engineering metallurgy 1

Upload: mohammad-dalia

Post on 10-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Engineering Metallurgy 1

    1/84

    Engineering Metallurgy

    Dr.

    Mohammed Albaouni

    Applied Science Private University

  • 8/8/2019 Engineering Metallurgy 1

    2/84

    Engineering Metallurgy

    GaolGaol

    The precise discription of the friction in the Finite Element

    Simulation of metal forming processes

  • 8/8/2019 Engineering Metallurgy 1

    3/84

    Engineering Metallurgy

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

    .

    1.1 Atoms, Elements and Compounds

    1.2 Chemical Reactions and Equations

    1.3 Oxidation and Reduction

    1.4 Acids, Bases and Salts

    1.5 Atomic Structure

    1.6 Chemical Combination and Valence

    1.7 Secondary Bonding Forces

    1.8 Isotopes1.9 Exercises

  • 8/8/2019 Engineering Metallurgy 1

    4/84

    Engineering Metallurgy

    1.1 Atoms, Elements and Compounds1.1 Atoms, Elements and Compounds

    Atom:Atom: An atom is the smallest particle of an element that has theAn atom is the smallest particle of an element that has thechemical properties of the element.chemical properties of the element.

    Element:Element: pure substances that cannot be decomposed by ordinarypure substances that cannot be decomposed by ordinarymeans to other substancesmeans to other substances

    Compound:Compound: are composed of atoms and so can be decomposedare composed of atoms and so can be decomposedto those atoms.to those atoms.

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    5/84

    Engineering Metallurgy

    ATOMATOM

    Atom: An atom is the smallest particle of an element that has the chemical propertiesAtom: An atom is the smallest particle of an element that has the chemical propertiesof the element.of the element.

    An atom consists of:An atom consists of:- nucleus (of proton and neutrons)- nucleus (of proton and neutrons)

    - electrons in space about the nucleus- electrons in space about the nucleus

    the number of electrons is equal to the number of protons.the number of electrons is equal to the number of protons.

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

    NucleusNucleus

    Electron cloudElectron cloud

  • 8/8/2019 Engineering Metallurgy 1

    6/84

    Engineering Metallurgy

    ATOM CompusitionATOM Compusition

    Protons (pProtons (p++))

    positive electrical chargepositive electrical charge

    mass = 1.672623 x 10mass = 1.672623 x 10-24-24 gg

    relative mass = 1.007 atomic mass units (amu)relative mass = 1.007 atomic mass units (amu) but we can round to 1but we can round to 1Electrons (eElectrons (e--))

    negative electrical chargenegative electrical charge

    relative mass = 0.0005 amurelative mass = 0.0005 amu but we can round to 0but we can round to 0Neutrons (nNeutrons (noo))

    no electrical chargeno electrical charge

    mass = 1.009 amumass = 1.009 amu but we can round to 1but we can round to 1

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    7/84

    Engineering Metallurgy

    Atomic Number, ZAtomic Number, Z

    All atoms of the same element have the same number ofAll atoms of the same element have the same number of

    protons in the nucleus,protons in the nucleus, ZZ

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

    1313AlAl

    26.98126.981

    Atomic numberAtomic numberAtom symbolAtom symbol

    AVERAGE Atomic MassAVERAGE Atomic Mass

  • 8/8/2019 Engineering Metallurgy 1

    8/84

    Engineering Metallurgy

    Mass Number, AMass Number, A

    C atom with 6 protons and 6 neutrons is the mass standardC atom with 6 protons and 6 neutrons is the mass standard

    = 12 atomic mass units= 12 atomic mass units

    Mass NumberMass Number(A)(A)= # protons + # neutrons= # protons + # neutrons

    NOT on the periodic table(it is the AVERAGE atomic mass on the table)NOT on the periodic table(it is the AVERAGE atomic mass on the table)

    A boron atom can haveA boron atom can have

    A = 5 p + 5 n = 10 amuA = 5 p + 5 n = 10 amu

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    9/84

  • 8/8/2019 Engineering Metallurgy 1

    10/84

    1

    Engineering Metallurgy

    pure substances that cannot be decomposed by ordinary means to otherpure substances that cannot be decomposed by ordinary means to othersubstances.substances.

