s ions . To examine the ove ra l l e f fec t o f grav i ty on pa r t i c l e d i spe r s ion , f igure 2b shows the

d i s p l a c e m e n t o f pa r ti c le s i n t he g r a v i ty d i r e c t ion ( t he x - d i r e c t i on i n t he s t udy ) . T he c om p a r i s on

in f igure 2a i s in a f a i r agreement , a l tho ug h apprec iab le d i f f e rences a re obse rved . A la rge r d i ff e rencei s no t ic e d f o r he a vy pa r t ic l es . T he c o m pa r i s on s ugge s ts t ha t t he p r e s e n t m ode l w o r ks f o r t he ho l l ow

g l as s par t ic l e, f o r w h i c h s om e L a g r a ng i a n a pp r oa c he s f ai l ( O r m a nc e y & M a r t i no n 198 4; B e r l e m on t

e t a l . 1990) . As pred ic ted by prev ious s tud ie s (e .g . Reeks 1977) , f igure 2b impl ie s tha t pa r t i c l e sd i spe r se quick ly in the d i rec t ion of grav i ty due to the cont inu i ty e f fec t .

F i gu r e 3a c om pa r e s t he num e r i c a l a nd e xpe r i m e n t a l r e s u l t s on t he de c a y o f t he t r a n s ve r s e

ve loc i ty f luc tua t ion of the pa r t i c l e s . He re the pa r t i c l e f luc tua t ing ve loc i ty u i s norma l ized by the

squa re o f the longi tud in a l mean ve loc i ty U [he re 655 (cm/s )] . Q ua l i t a t ive agreemen t i s no ted bu t

~ 4

2

00

H o l l o w glassCorn pollen ....

Gla ss .....

0.I 0.2 0.3 0.4 0.5Ti me (s)

Figure 2b. Predicted particle longitudinaldispersions.

Page 8: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 8/21

3 5 4 Q . Q . L U e t a L

35

30F l u i d

H o l l o w glass . . . . .

C o r n p o l l e n . . . .

G l a s s . . . ..

2 5 Copper ......... xH o l l o w glass O

Corn pollen + ra2 0 G l a s s [ ]

. Copper X Xx x ..........................%--.--.' . .

~ 1 5 ..................... '." -'.".' . . . . . . . . . . ....... ....:.:.:.:~"7 i - . - ~- . . . . . ~

; . - -=,. .. .. .. .. .. .. .. .. .. : ' : ' ~ ' : ' 1 3 ' , 0 . . . . . . . . .1 0

r : _ , o +_ _ ~ _ . . . . . 6 . . . . . _ . ~ ~ '

6 . . . ¢ + - - ¢ - - - ' ~ - . •s l , l , - - $' ' ~ - - ~ * - ' - ' ~ - - -

0 I I I I0 0.1 0.2 0.3 0.4 0.5

Tun e (s)

Figure 3a. Predicted and experimental transverse fluctuating particle velocitydecays.

o b v i o u s d i f fe r e n c e s a p p e a r , p a r t i c u l a r l y f o r t h e h o l l o w g l a s s p a r t ic l e s . T h i s c o u l d b e d u e t o t h e l o w

s a m p l i n g r a t e u s e d i n t h e e x p e r i m e n t . F i g u r e 3 ( b ) g i v e s t h e p r e d i c t e d l o n g i t u d i n a l f l u c t u a t i n g

p a r t i c l e v e l o c i t y d e c a y . I t s h o w s t h a t t h e f l u c t u a t i n g p a r t i c l e v e l o c i t y d e c a y s m o r e s l o w l y in t h e

g r a v i t y d i re c t i o n t h a n i n t h e n o r m a l d i r e c ti o n . T h i s is i n a g r e e m e n t w i t h t h e t h e o r e t i c a l c o n c l u s i o n

o f o t h e r i n v e s t i g a t o r s ( e .g . R e e k s 1 97 7) .

F o r t h e r e a s o n s g i v e n b y N i r & P i s m e n ( 19 79 ), n o a t t e m p t w a s m a d e i n t h i s p a p e r t o c o m p a r e

t h e p r e d i c t e d r e s u l t s w i t h S n y d e r & L u m l e y ' s (1 9 71 ) p a r t i c l e v e l o c i t y c o r r e l a t i o n s . F i g u r e 4 , i n s t e a d ,

c o m p a r e s t h e c o m p u t e d L a g r a n g l a n c o r r e l a t i o n s o f t h e c o p p e r p a r t i c le t r a n sv e r s e v e l o ci t y a l o n g

w i t h t h e t h e o r e t i c a l r e s u l t s o f N i r & P i s m e n ( 19 7 9) . R e a s o n a b l y g o o d a g r e e m e n t i s o b s e r v e d i n

f i g u r e 4 , w h e r e x / M r e p re s e n t s t h e l o c a t i o n w h e r e t h e c a l c u l a t i o n w a s m a d e o f t h e c o r r e l a t i o nc o e f f ic i e n t d e f i n e d a s b e l o w :

R L ( A t ) = ui(At)u,(O ) (i = x ,y ). [30]

u/Z(0)

T h e Lagran~an c o r r e l a t i o n t i m e s c a l e s a re d e f i n e d a s

I ~R , , ( ~o )d t p ( i =x , y ) . [31]~ii -~" L

do

3 5

30

2 5

4545

5

1o

Fluid- Ho l low lass . . . . .

Corn po ll en . . . .Glass . . . . .

- Coppo r .........

m

I I I I

0 0 . I 0 . 2 0 . 3 0 . 4

T i m e ( s)

F i g u r e 3 b . P r e d i c t e d l o n g i t u d i n a l f l u c t u a t i n g pa r t ic . le e l o c i t y d e c a y s .

0.5

Page 9: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 9/21

A LAGRANGIAN MODEL FOR SOLID PARTICLES IN TURBULENT FLOWS 355

0.8

i 0 . 6

.4

0.2

~~ ' ~ , ~ E lv

\ \ '~ x / M = 7 3 . . . . .\ \ , 1 2 3 x / M = 1 7 1 . . . .~ \ • x / M = 4 1 OX \ ' , , x /M = 7 3 +

\ ' \+ " , , tTt Q

I I i ~ t

40 80 120 160 200 240 280Tune m s)

F i gur e 4 . C ompar i son o f t he numer i ca l and t heor e ti ca l (N i r & P i smen 1979) Lagr ang i an co r r e l a t ions o fthe copper par t ic le t ransverse veloci ty .

