envisioning future occupants · 2016. 10. 10. · • penetration of renewable energy, waste energy...

32
ENVISIONING FUTURE OCCUPANTS IEA Annex 66 Expert Meeting, LBNL, March 30, 2015 assumed context Courtesy IPCC Courtesy NASA Courtesy para via Flickr 32

Upload: others

Post on 17-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

ENVISIONING FUTURE OCCUPANTS

IEA Annex 66 Expert Meeting, LBNL, March 30, 2015

assumed context

Courtesy IPCC

Courtesy NASA

Courtesy para via Flickr

32

Page 2: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

personal characteristics

Courtesy Apple Chan, City University Hong Kong

social & environmental context

Courtesy Herman Miller

33

Page 3: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

enabling technologies

Courtesy retroarama via Flickr

new building paradigms

Uncredited image

34

Page 4: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Annex 66 panel on “Future Occupants” 

Future Buildings for Our Distant Future

Ir Cary Chan 30 March 2015General Manager, TSSD of Swire Properties (HK) Ltd

The World of 2115 (hundred years later)

• In 2115, maybe the result of continuous deficit of our natural capital

Eco Profit &Loss Accounting 

Financial Profit & Loss Accounting 

Sustainable Growth

Eco Profit &Loss Accounting 

Financial Profit & Loss Accounting

Natural Capital

Adopt to:‐

• Scarcity of water, food andother resources

• Net Zero Impact or positiveImpact  

35

Page 5: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Technology comes in

With that in mind …What are the technology we should develop for ourselves in 2115 to provide : 

• comfortable and enjoyable living;

• productive working place;

• quality communication;

• social activities;

• food production, connectivity &transportation;

• profitable business, etc.

• Huge space solar energy source + Complete wireless energy transmission

• Smart‐grid / Energy internet

Energy in future

Source: NASASource: SPS‐ALPHA 

36

Page 6: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

• Penetration of renewable energy, waste energy recover (from excessindoor lighting, people movement, phase change materials, etc) andbio‐energy

Energy in future

Source: Wessex Water/GENeco

Biocentres in Kibera have collected 60,000kg of poo, turning it into biogas Photograph: Practical Action

• Flexible structures + modular building components

• Reactive facades to accommodate changing environmental conditions

• Membrane to control the air ventilation, air quality, indoor temp. & humidity, etc.

Buildings in future

Source: Arup

37

Page 7: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Living Places in future

• Integration of Living, Working, Leisure

• Intensive assistance from Artificial Intelligence

Transportation, Communication in future

• Virtual connection and interaction (less distanced physical transportation)

• Automated private transportation

• Neuroscience + Emotional communication technology (technological telepathic)

Source: https://www.singularityweblog.com/

Source: https://rmscib.wordpress.com/

38

Page 8: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Food, Clothing in future

• Biotechnology + Food production modules

• Water from filtration / extraction from atmosphere / sea

• Very localised system (integrated with clothing) to meet personal comfort

• Clothing can even check our health

Source: Glowing Genes : A Revolution in Biotechnology by Marc Zimmer, PH.D.

Source: http://www.editorstop.com/future‐farming/

What decision we should make today for our style of living in 2115?

Many possibilities…Many technologies we can’t image right now…

But what are we looking for? How the technologies to help us? 

“Increasing productivity” VS “Leisure living”

“Managing greenery” VS “Biodiversity”

“Brand new energy source” VS “Energy conservation”

“Precise controlled interior” VS “Adaptive system for people”

“Genetically modified food” VS “Grow your own natural food”

“Virtual connection” VS “Face to face interaction”

“Playing with robot” VS “Social game with people”

“A.I. decision” VS “Emotional development”

39

Page 9: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Social & economic context

Clinton Andrews

Rutgers University

What social and environmental conditions external to future occupants (peer norms, energy regulations, etc.) will most influence and/or constrain their behavioral interactions with the built environment?