    The elements, their names, and symbols are given on theThe elements, their names, and symbols are given on thePERIODICPERIODICTABLE.TABLE.

    An element can not be changed into a simpler substance by heating or anychemical process

    An atom is the basic building block of matter

    elements combine in such a way to create millions of compounds Scientists have identified 90 naturally occurring elements, and created about

    28 others

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

    CHEMICAL ELEMENTS :CHEMICAL ELEMENTS :

  • 8/8/2019 Engineering Metallurgy 1

    11/84

    1

    Engineering Metallurgy

    Periodic Table of the ElementPeriodic Table of the Element

  • 8/8/2019 Engineering Metallurgy 1

    12/84

    1

    Engineering Metallurgy

    Chemical CompoundsChemical Compounds

    CHEMICAL COMPOUNDS are composed of atoms and so can beCHEMICAL COMPOUNDS are composed of atoms and so can bedecomposed to those atoms.decomposed to those atoms.

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    13/84

    1

    Engineering Metallurgy

    MixturesMixtures

    two or more substances that are not chemically combined with each other and can beseparated by physical means. The substances in a mixture retain their individual properties.

    Solutions a special kind of mixture where onesubstance dissolves in another.

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    14/84

    1

    Engineering Metallurgy

    1.2 Chemical Reactions and Equations1.2 Chemical Reactions and Equations

    1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    15/84

    1

    Engineering Metallurgy 1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    16/84

    1

    Engineering Metallurgy 1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    17/84

    1

    Engineering Metallurgy 1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    18/84

    1

    Engineering Metallurgy 1. Some Fundamental Chemistry1. Some Fundamental Chemistry

  • 8/8/2019 Engineering Metallurgy 1

    19/84

    1

    Engineering Metallurgy 1. Some Fundamental Chemistry1. Some Fundamental Chemistry

    OUTLINEOUTLINE

  • 8/8/2019 Engineering Metallurgy 1

    20/84

    2

    Engineering Metallurgy

    OUTLINEOUTLINE

    1. Introduction

    a. Metal Formingb. Finite Element

    c. Friction

    1. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement1. Summary / Future Work

    OUTLINEOUTLINE

  • 8/8/2019 Engineering Metallurgy 1

    21/84

    2

    Engineering Metallurgy

    OUTLINEOUTLINE

    1. Introduction

    a. Metal Formingb. Finite Element

    c. Friction

    1. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement1. Summary / Future Work

    Moti ationMoti ation

  • 8/8/2019 Engineering Metallurgy 1

    22/84

    Engineering Metallurgy

    MotivationMotivation

    Friction is considered to be a major variable in metal forming and idepends on a multitude of factors, such as contact pressure and relativedisplacement.

    To simulate metal forming processes a friction coefficient that is as

    accurate as possible becomes necessary.

    Classification of manufacturing processesClassification of manufacturing processes

  • 8/8/2019 Engineering Metallurgy 1

    23/84

    2

    Engineering Metallurgy

    manufacturing processes

    primaryshaping

    formingDIN 8582

    cutting joiningprocesses

    coating heat treatment

    compressiveforming

    DIN 8583

    tensile/compressive

    forming

    DIN 8584

    tensileforming

    DIN 8585

    bending

    DIN 8586

    shearforming

    DIN 8587

    Classification of manufacturing processesClassification of manufacturing processes

    Definition of FormingDefinition of Forming

  • 8/8/2019 Engineering Metallurgy 1

    24/84

    2

    Engineering Metallurgy

    Metal Forming means the purposeful change in

    shape

    surface

    material properties

    of a solid body without changing its weight or chemical composition.

    Definition of FormingDefinition of Forming

    The roots of Metal Forming are very oldThe roots of Metal Forming are very old

  • 8/8/2019 Engineering Metallurgy 1

    25/84

    2

    Engineering Metallurgy

    Forging is one of theoldest work techniques of the

    mankind

    Already 4000 B. C. pure metalwas worked up through

    forging

    Since 2500 B.C. copperalloys used (the beginning ofthe bronze age)