As we know, inc reas ing pa r t ic le ine r t ia wi l l reduce the pa r t ic le f luc tua t ing ve loc i ty . On the o the r

hand , th i s wi l l a l so lead to an inc rease in the pa r t ic le co r re la t ion . For examin ing the la t te r , we

ca lcu la te the lon g i tud ina l and t ransverse Lag rang ian cor re la t ion coef f ic ien ts o f the pa r t ic le

f luc tua t ing ve loc i ty . S ince the pa r t ic le d i spers ions in the exp er ime n t a re sym me tr ic re la t ive to thex a x is , o n ly t h e v e lo c it y c o r r e l a ti o n s f o r th e x - a n d y - c o m p o n e n t s a r e c o m p u te d . T h e c o m p u ta t i o n

is pe r f o rm ed a t th ree sec t ions , x / M = 41 , 73 and 171. The in teg ra l t imesca les o f these co r re la t ion

a r e d e n o t e d b y T ~ i = x , y ) a n d t h e i r c o m p u te d v a lu e s a r e t a b u l a te d i n t a b l e s 3 - 6 . I t c a n b e s e e n

f rom these tab les tha t th e pa r t ic le ve loc i ty co r re la tes mo re in the d i rec t ion o f g rav i ty than in thed i rec t ion no rm al to i t. A s a resu l t , the in teg ra l t imesca le i s l a rge r in the g rav i ty d i rec t ion than i t s

coun te rpar t in the normal d i rec t ion . In tab les 3 -6 , the t imesca le ~L i s computed by [17] .

3.3. Simulation o f the experiment o f W ells d Stock (1983)

Wells & Stock (1983) used an iden t ica l g r id sys tem to Sn yder & Lum ley ' s (1971) to p ro duc e a

tu r b u l e n t a i r f l o w , b u t t h e m a in d i r e c t i o n o f t h e f l o w wa s h o r i z o n t a l . T h e m e a n d a t a f o r t h etu rbu len t f ie ld a re

Ux = 655 (cm/s) , Uy = O, U~= O, [321

1

--7 _ U~)2 [33]

u x - 5 3 . 2 2 4 ( M - 7 .0 53 ) '

Table 3 . Ho l low glass par t ic le Table 4 . Co rn Pol len par t ic le

X X

T~., m s) ~ , m s) ~,~ m s) M T~., m s) ~. , . m s) ~,~ m s)

41 14.93 15.83 16.68 41 29.90 29 .88 16.6873 36.82 38.82 36.21 73 42.60 39.55 36.21

171 95.39 96.70 95.79 171 80.62 64.62 95.79

Tabl e 5 . G l a s s pan i c l e Tab l e 6 . C opp e r

X X

M ~. , (m s) ~P>, (m s) ~L (m s) M ~ ., (ms) P,,. m s) ~ (m s)

41 41.07 50.96 16.68 41 53.86 56.23 16.6873 60.69 61.55 36.21 73 63.13 62 .95 36.21

171 85.11 72.30 , 95.79 171 90.13 77.25 95.79

Page 10: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 10/21

356 Q . Q . LU et al.

2Uy =

(ux ) 2

(6 5 4 6 _ ; , _ 8 . 8 6 7a n d

u 2 2. = U y .

T h e t u r b u l e n t k i n e t i c e n e r g y d i s s i p a t i o n r a t e i s

l /

[ 3 4 ]

[35]

2 ] t3 6 jt ( x ' - 256.546 ~ -- 8.867

H e r e e i s o b t a i n e d i n t h e s a m e w a y a s t h e e x p e r i m e n t o f S n y d e r & L u m l e y ( 19 71 ).

I n t h i s e x p e r i m e n t , 5 a n d 5 7 ~ t m g l a s s p a r t i c l e s w e r e c h a r g e d b e f o r e t h e g r i d a n d a n a d j u s t a b l e ,

u n i f o r m e l e c t r i c a l f i e l d w i t h i n t h e t e s t s e c t i o n w a s u s e d s o a s t o c h a n g e t h e r e s u l t a n t f o r c e a c t i n g

o n t h e p a r t i c l e s a n d , t h e r e f o r e , t h e p a r t i c l e t e r m i n a l v e l o c i t y V t. T h e d e n s i t ie s o f t h e 5 a n d 5 7 ~ tm

par t i c l es a r e 2 . 475 (g /cm 3) an d 2 . 420 (g /cm 3), r espec t ive ly . In th i s s im ula t io n , g rav i ty i s in the

n e g a t i v e d i r e c t i o n o f t h e y a x i s a n d t h e m a i n f l o w d i r e c t i o n c o i n c i d e s w i t h t h e x a x i s .F i g u r e s 5 a n d 6 g i v e t h e p r e d i c t e d a n d m e a s u r e d t r a n s v e r s e d i s p e r s i o n s f o r 5 a n d 5 7 / ~ m p a r t i c le s ,

r e s p e c ti v e l y . R e a s o n a b l e a g r e e m e n t i s o b s e r v e d w h e n t h e p a r t i c l e t e r m i n a l v e l o c i t y l it i s re l a t i v e ly

s m a l l . A s V~ b e c o m e s l a r g e r , t h e c o m p u t e d a n d e x p e r i m e n t a l d a t a d i s a g r e e c o n s i d e r a b l y . I n t h e

e x p e r i m e n t , t h e t e n d e n c y f o r t h e 5 7 / ~ m p a r t i c l e s t o d i s p e r s e f a s t e r t h a n t h e 5 / ~ m p a r t i c l e s w h e n

V t = 0 w a s r e p o r t e d . T h i s c a n n o t b e n o t e d i n t h e p r e d i c t i o n d a t a .

F i g u r e 7 a a n d 7 b c o m p a r e t h e p r e d ic t e d a n d e x p e r i m e n t a l d a t a o f 5 / ~ m p a r ti c l e f l u c t u a t in g

v e l o c i t y d e c a y i n t h e l o n g i t u d i n a l a n d t r a n s v e r s e d i r e c t i o n s , i . e . i n t h e x - a n d y - d i r e c t i o n s ,

r e s p e c ti v e l y . F i g u r e s 8 a a n d 8 b s h o w t h e r e s u l t s f o r t h e 5 7 / ~ m p a r t i c l e s . I t is se e n t h a t t h e p r e d i c t e d

r e s u l t s a g r e e f a i r l y w e ll w i t h t h e e x p e r i m e n t a l d a t a w h e n V t i s n o t t o o l a r g e . A s V t g e t s l a rg e r , t h e r e

i s a n a p p a r e n t d i s c r e p a n c y a n d t h e a g r e e m e n t i s w o r s e. I t c a n b e n o t e d t h a t d u e t o t h e c o n t i n u i t y

e f f ec t , t h e f l u c t u a t i n g p a r t i c l e v e l o c i ti e s d e c a y a t d i f f e r e n t r a t e s i n t h e d i r e c t i o n s p a r a l l e l a n d n o r m a lt o g r a v i t y .

2.5

2

t

1.5

1

0.5

I I I I

/ s ss °

~ p a~ Soo °s° s •

I ~ ° ' ° S s s S

s •Vt=0.00Vt~5.86 . . . . .

Vt=13.31 . . . .Vt=23.65 . . . .

