equivalent state equations

27
President University Erwin Sitompul Modern Control 3/1 Dr.-Ing. Erwin Sitompul President University Lecture 3 Modern Control http://zitompul.wordpress.com

Upload: tab

Post on 23-Feb-2016

85 views

Category:

Documents


0 download

DESCRIPTION

Chapter 4. State Space Solutions and Realizations. Equivalent State Equations. State variables: : inductor current i L : capacitor voltage v C. Chapter 4. State Space Solutions and Realizations. Homework 2: Equivalent State Equations. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/1

Dr.-Ing. Erwin SitompulPresident University

Lecture 3Modern Control

http://zitompul.wordpress.com

Page 2: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/2

( )u t

1 F1

1 H

( )y t

Equivalent State EquationsChapter 4 State Space Solutions and Realizations

1x

2x 2x2x

State variables: • : inductor current iL• : capacitor voltage vC

1x2x

RRviR

LL

div Ldt

CC

dvi Cdt

1x

2x

2x2 1x u x

2 1 2x x x

2y x

1 1

2 2

0 1 1( )

1 1 0x x

u tx x

1

2

0 1x

yx

Page 3: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/3

( )u t

1 F1

1 H

( )y t

Homework 2: Equivalent State EquationsChapter 4 State Space Solutions and Realizations

1x 2x

State variables: • : current of left loop• : current of right loop1x

2x

1. Prove that for the same system, with different definition of state variables, we can obtain a state space in the form of:

11

22

1 1 1( )

1 0 1xx

u txx

1

2

1 1x

yx

Page 4: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/4

( )u t

1 F1

1 H

( )y t

Homework 2: Equivalent State EquationsChapter 4 State Space Solutions and Realizations

1x 2x

State variables: • : loop current left• : loop current right1x

2x

1 2Cv x x y

1 1 2( ) 0u x x x

CC

dvi Cdt

2 1 2x x x

1 x 1 1 2x u x x

1 2 2( )u x x x

2 1x u x

11

22

1 1 1( )

1 0 1xx

u txx

1

2

1 1x

yx

Page 5: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/5

Homework 2: Equivalent State EquationsChapter 4 State Space Solutions and Realizations

2. Derive a state-space description for the following diagram

Page 6: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/6

Homework 2: Equivalent State EquationsChapter 4 State Space Solutions and Realizations

1x2x3x 1x2x3x

1 2x x

2 3x x

3 1 3x ax x by u

1 2y x cx 1 1

2 2

3 3

0 1 0 00 0 1 0

1 1

x xx x ux a b bc x

1

2

3

1 0 0x

y c x ux

1 3 1 2( )ax x b x cx u

1 2 3( )a b x bcx x u

Page 7: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/7

x = P x is called an equivalence transformation.

is said to be algebraically equivalent with the original state space equations.

Equivalent State EquationsChapter 4 State Space Solutions and Realizations

( ) ( ) ( )t t t x Ax Bu( ) ( ) ( )t t t y Cx Du

Consider an n-dimensional state space equations:

Let P be an nn real nonsingular matrix, and let x = P x. Then, the state space equations

( ) ( ) ( )t t t x Ax Bu

( ) ( ) ( )t t t y Cx Du

where1,A PAP ,B PB 1,C CP .D D

~

~

Page 8: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/8

Equivalent State EquationsChapter 4 State Space Solutions and Realizations

Proof:Substituting 1( ) ( )t tx P x

1 1( ) ( ) ( )t t t P x AP x Bu

1( ) ( ) ( )t t t y CP x Du

1( ) ( ) ( )t t t x PAP x PBu

A B

C D

Page 9: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/9

Equivalent State EquationsChapter 4 State Space Solutions and Realizations

From the last electrical circuit,State variables: • : inductor current iL• : capacitor voltage vC

1x2x

State variables: • : loop current left• : loop current right1x

2x

( )u t

1 F1

1 H

( )y t

The two sets of states can be related in the way:1 1

2 2

1 01 1

x xx x

or

11 1

2 2

1 01 1

x xx x

1 1

2 2

1 01 1

x xx x

Page 10: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/10

Transfer Function and Transfer MatrixChapter 4 State Space Solutions and Realizations

( ) ( ) ( )t t u t x Ax B( ) ( ) ( )y t t Du t Cx

Consider a state space equations for SISO systems:

Using Laplace transform, we will obtain:( ) (0) ( ) ( )s s s U s X x AX B

( ) ( ) ( )Y s s DU s CX

For zero initial conditions, x(0) = 0,1( ) ( ) ( )s s U s X I A B

1( ) ( ) ( )Y s s D U s C I A B

1( )( ) ( )( )Y sG s s DU s

C I A B Transfer Function

Page 11: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/11

Realization of State Space EquationsChapter 4 State Space Solutions and Realizations

Every linear time-invariant system can be described by the input-output description in the form of:

( ) ( ) ( )Y s U s G s

If the system is lumped (i.e., having concentrated parameters), it can also be described by the state space equations

( ) ( ) ( )t t u t x Ax B

( ) ( ) ( )y t t Du t Cx

The problem concerning how to describe a system in state space equations, provided that the transfer function of a system, G(s), is available, is called Realization Problem.