    Sketch from old Egypt

    The roots of Metal Forming are very oldThe roots of Metal Forming are very old

  • 8/8/2019 Engineering Metallurgy 1

    26/84

    Advantages of metal formingAdvantages of metal forming

  • 8/8/2019 Engineering Metallurgy 1

    27/84

    2

    Engineering Metallurgy

    favourable mechanical properties of the materials,

    especially for parts under dynamic loads

    high production efficiency with short part production time

    high measure- and shape accuracy of the parts within certain

    tolerances

    high material utilizatione.g. Hot forged parts 75 to 80 %

    cold formed parts 85 to 90 %

    (for comparison: cutting forming 50 %)

    Advantages of metal formingAdvantages of metal forming

    Classification of metal forming processes IClassification of metal forming processes I

  • 8/8/2019 Engineering Metallurgy 1

    28/84

    2

    Engineering Metallurgy

    Classification can be done according to:

    the state of stress in the forming zone

    the working temperature or heating before the forming processes:

    cold working

    hot working

    warm working

    bulk or sheet forming processes

    stationary or transient forming processes

    room=

    izationrecrystall>

    izationrecrystallroom

  • 8/8/2019 Engineering Metallurgy 1

    29/84

    2

    Engineering Metallurgy

    Solving methods of Plastomechanics

    analytical and numerical methods empirical-analytical methods

    elementarytheory slip linetheory

    upper

    boundmethod

    method of

    weightedresidual

    similaritytheory visio-plasticity

    finiteelement

    method(FEM)

    finitedifference

    method(FDM)

    boundary-element-method

    (BEM)

    2.5.1 Solving and test methods, elementary theory

    Solving methods of Metal Forming problems (Plastomechanics)Solving methods of Metal Forming problems (Plastomechanics)

    OUTLINEOUTLINE

  • 8/8/2019 Engineering Metallurgy 1

    30/84

    3

    Engineering Metallurgy

    OUTLINEOUTLINE

    1. Introduction

    a. Metal Formingb. Finite Element

    c. Friction

    1. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement1. Summary / Future Work

    Why FEM Simulation (1)?Why FEM Simulation (1)?

  • 8/8/2019 Engineering Metallurgy 1

    31/84

    3

    Engineering Metallurgy

    y S u at o ( )y S u at o ( )

    The main reasons of process simulation are:

    reduce time to market

    reduce cost of tool development

    predict influence of process parameters

    reduce productions cost

    improve product quality

    better understanding of material behaviour

    reduce material waste

    Why FEM Simulation (2)?Why FEM Simulation (2)?

  • 8/8/2019 Engineering Metallurgy 1

    32/84

    3

    Engineering Metallurgy

    y ( )y ( )

    while the goals of manufacturing using these techniques are.

    accurately predict the material flow

    determine the filling of the swage or die

    accurate assessment of net shape

    predict if laps or other defects exists

    determine the stresses, temperatures, and residual stressesin the work piece

    determine optimal shape or perform

    Finite Element MethodFinite Element MethodFinite Element Method

  • 8/8/2019 Engineering Metallurgy 1

    33/84

    3

    Engineering Metallurgy

    The Finite Element Method (FEM) is a mathematical procedure used for the numericalsolving of partial differential equations. It is suitable for dealing with a great number ofphysical and technical tasks such as elastic deformation, plastic strain, temperature field

    problems, flow problems etc.. What the finite element method does is to transpose thephysical problem into a problem of variation, area approaches being used for the solving.

    The breakthrough of the finite element method began with the introduction of electroniccomputers. The FEM has proved its worth, since it is suitable to almost any structure and theprocedure is numerically stable in many cases. The FEM has also been in use in the formingtechnology to simulate material flows, as well as to calculate stress, strain and temperature

    distributions.

    triangle element quadrilateral element tetrahedral element hexahedral

    element

    2.5.5 Solving and test methods,Finite element method

    bar element shell element

    Processing steps and ideas of FEMProcessing steps and ideas of FEM

  • 8/8/2019 Engineering Metallurgy 1

    34/84

    3

    1. Discretisation:

    a) in space: simple ,,finite elements

    b) in time: discrete time steps

    2. Choice of adequate distribution function for the unknown variables withineach element (so called shape function)

    3. Setting up a linear equation system by coupling the equations of allelements, considering:

    - material properties,

    - boundary conditions and

    - measures to fulfil the convergence of the simulation

    Processing steps and ideas of FEMProcessing steps and ideas of FEM

    2.5.5 Solving and test methods,Finite element method

    Examples: FEM-simulationsExamples: FEM-simulations

  • 8/8/2019 Engineering Metallurgy 1

    35/84

    3

    Engineering Metallurgy

    pp

    2.5.5 Solving and test methods,Finite element method

    Accurate Simulation Needs (1)Accurate Simulation Needs (1)