40

Page 10: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Population (millions)

USA World

 ‐

 200

 400

 600

 800

1950 2000 2050 2100

 ‐

 5,000

 10,000

 15,000

 20,000

1950 2000 2050 2100

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2012 Revision, http://esa.un.org/unpd/wpp/ March 28, 2015; 12:30:44 PM

More people means more buildings

Median Age (years)

USA World

 ‐

 10

 20

 30

 40

 50

 60

1950 2000 2050 2100

 ‐

 10

 20

 30

 40

 50

 60

1950 2000 2050 2100

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2012 Revision, http://esa.un.org/unpd/wpp/ March 28, 2015; 12:30:44 PM

People are living longer, working 

longer

41

Page 11: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

USA (dependents/working‐age population)

Old‐age dependency ratio Child dependency ratio

 ‐

 10

 20

 30

 40

 50

 60

 70

1950 2000 2050 2100

 ‐

 10

 20

 30

 40

 50

 60

1950 2000 2050 2100

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2012 Revision, http://esa.un.org/unpd/wpp/ March 28, 2015; 12:30:44 PM

Fewer kids.

Older people become an economic burden, need to work longer. 

Fewer kids.

Average hours worked / week

USA

0

20

40

60

80

1800 1900 2000 2100 25 30 35 40 45

NetherlandsWest Germany

GermanyNorway

DenmarkFrance

SloveniaBelgium

LuxembourgSwitzerland

United KingdomSwedenFinlandSpain

AustriaCanada

AustraliaPortugal

JapanIceland

New ZealandItaly

United StatesSlovak Republic

IrelandCzech Republic

TurkeyIsrael

EstoniaPoland

HungaryRussian Federation

GreeceChileKorea

Mexico

Source: Stats.oecd.org (average hours actually worked). Supplemented by Whaples, Robert. Hours of Work in U.S. History. http://eh.net/encyclopedia/hours‐of‐work‐in‐u‐s‐history.

Less work, more leisure, for some

42

Page 12: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Urban & UnequalPercent urbanized Income inequality

0

20

40

60

80

100

1950 2000 2050 2100

World

USA

Source: United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD‐ROM Edition. Piketty, Thomas and Saez, Emmanuel (2007). Income and Wage Inequality in the United States 1913‐2002; in Atkinson, A. B. and Piketty, T. (editors) Top Incomes over the Twentieth Century. A Contrast Between Continental European and English‐Speaking Countries, Oxford University Press, chapter 5. 

Urban propinquity, segregation, high 

interurban mobility,  

Final thoughts

• Transhumanismemerges (office inbuilding, then pocket,then implant)

• Security issues persist(due to core‐peripherytensions, inequalities)

• Persistently needdiverse spaces for bothcollaboration &contemplation

• Increasingly need to fitworkspaces into richerlife (e.g., bike racks atwork)

43

Page 13: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Using Task-Ambient Conditioning (TAC) Systems to Improve Comfort and Energy Performance

Confidential Information: Not to be made public without permission from the UC Regents

Center for the Built Environment (CBE)

http://www.cbe.berkeley.edu/resources/partner.htm

Alliesthesia – psychophysiological basis for thermal comfort behavior

Hui ZhangCenter for the Built Environment (CBE)

University of California at Berkeley

Annex 66, March 30 2015, LBNL

Alliesthesia: esthesia(sensation) and allios(changed)

Behavioral response to environment depends on the body’s internal state

It applies to:

• Hunger

• Thirst

• Sex

• Breast feeding

• Thermal pleasure

• …

Word coined by Cabanac in 1970s

(warm body) (cold body)

44

Page 14: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Using Task-Ambient Conditioning (TAC) Systems to Improve Comfort and Energy Performance

Confidential Information: Not to be made public without permission from the UC Regents

Center for the Built Environment (CBE)

http://www.cbe.berkeley.edu/resources/partner.htm

Annex 66, March 30 2015, LBNL

A thermally neutral condition does not activate “very pleasant” feeling

Zhang (2003), Arens and Zhang (2006)