Vt=0.00 oVt=5.86 +

Vt=13.31 r~Vt=23.65 x

I I I I0 20 40 60 80 100

x/M

Figure 5. P redicted and experimental transverse dispersions of 5/~m particles.

Page 11: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 11/21

A L A G R A N G I A N M O D E L F O R S O L ID P A R TI C L E S IN T U R B U L E N T F L O W S 357

3

2.5

2

.~ 1.5

1

0.5

s

s J

ss S

s~ S

ss S ° . °

1 -I- *"

Vt=O O0 . . . . • / :Vt=25.8 . . . . . . / + ° o S

° ° s .Vt=54.5 .. . . 9 / * * ° ~ [~,o °o . ° °

Vt=81.5 .. .. . / ,,' ,,- .. -V t f f i 1 2 1 . 6 ~ o / + , . - , -° • .

• ° ° °

V t = O O 0 o / , , , . ,'J~,

Vt=25.8 + / + ' . ' /...* ° ° ,o -w 5 4 5 . -

Vt----121.6 ,~ ÷

0 I I I I

0 20 40 60 80 1 0 0

x M

F i g u r e 6 P r e d i c t e d a n d e x p e r i m e n t a l t r a n s v e r se d i sp e r s i o n s o f t h e 57/~m p a r t i c l e s

Fi gu r e 9a a n d 9 b sh ow th e p r e d i c te d Lagran g ian p ar ti cl e v e l oc i ty c or r e la t i on s i n th e lon g i tu d i n a l

d i r e c t ion . A c c or d i n g to th e exp e r i m e n ta l i n for m at i on o n th e r a t i o o f th e Eu l er ian an d Lagr ang ian

t i m e sc a l e s w e c an d e d u c e fr om th e e xp e r i m e n ta l d a ta th e Lagr an gi an p ar t i c le ve l oc ity c or r e l a t ion

in the long i tudina l d irect ion for the case o f Vt = 0 . Th e der ived results are a l so p lotted in f igures

9 a a n d 9 b .

4

12

10

4t4t

6

F l u i dVt=0.00 .. . .Vt=5.86 .. . . .

V~13.31 . . . .

Vt=23.65 .. . . .Vt=0.00 O

Vt=5.86 +Vt=13.31 r~

Vt=23.65 ×

i I I

2 O 4 0 6 0 8 0

x M

0 0 1 0 0

F i g u r e 7a. Predicted a n d e x p e r i m e n t a l l o n g i t u d i n a l v e l o c i t y d e c a y s o f t h e 5 pm particles.

Page 12: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 12/21

  5 8

14

Q . Q . L U e t a l .

I I

12

10

8

4t4t

6t

F l u i d - -Vt--0.00 ....

Vt=5.86 - .. ..Vt=13.31 ....

Vt=-23.65 .....

/ I I I I00 20 40 60 80 100

x/M

Figure 7b Predicted transverse velocity decays of the 5/Jm particles

T a b l e s 7 a n d 8 s u m m a r i z e t h e p r e d i c t e d v a l u e s o f z ~ f o r th e 5 a n d 5 7 m p a r t i c le s , r e s p e c t iv e l y .

H e r e t h e s u b s c r i p t x x s t il l d e n o t e s t h e l o n g i t u d i n a l d i r e c t i o n ( t h e h o r i z o n t a l d i r e c t i o n ) . F o r t h e c a s e

o f V , = 0 i t c a n b e d e d u c e d f r o m t h e e x p e r i m e n t t h a t ~ $ x = 1 9 . 6 a n d ¢ P x = 3 7 . 6 (m s ) f o r t h e 5 a n d

5 7 / ~ m p a r t i c le s , r e s p e c t i v e ly . T h e v a l u e s p r e d i c t e d f o r t h is c a s e a r e 2 5 . 0 3 a n d 3 8 . 3 5 ( m s ) fo r t h e5 a n d 5 7 m p a r t i c le s , r es p e c t i v e ly .

4

12

10

6t

Fluid

Vt=0.00 .. . .

Vt=25.8 .. . . .Vt=54.5Vt--81.5

Vt=121.6Vt=0.00Vt=25.8Vt=54.5Vt=81.5

Vt=121.6

oo *' ,° o*

oO S° °° °° .~ l

7 . . . - . s . ' ° . ~ -

o

B

0 I I I I

0 20 40 60 80 100x/M

Figure 8a Predicted and experimental longitudinal velocity decays o f the 57/~m particles

Page 13: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 13/21

359

12

10

4

8

~t.g

0 20 100

Flu id

Vt=O.O0 . . . .V t=25 .8 . . . . .V t=54 .5 . . . .V t=81 .5 . . . . .

Vt=121.6

4 0 6 O 8 O

x / M

A LAGRA NGIAN MOD EL FOR SOLID PARTICLES IN TURB ULENT FLOWS

14

Figu re 8b. Predicted transverse velocity decays of the 5 7/~m particles.

3.4. Sensi t iv i ty o f mo del I to the time s tep A t

S t u d i e s w e r e a l s o c a r r i e d o u t t o d e t e r m i n e t h e s e n s i ti v i ty o f t h e c o m p u t e d r e s ul t s t o t h e c h o i c e

o f A t . F o r t h is p u r p o s e , t h e e x p e r i m e n t a l s y s t e m o f S n y d e r & L u m l e y ( 19 71 ) w a s u s e d t o c a l c u l a te

t h e l o n g i t u d i n a l a n d t r a n s v e r s e p a r t i c l e d i f fu s i o n c o ef f ic i e n ts , D1~ a n d D 22 . T h e c o m p u t e d r e s u l t s

I I I I

0 8

.6

i 0 . 4

0.2

Vt=0.00Vt=-5 .86 . . . . .

V t=13 .31 . . . .V ~ 2 3 . 6 5 . . . . .

Vt=0.00 o

~s q : - : : - - - - . . . . . . . . . . .

0 20 4O 6O 80 100Time (ms)

Figu re 9a. Predicted Lag rangia n longi tudina l velocity correla tions for the 5/~m particles as well as theexperimental c orrela tion in the case o f Vt = 0.0.

Page 14: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 14/21

360 Q . Q . L U e t a l .

I I I I

0 .8

0 . 6

¢J

o=

0 . 4

¢.)

0 .2

¢ .

O

,,,...,% ,

o

o

Vt=O.O0V t = 2 5 . 8 . . . . .V t = 5 4 . 5 . . . .

V t = 8 1 . 5 . . . . .V t = 1 2 1 . 6 . . . .