  • 8/8/2019 Engineering Metallurgy 1

    36/84

    3

    Engineering Metallurgy

    Material Characteristics

    Flow curves of workpiece (at differentstrain rates and temperatures)

    Ductile damage parameters ofworkpiece

    Elastic & fatigue properties of diematerials

    Thermal properties of workpiece & diematerial

    Boundary conditions

    Correct tool geometry

    Tool speed

    Friction

    Heat dissipation coefficients

    Heat radiation und transfer

    Accurate Simulation Needs (2)Accurate Simulation Needs (2)

  • 8/8/2019 Engineering Metallurgy 1

    37/84

    3

    Engineering Metallurgy

    Numerical data

    Analysis type Axisymmetric, 3D or plane strain Thermal couplingDiscretization

    Element size

    Element type

    Mesh refinement at sensitive regions

    Solution step size & control Convergence limit

    Contact parameters

    Penalty factors

    OUTLINEOUTLINE

  • 8/8/2019 Engineering Metallurgy 1

    38/84

    3

    Engineering Metallurgy

    1. Introduction

    a. Metal Forming

    b. Finite Element

    c. Friction

    1. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement

    1. Summary / Future Work

    Friction difinitionFriction difinition

  • 8/8/2019 Engineering Metallurgy 1

    39/84

    3

    Engineering Metallurgy

    Friction is a Force that always pushes against an object whenit touches another object

    When 2 things are in contact with each other, there will befriction acting between them

    Parameters influencing the frictionParameters influencing the friction

  • 8/8/2019 Engineering Metallurgy 1

    40/84

    4

    Engineering Metallurgy

    Surface geometry

    Layer composition

    Lubricant Material pair

    Kopp, S. 69/70

    Relative velocity

    Contact pressure

    Temperature

    Friction conditions depend on :One now has to distinguishbetween :

    Static friction

    Sliding friction Roll friction

    2.3.1 Boundary conditions, Friction

    Friction conditionsFriction conditions

  • 8/8/2019 Engineering Metallurgy 1

    41/84

    4

    Engineering Metallurgy

    Metal forming:Mainly mixed-film frictionbecause of the high

    contact pressure(usually p > kf)

    2.3.1 Boundary conditions, Friction

    Friction lawsFriction laws

  • 8/8/2019 Engineering Metallurgy 1

    42/84

    4

    Engineering Metallurgy

    Coulomb law:

    r= n

    r: frictional shear stress

    : friction coefficient

    n: normal stress

    N

    R

    Rmax = k

    N

    R m = 1 Rmax = k

    Constant friction model r= m*k

    r: frictional shear stressm: friction factor

    K: shear flow stress

    di= 0,5

    0 2F c

    di= 0,5

    0 2

    di= 0,5

    0 2

    di= 0,5

    0 2FF cc

    Methods to determine the Friction coefficientMethods to determine the Friction coefficient

  • 8/8/2019 Engineering Metallurgy 1

    43/84

    Engineering Metallurgy

    M.B. Peterson

    N.A. Kravcenko

    F

    HV

    N.A. Kravcenko

    R.A. IvanovK. Herold P. Davidkov

    K.N. Sevcenko

    H.L. Shaw

    K.M. Kulkarin

    Direkte Messung

    s

    H.L. Shaw

    A.T. Male

    J.B. Hawkyard

    M. Burgdorf

    h

    0,2

    0,1

    0

    hu

    ho

    T

    c

    F = konst.

    h

    M.B. Peterson

    N.A. Kravcenko

    F

    HV

    F

    HV

    N.A. Kravcenko

    R.A. IvanovK. Herold P. Davidkov

    K.N. Sevcenko

    H.L. Shaw

    K.M. Kulkarin

    Direkte Messung

    s

    H.L. Shaw

    A.T. Male

    J.B. Hawkyard

    M. Burgdorf

    h

    0,2

    0,1

    0 h

    0,2

    0,1

    0 h

    0,2

    0,1

    0

    hu

    ho

    hu

    ho

    TT

    cc

    F = konst.

