epac08 - previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest tcsm.a6l7.b1 for hor....

20
EPAC08 - Preview L. Lari on behalf of the FLUKA team Phase 2 Specification and Implementation Meeting 13/6/2008

Upload: others

Post on 12-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

EPAC08 - PreviewL. Lari on behalf of the FLUKA

team

Phase 2 Specification and Implementation Meeting13/6/2008

Page 2: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

2

• PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORSL. Lari, C. Bracco, EPFL, Lausanne and CERN, Geneva, Switzerland R. Assmann, A. Bertarelli, M. Brugger, F. Cerutti, A. Dallocchio, A. Ferrari, M. Mauri, S. Roesler, L. Sarchiapone, V. Vlachoudis, CERN, Geneva, Switzerland E. Doyle, L. Keller, S. Lundgren, T. Markiewicz, J. Smith, SLAC, Menlo Park, California

• EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATIONL. Lari, C. Bracco, EPFL, Lausanne and CERN, Geneva, Switzerland R. Assmann, M. Brugger, F. Cerutti, A. Ferrari, M. Mauri, S. Redaelli, L. Sarchiapone, T. Weiler, V. Vlachoudis, CERN, Geneva, Switzerland E. Doyle, L. Keller, S. Lundgren, T. Markiewicz, J. Smith, SLAC, Menlo Park, CA

2 Papers

Page 3: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

3

Phase II different designs evaluationusing the horizontal halo distribution

• CERN Metallic Collimator design• Metallic Foil Collimator design (CERN)• Rotatable Jaw Collimator design (SLAC

through LARP program)

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

TCSG opened like

during Inj.

11 collimators in IR7 Fluka model

Page 4: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

4

CERN Metallic Collimator design (1)

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

C-shape Mo support

Water pipelines

Jaw + Cu support

• Cu jaws (h,v,s)• Al jaws (h,v)• W jaws (h,v)

Courtesy A.Bertarelli / A.Dallocchio

1 m long jaw

Page 5: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

5

CERN Metallic Collimator design (2)

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

[cm] [w

/cm

3 ] 2511

0.35/cm3

12053

1.75/cm3

Whole collimatorOne jawPeak on the jaw surface

W

123

0.013/cm3

6017

0.065/cm3

Whole collimatorOne jawPeak on the jaw surface

Al

239

0.11/cm3

11545

0.55/cm3

Whole collimatorOne jawPeak on the jaw surface

Cu

1h [kW]0.2h [kW]Energy depositionJawMaterial

Summary of Energy Deposition resultson the hottest TCSM.A6L7.B1 for hor. halo

W

Cu

Al

• Tank (steel) and support structures contribute significantly to the residual dose rates (to more than 60 %)

• Nevertheless, the overall activation level depends on the jaw materiali.e. it is 20-50% higher for collimator with W than Cu jaws

hottest TCSM.A6L7.B1 jaw for hor. losses

Thanks to C. Bracco for tracking simulations

Courtesy S. Roesler

8.46E10 [p/s]

400

Page 6: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

6

Metallic Foil Collimator design (CERN) (1)

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

Cu-Diamond jaw

Courtesy A.Bertarelli / A.Dallocchio

Cu support

1 m long jaw

Cu foil – 2 mm

Page 7: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

7

Jaw 2Jaw 1

120

Metallic Foil Collimator design (CERN) (2)

0.3D5R7

0E5R7

0.2B5R7

0A4R7

0.1A4L7

14A5L7

0.1D4L7

0.1B4L7

0.16R7

30B5L7

8A6L7

% outside foilparticlesTCSM

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

Preliminary results, using the same tracking (hor. scenario) for the Cu horizontal halo [cm] [cm]

[cm

]

Jaw 2

foilCuDiam

120

[W/c

m3 ]

[cm]

Page 8: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

8

Rotatable Jaw Collimator design, (SLAC/LARP) (1)

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

Courtesy SLAC team

0.93 m long jaw

Page 9: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

9

Rotatable Jaw Collimator design, (SLAC/LARP) (2)

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

7D5R7

25E5R7

3B5R7

2A4R7

2A4L7

4A5L7

3D4L7

2B4L7

0.26R7

4B5L7

3A6L7

% outside foilparticlesTCSM

Preliminary results, using the same tracking files for the Cu horizontal halo [cm] [cm]

[cm

]

120

[cm]

[W/c

m3 ]

Page 10: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

10

Conclusions• W jaws high energy deposition for the

TCSM.A6L7• Better choice has to be address to Al and Cu

supporting the choice with thermal analysis

• In particular for the Cu foil

Future investigation :• Combination of different design• Ceramic collimator• Cryogenic collimator• Active or passive absorber

PRELIMINARY EXPLORATORY STUDY OF DIFFERENT PHASE II COLLIMATORS

Page 11: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

11

One Phase II design evaluation

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

Results refer to the SLAC Rotatable Jaw design, because is presently the most

advanced one

• Phase II collimator calculation methodology• The complete analysis of operational scenario