Hyperthermic(warm body)

Neutral

Hypothermic (cold body)

Mower (1976) uniform neutral environment

non-uniform environmentCold body foot-warmingWarm body foot-cooling

Cold body foot-cooling

very cold very warm

just comfortable

comfortable

very comfortable

Annex 66, March 30 2015, LBNL

Identify discomfort sources: in warm environments

Head dictates discomfort in warm environments Zhang (2003)

45

Page 15: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Using Task-Ambient Conditioning (TAC) Systems to Improve Comfort and Energy Performance

Confidential Information: Not to be made public without permission from the UC Regents

Center for the Built Environment (CBE)

http://www.cbe.berkeley.edu/resources/partner.htm

Annex 66, March 30 2015, LBNL

Extremities dictates discomfort in cool environments

Identify discomfort sources: in cool environments

Zhang (2003)

Annex 66, March 30 2015, LBNL

• Maximize thermal pleasure (positive alliesthesia)

• Minimize thermal displeasure (negative alliesthesia)

(Example:)

Alliesthesia is maximized when you warm cold hands (toremove the discomfort of vasoconstriction caused when the whole-body becomes cool)

Sensory variation (temporal, and spatial across the body) will becorrelated with alliesthesia events

A person’s future thermal behavior may be more influenced bymemory of positive and negative alliesthesia events than by time-integration of the body’s thermal states

Goals of behavior interactions

46

Page 16: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Using Task-Ambient Conditioning (TAC) Systems to Improve Comfort and Energy Performance

Confidential Information: Not to be made public without permission from the UC Regents

Center for the Built Environment (CBE)

http://www.cbe.berkeley.edu/resources/partner.htm

Annex 66, March 30 2015, LBNL

Goals for future environments

Operable windows

Operable windows and fans

• Access to alliesthesiacapabilities

Operable windows

• Dynamic and non-uniformenvironment

• Local heating/coolingdevices

Heated footwarmer

Heated/cooled chairs

Fans

Internet of things: localheating/cooling devices

Annex 66, March 30 2015, LBNL

Questions?

Japanese hot spa

Turkish [email protected]

47

Page 17: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Using Task-Ambient Conditioning (TAC) Systems to Improve Comfort and Energy Performance

Confidential Information: Not to be made public without permission from the UC Regents

Center for the Built Environment (CBE)

http://www.cbe.berkeley.edu/resources/partner.htm

Annex 66, March 30 2015, LBNL

Mower (1976)

Neutral

Hyperthermic

Hypothermic

Alliesthesia zone

Challenges of the alliesthesia

Neutral zone

48

Page 18: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Stephen Selkowitz

Envisioning Future Occupants:Enabling Technologies and Approaches

Senior Advisor, Building Technology and Urban Systems

Group Leader, Windows and Envelope Materials

Lawrence Berkeley National Laboratory

[email protected]

• What Future Technologies and Approaches Will:– Enable future occupants to meet personal comfort needs and

preferences– Improve our ability to quantify/evaluate occupant behavior and its effects

on buildings

Drivers for Building Design and Performance

• Daylight

• Aesthetics

Comfort

View/Privacy

Security

Acoustics

Energy/Demand/Carbon

• Weatherproof

• Cleaning

• Maintenance

• Structure

• Recycled Materials

49

Page 19: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Annual Energy Costs in Perspective

Cost / Sq. M. Floor -Year

• Energy Cost: $30.00

• Maintenance: $30.00

• Taxes: $30.00

• Rent: $300.00

• “Productivity” $3000.00 = 100 x Energy

Lawrence Berkeley National Laboratory

Requirements for High Performance Envelope

• Need Integrated, Responsive, Intelligent Systems

• Links all building systems: lighting, HVAC,…

• Responsive to occupant, owner, electric grid

• Adaptive to changing needs: smart, flexible

• “Typical” Occupants Will Not Reliably and Consistent

Operate Systems to obtain these results: options are:

• Foolproof “passive” systems

• Hybrid solutions with occupants/automated controls

• Intelligent, adaptive systems that learn preferences, self-

correcting,…

50

Page 20: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

High Performance Envelope Impacts Building Services and Grid Investment

Heating

Cooling

Lighting

PeakCoolingLoad

ChillerSize

LightingDesignStrategy

Energy,Peak

ElectricDemand,LoadShape

CentralPower

Generation$

$ $

$

$

$

Initial Cost Annual Cost

Office Eq.