    h

    F = konst.

    h

    Ring-upsetting testRing-upsetting test

  • 8/8/2019 Engineering Metallurgy 1

    44/84

    Engineering Metallurgy

    h0

    d0

    D0

    h0

    d0

    D0

    (h1-h0)/h0

    (d

    1-

    d0

    )/d

    0

    d1

    D1

    h1

    d1

    D1

    h1

    Example:

    h = -2,8 mm

    d = -2 mm

    Conical tube upsetting testConical tube upsetting test

  • 8/8/2019 Engineering Metallurgy 1

    45/84

    4

    Engineering Metallurgy

    Beim Kegelrohrstauchversuch wird eine Hohlzylinder-Probe mit einer kegeligen Eindrehung an der Oberseitedurch ein kegelfrmiges Oberwerkzeug axial gestaucht.

    Der Neigungswinkel bewirkt, dass bei hheren Reibzahlennoch eine Relativbewegung zwischen Werkstck und

    oberem Werk-zeug stattfindet und so einegeometrieabhngige Auswertung auch bei diesem Wert

    mglich ist. Je nach erwarteter Reibzahl kann derNeigungswinkel entsprechend variiert werden.

    40 mm

    40mm

    20 mm

    40 mm

    40mm

    20 mm

    Wie auch beim Ringstauchversuch wird dieReibungszahl beim Kegelrohtstauchversuch

    aus einem Abgleich der an den gestauchtenProben gemessenen Geometrie mit denErgebnissen einer FEM-Simulation ermittelt.

    Sinsitivity StudaySinsitivity Studay

  • 8/8/2019 Engineering Metallurgy 1

    46/84

    4

    Engineering Metallurgy

    Backward cup drawingBackward cup drawing

  • 8/8/2019 Engineering Metallurgy 1

    47/84

    4

    Engineering Metallurgy

    Im ersten Prozess wird ein

    Stangenabschnitt aus C 45 von40 mm Durchmesser und 25 mm

    Hhe durch Rckwrts-Fliepressen zu einem Napf von

    30 mm Innendurch-messer, 50 mmHhe, 5 mm Wand- und

    Bodenstrke umgeformt werden. 40 mm

    25mm

    5 m5 mm

    30 mm

    40 mm

    In meiner Arbeit habe ich die Empfindlichkeit von Ergebnissen derFEM-Simulation von Kaltmassivumformprozessen gegenber der

    Variation bzw. Ungenauigkeit der Reibungszahl untersucht. Hierzuwerden die Reibungsbedingungen in den FEM-Simulationen zwei

    Prozesse der Kaltmassivumformung variiert.

  • 8/8/2019 Engineering Metallurgy 1

    48/84

    Force displacementForce displacement

  • 8/8/2019 Engineering Metallurgy 1

    49/84

    4

    Engineering Metallurgy

    Diese Simulationen liefern diese Kraft-Weg-Verlufe. Ausdem Diagramm ist ersichtlich, dass der Kraft-Weg-Verlauf

    aus der Simulation mit kontaktdruckabhngigerReibungszahl nicht mit einer konstanten Reibungszahl

    nachgebildet werden kann.

    5,05,0

    Closed die forgingClosed die forging

  • 8/8/2019 Engineering Metallurgy 1

    50/84

    5

    Engineering Metallurgy

    Im zweiten Prozess wird ein Rohling auch aus C 45 von

    40 mm Durchmesser und 60 mm in einem Gesenk zu dieserGeometrie geschmiedet.