Vt--O.O0 o

O

0 20 40 60 80 100 120 140T i m e ( m s )

F i g u r e 9 b . P r e d i c t e d L a g r a n g i a n l o n g i t u d i n a l v e l o c i t y c o r r e l a t i o n s f o r t h e 5 7 / z m p a r t i c le s a s we l l a s t h eexpe r ime n ta l co r r e l a t io n in the case o f l i t = 0 .0 .

are p resen ted in tab le 9 . The tab le a l so shows tha t the resu l t s a re s l igh t ly dependen t on the

t im e s te p A t . O u r e x p e r ie n c e w i th t h e c o m p u ta t i o n s h o ws t h a t i n o r d e r t o e n s u r e g o o d p r e d i c t io n s ,the fo l lowing cond i t ion may be regarded as a conse rva t ive c r i te r ia fo r the t ime s tep At in

mode l 1 :

• / L ~ A I A 2 /.A t = m m [ f , , . [37]

3.5. Ex tension o f mo del I to inc lude the f lu id Eulerian tempo ral corre la t ions

As sh ow n by the a bove p red ic ted resu l t s , m ode l 1 takes in to acc oun t the c ross ing- t ra jec to ry e f fec t

and the con t inu i ty e f fec t on the heav y par t ic le d i spers ion , ve loc i ty decay and ve loc i ty co r re la t ion

in t h e d ir e c t io n s p a r al l el a n d n o r m a l t o t h e d i r e c t io n o f g r a v i ty . H o w e v e r , in t h e a b s e n c e o f t h e

c ross ing- t ra jec to ry e f fec t, th i s mod e l cann o t g ive the p red ic t ion tha t the long- t ime par t ic le d i f fus ioncoef f ic ien t i s g rea te r than f lu id ' s. R eeks (1977) show ed tha t th i s can o ccur on ly whe n the f lu id

Eule r ian in teg ra l t imesca le i s l a rge r than the Lag rang ian o ne . In s ta t ionary , hom ogene ous , i so trop icand incomp ress ib le tu rbu lence , P isme n & N ir (1978) d i rec t ly re la ted the long- t ime par t ic le d i f fus ion

coef f ic ien t to the in teg ra l t imesca le o f the f lu id Eu le r ian tem pora l ve loc i ty co r re la t ion . T h is sugges tstha t in o rd er to p red ic t tha t , in the absence o f the c ross ing- t ra jec to ry e f fect , pa r t ic les d i sperse more

than the f lu id , the inc lus ion o f the f lu id Eu le r ian tem pora l ve loc i ty co r re la t ion i s necessa ry . In the

fo l lowing , mode l 1 i s ex tended to inc lude th i s co r re la t ion .

T a b l e 8 . 5 7 / ~ m P a r t i c l e d a t a

Tab le 7 . 5 / z m Pa r t i c l e da t a V, (cm/s ) z~ .~ (ms) zP (ms)y r

V, (cm/s ) T~ (ms) z~ (ms) 0 .00 38 .35 38 .67

0.00 25.03 22.60 13.5 37.07 37.042.73 20.48 23.29 25.8 35.84 36.78

5.86 21.04 23.86 39.7 32.56 34.6513.31 19.26 19.12 54.5 29.47 33.4017.06 15.70 18.67 81.2 28.0 6 28.9820.91 14.88 18.12 108.0 24.3 4 26.4 023.65 15.01 19.36 121.6 24.0 2 25.44

Page 15: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 15/21

A LAGRANGIAN MODEL FOR SOLID PARTICLES IN TURBULENT FLOWS 361

T a b l e 9 . D e p e n d e n c e o f D u a n d D , , o n t h e t i m e s t e p A t

H o l l o w C o r ng l a ss p o l l en G l a s s C o p p e r

Du [At = 0.01 (s)] 5.42 3.65 2.88 2.67D22 [At =0 .0 1 (s)] 6.18 3.02 1.88 1.77D u [At =0 .00 1 (s) l 5 .58 4.09 3.03 2.79D22 [At = 0.001 (s)] 5.01 2.94 2.16 1.75D u [At = 0.0001 (s)] 5.66 3.58 2.93 2.91D22 [At -- 0.0001 (s)] 5.67 3.26 2.08 2.06

I f tu rbu len t f low has one p r inc ipa l mean f low d i rec t ion , a s i s o f ten the case in the exper imen ts

o f Sny der & Lu m ley (1971) and Wel ls & Stock (1983) and the theore t ica l inves t iga t ions o f Reeks

(1977) , P ismen & N ir (1978) and N ir & P ism en (1979), the re i s ano the r met hod o f mo de l ing the

f luc tua t ing f lu id ve loc it ie s a t the pos i t ions X , and Xp , de f ined in f igure 1 . Le t the m ean f low d i rec t ion

b e t h e x - d i r e c t i o n a n d t h e m e a n v e lo ci t y b e U r n. T h e r e la t iv e c o o r d in a t e s y s t e m O ' - O ' ~ ' f l ' , a s

show n in f igure 10, i s e s tab l ished . The o r io n o f the coord in a te sys tem i s a t Xo, and the 0 ' ax is

passes th ro ugh the two pos i t ions Xo, and Xp . In f igure 10, Xo, i s de f ined as X , + U , At i , w here i

i s the un i t vec to r o f the abso lu te x ax is . As in the d i scuss ion in subsec t ion 2 .2 , the normal ized

f luc tua t ing ve loc i tie s o f the f lu id a t pos i t ions Xs , Xo, and Xp have the fo l lowing cor re la t ion re la t ions :

W~(Xo.)Wj(Xs) -- Wi(X~)W j(X,) F~ (A t) ( i , j = 1, 2, 3) [38]

a n d

W i(Xp)W :(Xo.) = W~(Xo,Wj(Xo,) G~j(As,) ( i , j = 1, 2, 3). [39]

I t i s c lea r tha t [38] i s the E u le r ian tem pora l ve loc i ty co r re la t ion func t ion in a f ram e o f re fe rence

m o v in g w i th t h e v e lo c it y U r n, b e c a u s e, s e en f r o m th e c o o r d in a t e s y s t e m O ' - @ ' £ ' f f , X , a n d X o,

occupy the same space po in t , a s seen in theore t ica l works o f Reeks (1977) , P ismen & Nir (1978)and N ir & P isme n (1979) . For th i s reason , th i s m e tho d is ca l led the Eu le r ian tem pora l cons t ruc t ion .

T h e f u n c t io n Gij i s the same as gu in [4].

For reasons o f s impl ic i ty , the normal ized f luc tua t ing f lu id ve loc i ty in the coord ina te sys temO' -O ' [~] ' f l ' i s s t i l l deno ted by Wi . S imi la r ly , fo r i so t rop ic tu rbu len t f low cases , the fo l lowingcor re la t ion re la t ions ho ld :

W , X o . ) W i X , ) = W i X , ) W i X , ) F ~ A t ) i = I , 2, 3) [ 4 0 ]

a n d

W ,(Xp)W i(Xo,) = Wi(Xo.)W,.(Xo.)Gi l (As , ) (i ffi 1, 2, 3). [411

Fo r the f luc tua t ing f lu id ve loc it ie s a t the pos i t ions Xs , X o, and Xp , i t i s pos tu la ted , re spec t ive ly , tha t

W i ( X o . ) = c i W i ( X , ) + X , ( i = 1,2,3) [42]

a n d,(Xp) = d l W ,(Xo.) + 6i (i = 1, 2, 3), [43]

l I ~ t

F igure 10 . T he coord ina t e sys t em es t ab l i shed fo r m ode l 2 .