G(s) A, B, C, D.

Page 12: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/12

Realization of State Space EquationsChapter 4 State Space Solutions and Realizations

Three realization methods will be discussed now: Frobenius Form Observer Form Canonical Form

Page 13: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/13

Chapter 4 Realization of State Space Equations

Frobenius Form( )( )( )Y sG sU s

1

1 1 01

1 1 0

m mm mn n

n

b s b s b s bs a s a s a

1

1 1 01

1

1 1 01

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n

nn n

m m

m mm m

d y t d y t dy ta a a y tdt dt dt

d u t d u t du tb b b b u tdt dt dt

Special Case: No derivation of input1

1 1 0 01

( ) ( ) ( ) ( ) ( )n n

nn n

d y t d y t dy ta a a y t b u tdt dt dt

Page 14: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/14

Chapter 4 Realization of State Space Equations

Frobenius Form We now define:

1( ) ( )x t y t2 ( ) ( )x t y t 1( )x t

3( ) ( )x t y t 2 ( )x t

( 1)( ) ( )nnx t y t 1( )nx t

1 1

2 2

0 1 1 0

( ) 0 1 0 ( ) 0( ) 0 0 1 0 ( ) 0

( )

( ) ( )n n n

x t x tx t x t

u t

x t a a a x t b

1

2

( )( )

( ) 1 0 0 0 ( )

( )n

x tx t

y t u t

x t

Frobenius Form,Special Case

Page 15: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/15

Chapter 4 Realization of State Space Equations

Frobenius Form General Case: With derivation of input

11 1 0

11 1 0

( )( )

m mm mn n

n

b s b s b s bY sU s s a s a s a

( )( )N sD s

m n

1 21 2 1 0

( )( )( )

n nn n

U sY s b s b s b s bD s

2 10 1 2 1

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )

n nn n

U s U s U s U sY s b b s b s b sD s D s D s D s

1( )X s 2 ( )X s 1( )nX s ( )nX s

If m = n–1 (largest possible value), then

Page 16: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/16

1( )( )( )

U sX sD s

Chapter 4 Realization of State Space Equations

Frobenius Form

11 1 0

( )n n

n

U ss a s a s a

1 21 1 1 2 1 1 1 0 1( ) ( ) ( ) ( ) ( ) ( )n n

ns X s a s X s a s X s a sX s a X s U s

1 21 1 1 2 1 1 1 0 1( ) ( ) ( ) ( ) ( ) ( )n n

ns X s U s a s X s a s X s a sX s a X s

( ) ( 1)1 1 1 2 1 1 1 0 1( ) ( ) ( ) ( ) ( ) ( )n n

nx t u t a x t a x t a x t a x t

1 2 3 1 2 0 1( ) ( ) ( ) ( ) ( ) ( )n n nx t u t a x t a x t a x t a x t

But

11 1( ) ( )x t X sL2 1( ) ( )x t x t

1 2( ) ( )n nx t x t

1( ) ( )n nx t x t

If m = n–1 (largest possible value), then

Page 17: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/17

Chapter 4 Realization of State Space Equations

Frobenius Form The state space equations can now be written as:

1 1

2 2

0 1 1

( ) 0 1 0 0 ( ) 0( ) 0 0 1 0 ( ) 0

( )

( ) ( ) 1n n n

x t x tx t x t

u t

x t a a a x t

1

20 1 2 1

( )( )

( ) 0 ( )

( )

n n

n

x tx t

y t b b b b u t

x t

Frobenius Form,General Case

Page 18: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/18

Chapter 4 Realization of State Space Equations

Observer Form1 2

1 2 1 01

1 1 0

( ) ,( )

n nn n

n nn

b s b s b s bY sU s s a s a s a

11 1 0

1 21 2 1 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n nn

n nn n

s Y s a s Y s a sY s a Y sb s U s b s U s b sU s b U s

1n m

1 1 01

1 2 1 02 1

( ) ( ) ( )( )

( ) ( ) ( ) ( )

n n n

n n n n

Y s Y s Y sY s a a as s s

U s U s U s U sb b b bs s s s

1 1 2 2

0 0

1 1 1( ) ( ) ( ) ( ) ( )