    4040

    Comperesion of the geometriesComperesion of the geometries

  • 8/8/2019 Engineering Metallurgy 1

    51/84

    5

    Engineering Metallurgy

    Dieser Prozess wird zunchst mit dreiunterschiedlichenReibungszahlen (= 0,12; 0,15 und 0,2) und dann mit

    kontaktdruckabhngiger Reibungszahl simuliert. Allesonstigen Parameter und Randbedingungen im Modellblieben unverndert. Der Ansatz einer

    kontaktdruckabhngigen Reibungszahl liefert eine andereGeometrie, die mit einem konstanten Mittelwert der

    Reibungszahl nicht zu erreichen ist

    conclusionconclusion

  • 8/8/2019 Engineering Metallurgy 1

    52/84

    5

    Engineering Metallurgy

    Aus diesen Simulationen folgt die die Forderung zu prfen,ob tatschlich vergleichsweise groe Variation der

    Reibungszahl in Abhngigkeit von Prozessgren auftreten.Diese erfordert zunchst eine entsprechendeVersuchtechnik und Messungen. Je nach Messungen gibt

    es dann zwei Mglichkeiten:

    Die Abhngigkeit der Reibungszahl von Prozessgren sindso stark, dass dies bercksichtigt werden muss, oder

    Die Abhngigkeit der Reibungszahl von Prozessgren sindnicht so stark, dass dies nicht bercksichtigt werden muss.

    Methods to determine the frictoin coefficientMethods to determine the frictoin coefficient

  • 8/8/2019 Engineering Metallurgy 1

    53/84

    5

    Engineering Metallurgy

    Zur Ermittlung der Reibungszahl fr umformtechnischeAnwendungen gibt es eine Vielzahl von Methoden. Diemeistuntersuchte Methode ist der Ringstauchversuch.

    Ring umsetting testRing umsetting test

  • 8/8/2019 Engineering Metallurgy 1

    54/84

    5

    Engineering Metallurgy

    Bei diesem Verfahren wird eine ringfrmige Probe zwischen zwei

    ebenen Werkzeugen axial gestaucht. Insbesondere der

    Innendurchmesser der Probe reagiert sehr empfindlich auf eineVernderung der Reibung whrend der Umformung. Liegt ein

    groer Reibwert vor, wird der Innendurchmesser kleiner. Bei

    kleinerer Reibung vergrert sich der Innendurchmesser. Aus

    einem Abgleich der an den Proben gemessenen Geometrie mitden Ergebnissen einer FEM-Simulation wird die Reibungszahl

    ermittelt.

    Geometry of the CTU-specimen before and after upsettingGeometry of the CTU-specimen before and after upsetting

  • 8/8/2019 Engineering Metallurgy 1

    55/84

    5

    Engineering Metallurgy

    (h1-h0)/h0

    (D1

    -D0

    )/D

    0

    - The relative displacement is only in the outwards radial direction- There is no sticking zone

    - The lower die is grooved, so there is no relative displacement.- Frictional behaviour is only evaluated for the upper contact surface.- The change of the (D) is larger than the change of (d) in the RU test, which

    allows more accuracy in determining of .

  • 8/8/2019 Engineering Metallurgy 1

    56/84

  • 8/8/2019 Engineering Metallurgy 1

    57/84

    5

    Engineering Metallurgy

    Der Ringstauchversuch hat allerdings einige Nachteile. Mitdiesem Versuch kann man z. B die Einflsse von der

    Relativgeschwindigkeit oder dem Kontaktdruck auf dieReibungszahl nicht untersuchen. Zur Untersuchung derReibverhltnisse bei Prozessen der Massivumformungwird am IBF daher der Kegelrohrstauchversuch eingesetzt.Dieser Versuch ist eine Weiterentwicklung des

    Ringstauchversuchs.

  • 8/8/2019 Engineering Metallurgy 1

    58/84

    Fr die Untersuchung des Einflusses vom Kontaktdruck auf

  • 8/8/2019 Engineering Metallurgy 1

    59/84

    5

    Engineering Metallurgy

    Fr die Untersuchung des Einflusses vom Kontaktdruck aufdie Reibungszahl wurde der Kegelrohrstauchversuchweiterentwickelt. Allein durch nderung des unteren

    Auendurchmessers der Kegelprobe konnte derKontaktdruck zwischen dem oberen Werkzeug und dem

    Werkstck erheblich variiert werden.

  • 8/8/2019 Engineering Metallurgy 1

    60/84

    6

    Engineering Metallurgy

    Nachdem ich gezeigt habe, dass mit Hilfe desKegelrohrstauchversuches die Einflusse unterschiedlicherProzessbedingungen auf die Reibung untersucht werden

    knnen und dass eine eventuelle Abhngigkeit der Reibung

    von Prozessbedingungen in der Simulation vonUmformprozessen bercksichtigt werden soll, wurde dieEinflsse unterschiedlicher Prozessbedingungen auf die

    Reibungszahl untersucht.