Onsite Power

Generation

$

Façade/Room

Building Grid

Lawrence Berkeley National Laboratory

(Day)Lighting Control ElementsA Systems Integration Issue

Challenge: manual vs automated dimming

Daylight

Selec + Sdaylt Task

Illum

ballast controllerballast

lamp

Fluorescent Light

sensor

Ambient Illum

View

51

Page 21: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Good Lighting Controls (Daylight Dimming) Work

Data from advanced lighting controls demonstrationin California (1990) !!!

Energy Use before retrofit:

After retrofit:South zone:North zone:

40-60%Savings

40-80%Savings

Lawrence Berkeley National Laboratory

Exploring Performance of Integrated Shading and Lighting Controls

in LBNL Facade Testbed Facility

External Dynamic Shading

Daylight Redirecting Glass

Electrochromic Glass

SOURCE: www.gpd.fi © S. Selkowitz, LBNL

52

Page 22: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Automated Shading Controls Glare Throughout the DayTime Lapse from Tests in LBNL Façade Test Facility: 

Interior Daylight Luminance Patterns with Dynamic Shading

LBNL Façade Test Facility

1 2 3654

321

SOURCE: www.gpd.fi © S. Selkowitz, LBNL

Lawrence Berkeley National Laboratory

Average Annual Lighting Energy Use vs Visual Discomfort

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

auto-split-mir-VB1

ref-VB

split-opt-VB

diff-VB

auto-VB

split-VB

auto-RS

ref-RS

full power Percent ofdaywindow >2000cd/sqm

LPD (W/sf)

0.57 W/sf

0.34 W/sf

0.31 W/sf

10% of day = 1.2 hours

Conclusion: Automated systems deliver best energy savings and comfort

53

Page 23: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

14What Do Occupants Think about Their Work Environments

In-Situ Occupant Data on Daylight/Shading from Desktop Polling Station

Source: K Konis

Lawrence Berkeley National Laboratory

Exploring Intelligent Control Systems:Maximum performance requires full integration with

all building systems (manual control??)

Task Requirements

User Preferences

Interior Conditions

Weather Conditions

Load Shedding/Demand Limiting

Signal

SmartControllers

Lighting Systems

(with dimming ballasts, sensors)

Building Performance(cost, comfort,

operations)

Dynamic Window

(active control of daylight,

glare, solar gain)

Energy InformationSystem

HVAC

Sensors, meters,…

54

Page 24: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

New York Times HQ Building, NYC, 2007Intelligent Lighting and Shade Control

New York Times office with dimmable lights and automated shading

Measured Energy Use: - 25% vs codeLighting Energy Use: - 50% vs code

Measured Peak Demand: - 25% vs codeOccupant Satisfaction: High

Lawrence Berkeley National Laboratory

NY Times Testbed: Optimize: Physical & Virtual

2

1817Simulated Views from 3 of 22 view positions

Phase 1: Physical Testbed, 18 month field study

• Evaluate Shading, daylighting, employee feedback and constructability in a ~5000 sf testbed

• Fully instrumented; 1 year testing

Phase 2: Virtual Model, extend measured data• Extend Test Data: more Orientations and Floor Levels• Shade Control Algorithms for Motorized Shades Developed

using Simulation• Built a virtual model of the building in its urban context using

hourly weather data to simulate performance

2

17

18

AB

N

55

Page 25: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

VDT Visibility in the MockupVs Time of Day, Shade Position 10/26/04

3:40 pm

Background Task

background

taskbackground

L

LLContrast

5:00 pm

Lawrence Berkeley National Laboratory

Occupant Studies in Testbed Identify When to (automatically) Close the Blinds….