Page 16: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 16/21

362 Q.Q. LU et a l .

w he re c~, ; t; , d~ an d 6~ (i = 1, 2 , 3) ha ve the sa m e sens e as a~, ~t~, b~ an d fl~ in [7] an d [10]. B y s imi lar

p r o c e d u r e s ,

c i = F E(A t), [44]

= G . ( a s , ) [451

a n d

W~(Xp) = Gd~ W~ (Xs) + ~, (i = 1, 2, 3), [461

wh e r e ~i = c i~ + 6 ~ ( i = 1 , 2 , 3 ) h av e th e sam e m ea n in g a s ¢~ . Th e i r s t an d a r d d ev ia t io n s ( ac )~ a r e

- c , d , i = 1 , 2 , 3 ) . [ 4 7 ]

S in ce [1 3 ] l ead s t o t h e co r r ec t l im i t in g r e su l t f o r f l u id d i sp e r s io n , t h e f o l lo win g r e l a t i o n s a r e

p r o p o s e d i n m o d e l 2 :

~a~b, W,.(X,) + qJ, ( i = 1, 2 , 3) if as l ~ R a s [48]W~(Xv) = )c~di W,.(Xs) + ( , ( i = 1, 2 , 3) if as , < R A s "

Eq u a t i o n [48 ] i s a l so ca l l ed th e m ix ed m o d e l i n l a t e r d iscu ss io n s . H e r e R i s an ad ju s t ab l e p a r am e te r .

W h en R = 0 , m o d e l 2 red u ce s t o m o d e l 1 . I f R = 0 % th e p r e sen t m o d e l w i ll b e s im i l a r t o t h a t u se db y Reek s (1 9 7 7 ) an d P i sm en & Ni r (1 9 7 8) . As lo n g a s R # 0 % th e r e su l t i n g sch em e wi l l l e ad to

th e th eo r e t i ca l r e su l t o f Tay l o r (1 9 2 1 ) f o r t h e f l u id d i sp e r s io n co e f f i c i en t. I n t h e s im u la t io n o f t h i s

su b sec t io n , s im p ly R = 1. I t sh o u ld a l so b e n o te d th a t t h e two a l t e r n a t iv e eq u a t io n s i n [48 ] a r e n o t

e s t a b l i s h e d i n t h e s a m e c o o r d i n a t e s y s t e m .

B ef o r e v a l id a t in g m o d e l 2 , so m e in s ig h t i n to i t s p h y s i ca l b a s i s sh o u ld b e g iv en . Two l im i t in g

s i tu a t io n s can b e co n s id e r ed . O n e i s i n t h e ab sen ce o f t h e c r o ss in g - t r a j ec to r y e f f ec t ; t h e o th e r i s t h e

case wh e r e th e p a r t i c l e f r ee - f a l l v e lo c i ty i s m u ch l a r g e r t h an th e tu r b u len ce in t en s i ty .

In t h e f i r s t c a se , wh en p a r t i c l e i n e r t i a i s n eg lig ib le , su ch a s f o r a f l u id p o in t , p a r t i c l e s ca n r e sp o n d

to a l l th e t u r b u len t f l u c tu a t io n s ; t h u s A s -- . 0 an d As , t> R a s a lway s h o ld s . As a r e su l t , t h e f i r s t

a l t e r n a t iv e in [4 8 ] co n t r o l s t h e p a r t i c l e m o t io n . In o th e r wo r d s , p a r t i c l e m o t io n i s g o v e r n ed b y i t s

au to - co r r e l a t i o n . Th i s ag r ees wi th p h y s i ca l i n tu i t i o n . H o we v e r , i f p a r t i c l e i n e r t i a is so la r g e th a t

i t r e m a i n s i m m o b i l e r e l at i v e t o t h e c o o r d i n a t e s y s t e m m o v i n g w i t h t h e v e l o c i ty U m , t h e n t h e v e l o c i t y

co r r e l a t i o n o f t h e f l u id a t t h e p a r t i c l e p o s i t i o n i s t h e Eu le r i an t em p o r a l v e lo c i ty co r r e l a t i o n in t h e

s a m e f r a m e o f r e f er e n c e, a s h a s b e e n a l r e a d y p o i n t e d o u t b y P i s m e n & N i r ( 1 9 78 ) . I n t hi s c as e ,

As t --* 0 in m o d e l 2 . I n f ac t , wh en a s t ~ 0 , o n ly th e seco n d a l t e r n a t iv e in [4 8] is u sed an d c~d~ -- . c~.

An o th e r l im i t in g ca se i s wh e n th e p a r t i c l e f r ee - f a l l v e lo c i ty Vt i s m u ch l a r g e r t h an th e tu r b u le n ce

in t en s i ty . Le t V t b e d i r ec t ed in th e n eg a t iv e d i r ec t io n o f t h e ab s o lu t e z - ax i s . Th en th e v ec to r X p - X f

(see f igure 1) and Xp - Xo, can b e exp resse d as x ' i + y ' j + (z" - VtA t)k an d x " i + y " j + ( z " - V, At)k ,

r e sp ec t iv e ly , wh e r e i , j an d k a r e t h e u n i t v ec to r s o f t h e x , y an d z ax es . W h en Vt i s l a r g e en o u g h

s o t h a t x ' , y ' a n d z ' ( o r x " , y " a n d z " ) c a n b e n e g l ec t e d , e i t h e r x ' i + y ' j + ( z ' - V t A t ) k o r

x " i + y " j + ( z " - V t A t ) k c a n b e a p p r o x i m a t e d b y - V t A t k i n b o t h a l t e rn a t i v e s in [4 8]. C o n s e -

q u e n t l y , t h e t e m p o r a l ( e it h e r L a g r a n g i a n o r E u l e r i a n ) e f f e c t o f t h e t u r b u l e n c e c a n b e n e g l e c t e d i n

c o m p a r i s o n t o t h e s p a t ia l e f f e c t a n d a~b~ a n d c~d~ a n d c~d~ of [48] are e qua l to b~ an d d ; . S ince g ,

a n d G ~ a r e t he s a m e a n d t h e y a re a p p r o x i m a t e l y e q u a l t o g ~ ( V t A t ) , t h e v e l o c i ty c o r r e l a t io n o f t h e

f lu i d a t t h e p a r t ic l e p o s i t i o n n o w r e d u c e s t o t h e E u l e r i a n s p a t i a l c o r r e l a t i o n i n t h e c o o r d i n a t e s y s t e m

m o v in g wi th U m in b o th a l t e r n a t iv e s i n [4 8] , r eg a r d l e ss o f th e p a r t i c l e i n e r t ia . Th a t i s, wh en Vt i s

s ig n i fi can t en o u g h , m o d e l s 1 an d 2 a r e t h e sam e .