1 ( ) ( )

n n n nY s b U s a Y s b U s a Y ss s s

b U s a Y ss

1( )X s

Page 19: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/19

1 0 01( ) ( ) ( )X s b U s a Y ss

Chapter 4 Realization of State Space Equations

Observer Form1 0 0( ) ( ) ( )x t b u t a y t

2 1 1 11( ) ( ) ( ) ( )X s bU s a Y s X ss

2 1 1 1( ) ( ) ( ) ( )x t b u t a y t x t

1 1 11( ) ( ) ( ) ( )n n n nX s b U s a Y s X ss 1 1 1( ) ( ) ( ) ( )n n n nx t b u t a y t x t

( ) ( )nY s X s ( ) ( )ny t x t

Page 20: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/20

The state space equations in observer form:

1 0 1 0

2 1 2 1

1 1

( ) 0 0 ( )( ) 1 0 ( )

( )

( ) 0 0 1 ( )n n n n

x t a x t bx t a x t b

u t

x t a x t b

1

2

( )( )

( ) 0 0 1 0 ( )

( )n

x tx t

y t u t

x t

Observer Form

Chapter 4 Realization of State Space Equations

Observer Form

Page 21: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/21

Chapter 4 Realization of State Space Equations

Canonical Form

( )( ) ( )( )N sY s U sD s

01

( )n

i

i i

rr U s

s

To construct state space equations in canonical form, we need to perform partial fraction decomposition to the respective transfer function.

In case all poles are distinct, we define:

1 1 1( ) ( ) ( )x t x t u t 11

1( ) ( )X s U ss

22

1( ) ( )X s U ss

1( ) ( )nn

X s U ss

2 2 2( ) ( ) ( )x t x t u t

( ) ( ) ( )n n nx t x t u t

1 1 2 2

0

( ) ( ) ( ) ( ) ( )n n

y t r x t r x tr x t r u t

1 1 2 2

0

( ) ( ) ( ) ( ) ( )n n

Y s r X s r X sr X s rU s

Page 22: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/22

Chapter 4 Realization of State Space Equations

Canonical Form The state space equations in case all poles are distinct:

1 1 1

2 2 2

( ) 0 0 ( ) 1( ) 0 0 ( ) 1

( )

( ) 0 0 ( ) 1n n n

x t x tx t x t

u t

x t x t

Canonical Form,Distinct Poles

1

21 2 0

( )( )

( ) ( )

( )

n

n

x tx t

y t r r r r u t

x t

• The resulting matrix A is a diagonal matrix.• The ODEs are decoupled, each of them can be

solved independently.

Page 23: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/23

Chapter 4 Realization of State Space Equations

Canonical Form In case of repeating poles, for example λ1 is repeated for p

times, the decomposed equation will be:1 111 12 2

0 21 1 1 2 1

( ) ( )( ) ( )

p n pp

n p

r rr r rY s r U ss s s s s

We define:

1 1 1( ) ( ) ( )x t x t u t 11

1( ) ( )X s U ss

2 21

1( ) ( )( )

X s U ss

2 1 2 1( ) ( ) ( )x t x t x t 11

1 ( )X ss

1

1( ) ( )( )p pX s U ss

1 1( ) ( ) ( )p p px t x t x t

11

1 ( )pX ss

•x1(t) coupled with x2(t)

•xp–1(t) coupled with xp(t)

Page 24: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/24

11 1 12 2

1 2 1

1 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

p p p

n p n

y t r x t r x tr x t r x tr x t r u t

11 1 12 2

1 2 1

1 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

p p p

n p n

Y s r X s r X sr X s r X sr X s rU s

1 2 1( ) ( ) ( )p px t x t u t 12

1( ) ( )pX s U ss

1( ) ( ) ( )n n p nx t x t u t 1

1( ) ( )nn p

X s U ss

Chapter 4 Realization of State Space Equations

Canonical Form

Page 25: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/25

Chapter 4 Realization of State Space Equations

Canonical Form The state space equations in case of repeating poles:

11 1

12 2

1

1

21 1

1

0 0( ) ( ) 11 0 0( ) ( ) 000 1( ) ( ) 0

0 0( ) ( ) 11

0 0( ) ( ) 1

p p

p p

n pn n

x t x tx t x t

x t x t ux t x t

x t x t

( )t

Canonical Form,Repeating Poles

Page 26: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/26

1

2

11 12 1 2 1 0

1

( )( )

( ) ( ) ( )( )

( )

p n p p

p

n

x tx t

y t r r r r r x t r u tx t

x t

The state space equations in case of repeating poles:

Canonical Form,Repeating Poles

Chapter 4 Realization of State Space Equations

Canonical Form

Page 27: Equivalent State Equations

President University Erwin Sitompul Modern Control 3/27

Homework 3: Transfer Function to State SpaceChapter 4

Find the state-space realizations of the following transfer function in Frobenius Form, Observer Form, and Canonical Form.

Realization of State Space Equations

3 2

( ) 2( )( ) 8 19 12Y s sG sU s s s s

Hint: Learn the following functions in Matlab and use the to solve this problem: roots, residue, conv.