Window Luminance (cd/m2)

Pro

bab

ility

Blin

ds

are

Clo

sed

56

Page 26: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Occupant Response to Automated Shading

2%

4%

11%

15%

25%

42%

0% 10% 20% 30% 40% 50%

Adjust brightness

Decrease privacy

Other

Too warm

Maximize view

Reduce sunlight

Override data: Answers to “Why did you change shade position?”

Observations:•“You can’t please all the people all the time….”•Open office environments mixes people and locations; human variability•New construction on Northwest corner of site – recalibration to exterior site•Time Clock calibration issues

Lawrence Berkeley National Laboratory

Webcor/Genentech Test Program250,000 sf Office Building Under Construction

Lighting/Daylighting Shading Evaluationin FLEXLAB

57

Page 27: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Typical Instrumentation for Evaluating Illuminance Distribution and Glare:

HDR Unit (right) automatically calculates DGP every 5 min and sends data over wifi

Lawrence Berkeley National Laboratory

Glare Assessment

58

Page 28: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Modeling Window Shutter Use – 1979Effects of Poor Occupant Use

Lawrence Berkeley National Laboratory

Report: “Energy Savings from Window Attachments”Attachment Energy Rating Council

59

Page 29: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Responsive: Window Room House Community/Grid

Lawrence Berkeley National Laboratory

Active Integrated Perimeter Building SystemsOptimal Performance of Dynamic Systems Requires Integration

Goal: Plug and Play, Flexible, Responsive, …

Today’s Reality: Multiple, incompatible systems, lack of standards

Challenges: Interoperability, Open Systems, Robustness, Low Cost, Resilience,….

Build “The Internet of Things” platform to integrate and link systems

60

Page 30: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Decision Support Tools:Architects/Engineers, Building Operators, Occupants

• Design Guides, Selection tools– Homeowners– Builders, contractors– Point of sale

• Building Design Tools– Allow integration strategies to be explored– Allows façade performance to be optimized– Address Human Factors Issues- e.g. glare, view– HVAC – Façade - Lighting tradeoffs– Explore commissioning and operational issues

Lawrence Berkeley National Laboratory

Radiance is...... software for lighting simulation.

“What You See is What You Experience”

Electric LightMonitor

Daylight

61

Page 31: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Radiance visualization in WINDOW

Tvis What does the space look like?

Lawrence Berkeley National Laboratory

Exploring Performance Details‐ Impacts on PeopleSolar Gain/Daylight/Glare Results

Window solar gain Glare Assessment w/ Radiance

62

Page 32: ENVISIONING FUTURE OCCUPANTS · 2016. 10. 10. · • Penetration of renewable energy, waste energy recover (from excess indoor lighting, people movement, phase change materials,

Lawrence Berkeley National Laboratory

Occupant Futures

• “Internet of Things” is coming– Everything will linked, monitored,….– Smart Sensors, lots of data,… but Privacy??

• Wearable Electronics and Apps – “Big Brother is Watching”– All physiological parameters continuously monitored– Data on occupants and preferences freel available? – Translate to actionable building controls??

• Responsive/Adaptive Building Controls – Adaptive controls– “Smart”, self diagnostic sensors, controls– “Occupant-friendly”

• Granular service “supply” and matching controls– Individual light fixtures w/ LEDs– Cheap sensors and Wireless links to all

Lawrence Berkeley National Laboratory

Benefits of Smart Building Facadesthat Deliver Real Performance

ImproveOccupant Comfort,

Satisfaction and Performance

Add Value,Reduce Operating

Costs

Reduce Energy, Greenhouse Gas

Emissions

OccupantBuilding Owner Planet

63