T o v e r if y m o d e l 2 , a s im u l a t i o n f o r p ar t ic l e d i s p e r s io n i n a s ta t i o n a r y , h o m o g e n e o u s , i s o t r o p i c

a n d i n c o m p r e s s i b l e t u r b u l e n t f l ow is p e r f o r m e d . T h i s p e r m i t s a c o m p a r i s o n w i t h t h e e x is t in g

t h e o r e ti c a l w o r k s o f C s a n a d y ( 1 96 3 ), P i s m e n & N i r ( 1 9 78 ) a n d N i r & P i s m e n ( 19 7 9 ). I n s t a t i o n a r y ,

h o m o g e n e o u s , i s o t r o p i c a n d i n c o m p r e s s i b l e t u r b u l e n c e , t h e t u r b u l e n t v a r i a n c e , t h e E u l e r i a n

integral timescale and th___eLag r a n g ian in t eg r a l t im esca l e a r e i n d ep en d en t o f t h e re f e r en ce d ir ec t io n .

Th ey a r e d en o ted b y u 2, z E an d t L . Th e co r r e sp o n d in g co r r e l a t i o n s t ak e th e f o l lo w in g f o r m s :

W~(Xo,) W ~(XJ = W , ( X D W ~ ( X , ) e x p ( - A t / t ~ ) (i = 1, 2, 3), [49]

a n d

W~(X~)Wf(Xo.) = W ~(Xo ,)W ~(X o,)exp (- -As t /2A ,)cos(a s , /2A ,) ( i = 1 , 2 , 3 ). [50]

Page 17: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 17/21

Page 18: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 18/21

364 Q . Q . LU et a l .

70

~o

60 Ruid / / ~TI~ 50 (ms) . . . .

50

4O

30

o " :" =" " : ; : " " " " I

0 1 2 3 4Time (s)

Figure la. Predicted longitudinal particle dispersions in the presence of the crossing-trajectory effect.

t han in t he norma l d i r ec t ion . Ho we ver , i t shou ld be po in t ed ou t t ha t i n t he absen ce o f Vt [59] and

[60] are no long er val id , exc ept in the l imi t of ze ro pa r t ic le iner t ia . Form__ulas [59] and [60] are

cons i s t en t wi th the wo rks o f Reek s (1977) an d P i smen & N i t (1978) as u 2 / V 2 i s smal l enough .

S u b s t i t u t i n g t h e p r e s e n t v a l u e s o f A , a n d Co2 i n t o [ 5 9 ] a n d [ 6 0 ], D , a n d D22 are o b t a i n e d . I n

the ca l cu la t ion , g r av i ty i s d i r ec t ed in t he oppos i t e d i r ec t ion to t he x ax i s . Here the subsc r ip t s

11 and 22 r ep resen t t he d i r ec t ions pa ra l le l and perpen d icu la r t o t he g r av i t a t iona l f o r ce . F igures 1 a

and l i b r ep resen t t he p r ed ic t ed d i sper s ions fo r pa r t i c l es wi th d i f f e r en t t ime cons t an t s Tp .

Tab les 10 and 11 g ive the p r ed ic t ed an d theore t i ca l ( com puted f rom [59] and [60]) l ong- t ime par t i c le

d i f fus ion coef f i c i en t s , r e spec t ive ly . I t i s obse rved f rom the two t ab les t ha t wi th inc reas ing Tp , t he

p r e d i c t e d v a l u e s f o r D . , D22 a n d D 2 2 ~ . g r a d u a l l y a p p r o a c h t h e th e o r e ti c a l re s u lt s g i v en b y [ 59 ]and [60]. Th i s m eans tha t a s l ong a s x /u 2 i s smal l enou gh , t he p r ed ic t ed long- t ime par t i c le d i f fus ion

coef f iden t s D . and D22 a r e i nver se ly p rop or t ion a l t o Vt and due to t he con t inu i ty e f fec t , D22/DIt ends asympto t i ca l ly t o 0 .5 .

A no th er i n t e res t ing case fo r t he ca l cu la t ion o f pa r ti c l e d i sper s ion i s wh en the e f f ec t o f

~oss ing- t r a j ec to r i es i s absen t . T h i s a l l ows an exam ina t ion o f the e f f ec t o f pa r ti c l e i ne rt i a . F igure 12

g ives co m pu ted par t i c l e d i sper s ions fo r t h i s case . S ince the in t eg ra l t imesca le o f t he Eu le r i an

tem pora l ve loc i ty co r r e l a t ion i s g r ea t e r t han the Lagrang ian one in t he p r esen t work , t he long- t ime

70

6

40

20

10

0

Fluid / ,ffi 5 0 m s )

I

2 3 4 5

Time s)

Figure I lb. Predicted transverse particle dispersions in the presence of the crossing-trajectoryeffect.

Page 19: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 19/21

A L A G R A N G I A N M O D E L F O R S O L I D P A R T I C L E S IN T U R B U L E N T FL O W S 365

Table 10. Predicted long-time particle diffusion coefficientsTable 11. Theoretical long-time particle diffusion co-

efficients

Tp (ms) 50 150 Tp (ms) 50 150D n (em2/s) 2.51 1.16 D u (em2/s) 3.65 1.46/)22 (em2/s) 1.63 0.66 D22 (em2/s) 2.11 0.74D22/Du 0.65 0.57 D22/Du 0.58 0.51

p a r t i c l e d i f f u s io n co e f f ic i en t i n c r ease s wi th t h e p a r t i c l e t im e co n s t an t ; i t is l a r g e r t h an th a t o f t h e

f lu id , a s ex p la in ed b y Reek s (1 9 7 7 ) . Th i s i s sh o wn c l ea r ly i n f i g u r e 1 2 . Th e p r ed ic t ed lo n g - t im e

p a r t i c l e d i f f u s io n co e f f ic i en t s f o r t h e 1 6 0 0 (m s) p a r t i c l e an d f lu id a r e , r e sp ec t iv e ly , 9 .1 a n d 6 .0

(cm2/s) . Thei r theore t ica l counterpar ts a re 8 .59 and 6 .272 (crn2 /s) , g iven by [51] and [52] ,

r e sp ec t iv e ly . Th e two a r e i n a fa i r ag r eem en t . Th e r e s t r i c t i o n o n th e t im es t ep o f m o d e l 2 is

• / L E Al A2'~A t m , n ~ z , , z , , ~ t t , V t j [6 2]

4 . D I S C U S S I O N A N D C O N C L U S I O N S

B ase d o n th e id ea o f a t im e se ri e s an a ly s i s (B o x & J en k in s 1 9 7 6) , tw o Lag r a n g ian m o d e l s , t h a t

i n c l u d e t h e e f fe c ts o f t h e t e m p o r a l a n d s p a t i a l v a r i a ti o n s o f t h e t u r b u l e n c e o n p a r ti c le s , h a v e b e e n

es t ab l i sh ed • M o d e l 1 i s u sed to s im u la t e p a r t i c l e d i sp e r s io n in t h e two g r id - g en e r a t ed d ecay in g

i s o t r o p i c t u r b u l e n t a i r f l o w s s t u d i e d b y S n y d e r & L u m l e y ( 1 9 7 1 ) a n d W e l l s & S t o c k ( 1 9 8 3 ) .