(h, v, s) with TCSG opened like at Inj.• The Asynchronous dump scenario

Page 12: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

12

Phase II collimator calculation: Methodology

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

Each time integrationin the IR7 model

Following the evolution of IR7 and the loss map

(e.g. TCSG opened/closed)

Results refer to the most advanced Fluka model

Page 13: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

13

Operation scenario (1)

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

8.53.5

0.05/cm3

Whole collimatorOne jaw Peak on the jaw surface

Skew

228.5

0.12/cm3

In totalOne jaw Peak on the jaw surface

Vertical

228.5

0.11/cm3

Whole collimatorOne jawPeak on the jaw surface

Horizontal

1h [kW]Energy DepositionHalo

hottest TCSM.A6L7.B1

[cm]

[W/c

m3 ]

Jaw 1

Jaw 2

Jaw 1

Jaw 2

120 120120

Page 14: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

14

Operation scenario (2)

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

0.5 (x 2 jaws)0.8 (x2 jaws)0.03 (x2 jaws)0.04 (x2 jaws)

1.50.07

In the Molybdenum with Copper shaftIn the Copper mandrel and Copper pipelineOnly in the water In the Aluminium motor supportsIn the steel tankIn the steel flanges

1h [kW]Energy Deposition

Jaw 1

Jaw 2

Page 15: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

15

Asynchronous Dump (1)

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

…due to a spontaneous trigger of the hor. extraction kicker at top energy.

In principle, any collimator can be hit by miss-kicked particles, but in practice the horizontal ones are those actually impacted.

Three scenarios studied, using a very pessimistic case, actually with a low probability associate:

• Direct impact on one jaw of TCP.C6L7.B1• Direct impact on one jaw of TCSM.B4L7.B1• Direct impact on one jaw of TCSM.6R7.B1

Page 16: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

16

Asynchronous Dump (2)Data TCP.C6L7.B1, as an example

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

TCP.C6L7 new file

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sigma

num

ber o

f pro

tons

Thanks to T. Weiler for tracking simulations

Tot 13 bunches

Only 1 jaw hit

[cm]

Sigma

Page 17: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

17

TCP.C6L7.B1 Results

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

LL

TCP.D

6L7

TCP.C

6L7

TCP.B

6L7

TCLP

A6LMBW

B6LMBW

A6LTC

SG.A6L

7TC

SM.A6L

7

TCSG.B

5L7

TCSG.A

5L7

TCSM.A

5L7

TCSM.B

5L7

22TCP.C6L7

24TCSM.B5L7

41TCLPA6L

37MBWB6L

35MBWA6L

48TCP.B6L7

130TCSM.A6L7

[kJ]

Only 1 jaw hit

[cm]

Ene

rgy

Pea

k [J

/cm

3 ]

700

Page 18: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

18

TCSM.B4L7.B1 and TCSM.6R7 Results (1)

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

22TCP.C6L7

24TCSM.B5L7

41TCLPA6L

37MBWB6L

35MBWA6L

48TCP.B6L7

130TCSM.A6L7

[kJ]

13TCLA.C6R7

6MBWA6R

3MBWB6R

60TCLA.A6R7

285TCSM.6R7

[kJ]

17TCSM.A4R7

15TCSG.A4L7

7TCSG.A4R7

61TCSM.A4L7

295TCSM.B4L7

[kJ]

TCP.C6L7.B1 TCSM.B4L7.B1 TCSM.6R7.B1

Page 19: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

19

TCSM.B4L7.B1 and TCSM.6R7 Results (2)

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

300 [kJ]50000 [J/cm3]

>5000o

Total energy depositionEnergy density peak on the jaw Instantaneous variation of temperature

TCSM.6R7.B1 directly impactedTCSM.6R7.B1 most loaded

300 [kJ]50000 [J/cm3]

>5000o

Total energy depositionEnergy density peak on the jaw Instantaneous variation of temperature

TCSM.B4L7.B1 directly impactedTCSM.B4L7.B1 most loaded

130 [kJ]600 [J/cm3]

180o

Total energy depositionEnergy density peak on the jaw Instantaneous variation of temperature

TCP.C6L7.B1 directly impactedTCSM.A6L7.B1 most loaded

Page 20: EPAC08 - Previewlhc-collimation-project.web.cern.ch/lhc... · on the hottest TCSM.A6L7.B1 for hor. halo W Cu Al • Tank (steel) and support structures contribute significantly to

20

Conclusions

EVALUATION OF BEAM LOSS AND ENERGY DEPOSITION FOR ONE POSSIBLE PHASE II DESIGN FOR LHC COLLIMATION

• The Rotatable Jaw design is actually in phase of prototyping at SLAC

FLUKA studies for operational scenario support the mechanical integration

• The simulation of Asynchronous Dump scenario point out that the Phase II collimators are always the most loaded ones

Why not investigate other solution for these special locations?