C o m p a r i s o n i s m a d e o f th e p r e d i c te d a n d m e a s u r e d p a r t ic l e d i s p e r s io n a n d v e l o c i t y d e c a y i n th e

t r a n s v e r s e d i r e c ti o n . C o m p u t e d p a r t ic l e d i s p e rs i o n a n d v e l o c i t y d e c a y a r e a l s o p r e s e n te d f o r t h e

l o n g i t u d i n a l d i r e c ti o n . T h e c r o s s i n g - t r a j e c t o r y a n d c o n t i n u i t y e f f e ct s c a n b e o b s e r v e d c l e a rl y o n t h e

p a r t ic l e d i s p e r s i o n a n d v e l o c it y d e c a y . T h e n u m e r i c a l r e s u l t s a re a l s o c o m p a r e d w i t h t h e t h e o r e t i ca l

r e s u lt s o f N i r & P i s m e n ( 1 97 9 ) f o r t h e c o p p e r p a r t i c le v e l o c i t y a u t o - c o r r e la t i o n o f th e e x p e r i m e n t

o f S n y d e r & L u m l e y ( 1 9 71 ) . I n a d d i t io n , i n o r d e r t o e x a m i n e t h e c o m b i n e d e f fe c t s o f in e r ti a ,

co n t in u i ty a n d c r o ss in g - t r a j ec to r i e s , t h e i n t eg r a l t im esca l e s o f p a r t i c l e au to - co r r e l a t i o n s a r e g iv en

i n t h e d i r e c t i o n s p a r a l l e l a n d n o r m a l t o g r a v i t y . S o m e c o m p a r i s o n s a r e i n g o o d a g r e e m e n t a n d

o t h e r s a r e n o t . F o r e x a m p l e , m o d e l 1 u n d e r p r e d i c t s t h e 5 7 / ~ m p a r t ic l e d i s p e r s io n s f o r t h e

e x p e r i m e n t o f W e l ls & S t o c k ( 1 98 3 ) a n d i t c a n n o t s h o w t h a t 5 7 / t m p a r t ic l e s d i s pe r s e f a s t e r t h a n

5 / ~ m p a r t i c l es w h e n V t = 0 . T h e s e n s i t iv i ty o f m o d e l 1 t o t h e t i m e s t e p A t o f t h e c o m p u t a t i o n w a s

t e s t ed ; t h e r e su l t s i n d i ca t e t h a t p a r t i c l e d i sp e r s io n d ep en d s o n ly s l i g h t ly o n At .

I n t h e c a s e w h e r e t h e t u r b u l e n t m e a n f l o w h a s o n e m a i n d i r e c t io n , m o d e l 1 h a s b e e n e x t e n d e d

t o i n c lu d e t h e E u l e r i a n t e m p o r a l v e l o c i ty c o r r e l a t io n a n d t h e s o -c a l le d m i x e d m o d e l ( m o d e l 2 ) h a s

140 , aI

120

~, 100

6O

2O

fO. . -

FluidTp= 800 (ms) . . . .

Tp=1600 (ms) . . . . .° o - ° °

. °°o

2 3 4

Tm ~ e (s)0 5

Figure 12. P redicted particle dispersions in the absence of the crossing-trajectory effect.

Page 20: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 20/21

366 Q.Q. LU et al.

been dev ised . The m ixed mode l i s then app l ied to pa r t ic le d i spers ion in a s ta t ionary , h om ogen eous ,

i so t rop ic and incompress ib le tu rbu len t f low. The numer ica l re su l t s show tha t mode l 2 i s

capab le o f p red ic t ing , in the absence o f the c ross ing- t ra jec to ry e f fec t , tha t the long- t ime par t ic led i f fus ion coef f ic ien t i s l a rge r than tha t o f th e f lu id i f the E u le r ian in teg ra l t imesca le o f the ve loc i ty

cor re la t ion i s l a rge r than the Lagrang ian one , a s po in ted ou t by Reeks (1977) . The long-

t ime par t ic le and f lu id d i f fus ion coeff ic ien ts com pute d by m ode l 2 ag ree wi th the theore t ica l

resul ts of Pisme n & Ni r (1978) an d T ay lor (1921), respect ively . I t is a lso verif ied th at w hen th epar t ic le d r i f t is dom inan t , the p red ic ted long- t ime long i tud ina l an d t ransverse pa r t ic le coeff ic ien ts

g r a d u a l l y a p p r o a c h t h e two f o r m u la s o f Cs a n a d y (1 9 8 3 ); i .e . t h e l o n g - tim e p a r t ic l e d i f fu s ion

coef f ic ien t in the g rav i ty d i rec t ion i s twice the t ransverse on e an d tha t bo th d i f fus ion coeff ic ien ts

a re inverse ly p rop or t ion a l to the pa r t ic le f ree- fa ll ve loc ity . Th is impl ies tha t mo de l 2 takes

in to acco un t ine r t ia , con t inu i ty a nd c ross ing- t ra jec to ry e ffec ts . H owev er , i f Vt i s smal l, the long-

t ime par t ic le d i f fus ion coef f ic ien t g iven by the p resen t s tud y d isagrees some wh at wi th C sanad y ' s

resul t .

F u r th e r m o r e , c a l c u l a t i o n s , n o t p r e s e n t e d h e r e , s h o w th a t , e x c e p t f o r t h e c a s e wh e r e t h e

c ross ing- t ra jec to ry e f fec t i s absen t and the pa r t ic le t im e con s tan t i s la rge , the d i f fe rences be tween

the resu l t s a ri s ing f rom mo de ls 1 and 2 a re ins ign i fican t.

Al l the ca lcu la t ions p resen ted abo ve w ere ob ta ined by averag ing ove r 5000 par t ic les t ra jec to r ieson a S U N SP A RC 1 s ta t ion . Fo r a typ ica l run , the pa r t ic le d i spers ions show n in f igures 2a and

2b , requ i red abou t 1800 C PU seconds .

Acknowledgements--Thanks are g iven to Professor H. Bu rnag e (Institute de M 6canique des Flu ides deStrasbourg, F rance) an d Professo r T. J. Hanratty, as w ell as to the five othe r referees, for their helpful andilluminating comments w hich have led to the significant improvement o f th is study.

R E F E R E N C E S

ABBAS, A. S., KOUSSA, S. S. & LOCKWOOD, F. C. 198 0 Th e pre dic tion o f parti cle lad en gas flow.

R e p o r t F S /8 0 /1 , ICS T , L o n d o n .BERLEMONT, A ., DESJONQUERES, P. & GOUESBET, G . 19 90 Parti cle La gr an gia n sim ula tion in

turbulent f lows. In t . J . Mu l t i phase F low 16, 19-34.

Box, G. E. P . & JENKINS, G. M. 1976 Time Ser i e s Ana lys i s . H o l d e n - D a y , O a k l a n d , C A .

BURNAGE, H. & MOON, S. 1990 Pre dete rm inat ion de la d ispersio n de part icules m at~rie l les dan s

u n 6 c o u l e m e n t t u r b u le n t . C .R. Acad . Sc i . Par i s Ser . H 310, 1595-1600.

CSANADY, G. T . 1963 Tu rbu le n t d i f fus ion o f heav y par t ic les in a tm osph ere . J . A tmos . Sc i . 2 0

201-208.

DURmN, P . A. 1980 A s tochas t ic mode l fo r two -par t ic le d i spers ion and c onc en t ra t io n f luc tua t ions

in h o m o g e n e o u s t u rb u l e n c e . J . F lu id Mech . 100, 279-302.

DURST, F. , MILOJEVlC, D. & SCHONUNG, B. 19 84 Eule rian an d La gra ngi an predic t ions of

par t icu la te two-phase f lows : a numer ica l s tudy . A p p l . M a t h . M o d e l l i n g 8, 101-115.ELGHOBASHI, S. E., ABO U ARA B, T. W ., RI Z K, M . & MOSTAFA, A. 19 84 Pre dic tion o f t he

par t ic le - laden je t wi th a two equ a t ion tu rbu le n t mode l . In t . J . Mu l t i phase F low 10, 697-710.

FRENKmL, F . N . 1948 Etud e s ta t is t ique d e la tu rbu lence - fonc t ions spec t ra les e t coef fic ien ts decorr61a tion . R app or t Techn iqu e , O N ER A N o. 34 .

GOSMAN, A . D . & IOANNIDES,E. 1981 Aspec ts o f com pute r s imula t ion o f l iqu id -fue l led com bus to rs .P a p e r p r e s e n t e d a t t h e A I A A 1 9th A e r o s p a c e S ci en ce M t g , St. Louis , MO, Paper 81-0323.

HINZE, H. O . 1975 Turbulence. M c G r a w - H i l l, N e w Y o r k .KALLIO, G. A. & REEKS, M. W. 1989 A num er ica l s imula t ion o f pa r t ic le depos i t ion in tu rb u len t

b o u n d a r y l a ye r s. In t . J . Mu l t i phase F low 15, 433-446.KAPLAN, H. & DreAR, N. 1988 A th ree -d im ens iona l s tochas t ic mode l fo r c onc en t ra t io n f luc tua t ion

s ta t i s t ic s in i so t rop ic homogeneous tu rbu lence . J . C ompu t . Phys . 79, 317-335.NIR, A. & P tSMEN, L . M . 1979 The e f fec t o f a s teady d r i f t on the d i spers ion o f a pa r t ic le in tu rbu len tfluid. J . F lu id Mech . 94 , 369-381.

ORMANCEY, A. 1984 S imula t ion du com por tem ent de pa r t icu le dan s des ~cou lem ents tu rbu len ts .Th6se de 3me cyc le , Eco le de Mines de Par i s .

Page 21: Erosion 1 (14)

8/13/2019 Erosion 1 (14)

http://slidepdf.com/reader/full/erosion-1-14 21/21

A LA GRANGIAN MODEL FOR SOLID PARTICLES IN TURBULE NT FLOWS 367

ORMANCEY, & MARTINON, A. 1984 Predic t ion of par t ic le d ispe rsion in tu rbu len t f lows. Physico

Chem. Hydrodynam. 5 , 229-240 .P ~ T H m ~ a ~ T m ' , R . N . & F ~ T H , G . M . 1 99 0 T u r b u l e n t d i s p e r s io n o f p a r ti c le s i n s e l f- g e n e ra t e d

h o m o g e n e o u s t u rb u l e nt . J. Fluid Mech. 220, 515-537.I~ S~ mN , L . M . & N m , A . 1 9 78 O n t h e m o t i o n o f s u s p e n d e d p a r t ic l e s i n s t a ti o n a r y h o m o g e n e o u s

tu rbu lence . J. Fluid Mech. 84, 193-206.

I~F .KS, M . W . 1977 On the d i sper s ion o f smal l pa r t i c les su spend ed in an i so t rop ic t u rbu len t f lu id .J. Fluid Mech. 83, 529-546 .

Run nqow , S . I . & K~LLER, J . B . 1961 The t r ansver se fo r ce on a sp inn ing sphe re mo ving in a v i scous

fluid. J. Fluid Mech. 11, 447-459.

S~'} 'MAN, P . G . 1965 Th e l i f t on a sm al l sphere in a s low shea r f low. J. Fluid Mech. 22 , 385-400 .

SAWFORD, B. L . & HUN G, J . C . R . 1986 Ef f ec ts o f t u rbu len ce s t ruc tu re , m olecu la r d i f fus ion a nd

source s i ze on sca l e f l uc tua t ions in homogeneous tu rbu lence . J. Fluid Mech. 165, 373-400.

SHUEN, J. S. , CHIN, L. D . & F~ T I-I G . M . 1 9 8 3 E v a l u a t i o n o f a s t o c h a s ti c m o d e l o f p a r t ic l e

d i sper s ion in a t u rbu len t r ound j e t . AIChE Jl 29, 167-170.SHUEN,J. S. SOLOMON,A. S . P . , ZHANG, Q . F . & FAETH, G. M. 1985 S t ruc tu re o f pa r t i c l e -l aden

je t s : measurement s and p red ic t ions . AIAA Jl 23, 396--404.

SNYDER, W. H . & LUMLEY, J . L . 1971 Som e m easurem ent s o f pa r t i c l e v e loc i ty au toco r r e l a t ionfunc t ions in a t u rbu len t f l ow. J. Fluid Mech. 48, 41 -71 .

TAYLOR, G. I . 1921 Di f fus ion by con t inuo us mo vem ent s . Proc. R. Soc. Ser. A 20, 196-211.

VETTERLING, W. T., TEUKOLSKY, S. A., PRESS, W. H. & FLANNERY, B. P. 1 9 8 8 Numerical Recipes

Example Book. C a m b r i d g e U n i v e r s i t y P r e s s , C a m b r i d g e , U . K .

WAX, N. 1954 Selected Papers on Noise and Stochastic Processes. D o v e r , N e w Y o r k .

WELLS,i . R . & STOCK,n . E . 1983 The e f fec t s o f c ross ing t r a j ec to ri es on the d i sper s ion o f pa r t ic l es

in a t u rbu len t f l ow. J . Fluid Mech. 136, 31-62.