  • 8/8/2019 Engineering Metallurgy 1

    61/84

    6

    Engineering Metallurgy

    Aufbauend auf die zuvor beschriebenen

    Voruntersuchungen werden nun folgendeEinflussparameter auf die Reibung gezielt experimentell

    und numerisch untersucht

    Kontaktdruck

    Relativgeschwindigkeit

    Relativverschiebung und

    Rauheit der Kontaktoberflchen

    Fr diese Versuche gelten folgende Angaben, wenn nicht

  • 8/8/2019 Engineering Metallurgy 1

    62/84

    6

    Engineering Metallurgy

    Fr diese Versuche gelten folgende Angaben, wenn nichtexplizit anderes erwhnt ist:

    Probenwerkstoff: C45

    Werkzeugwerkstoff: W 500

    Rauheitstiefe der Probenoberflche: 0,5 bis 2,2 m

    Rauheitstiefe der Werkzeugsoberflche: 0,1-0,3 m

    Umformgeschwindigkeit: 1/s

    Schmierstoff: Molykote-PasteUmformtemperatur: Raumtemperatur

    Kontaktdruck

    0606

  • 8/8/2019 Engineering Metallurgy 1

    63/84

    6

    Engineering Metallurgy

    Kontaktdruck

    0 07

    0,08

    .06

    .06

    Bei kleinen Kontaktdrcken trennt eine Schmierstoffschicht dasWerkzeug und das Werkstck voneinander. Damit werden dieAuswirkung der beiden Reibungsmechanismen vermindert. DieReibungszahl steigt bei hohen Kontaktdrcken an, weil derSchmierstoff aus der Wirkfuge verdrngt wird.

    Die Reibungszahl steigt mit

    zunehmendem Kontaktdruckan. Die wichtigstenReibungsmechanismen sind

    Verhaken der Rauheitsspitzenund Adhsionsverbindungen.

    Relativgeschwindigkeit 0,04

  • 8/8/2019 Engineering Metallurgy 1

    64/84

    6

    Engineering Metallurgy

    g g

    0

    0,01

    0,02

    0,03

    0,1 1 10 100

    Relativgeschwindigkeit in mm/

    Reibungszahl

    Nach einer Erhhung der Relativgeschwindigkeit (von 0,1 auf

    1 mm/s) bleibt die Reibungszahl konstant. Bei grererRelativgeschwindigkeit wurde eine kleinere Reibungszahl ermittelt.Dies ist mit den hydrodynamischen Effekten zu erklren, die sich erstbei hheren Relativgeschwindigkeiten bemerkbar machen. DerVerlauf der Reibungszahl zeigt nur noch eine schwache Abhngigkeit

    der Reibungszahl von der Relativgeschwindigkeit im Form einesReibungszahlabfalls mit steigender Relativgeschwindigkeit.

    R l ti hi b

  • 8/8/2019 Engineering Metallurgy 1

    65/84

    6

    Engineering Metallurgy

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0 2 4 6 8Relativverschiebung in mm

    Reibungszahl

    0

    200

    400

    600

    800

    Kontaktdruckin

    N/mm

    2

    Reibungszahl Kontaktdruck

    Relativverschiebung

    Aus dem Verlauf der Reibungszahl ber die relative Verschiebungkann keine eindeutige Abhngigkeit der Reibung von derVerschiebung nachgewiesen werden.

    F di R h it ibt i

  • 8/8/2019 Engineering Metallurgy 1

    66/84

    6

    Engineering Metallurgy

    Fr die Rauheit gibt es eineOptimum. Ist die Rauheit klein, so

    dominieren adhsive

    Reibungsmechanismen. Beigreren Rauheiten herrschen

    deformative Mechanismen vor.

  • 8/8/2019 Engineering Metallurgy 1

    67/84

  • 8/8/2019 Engineering Metallurgy 1

    68/84

  • 8/8/2019 Engineering Metallurgy 1

    69/84

    6

    Engineering Metallurgy

    8th ICTP 2005 in Verona, ItalyOctober 9-13, 20058th ICTP 2005 in Verona, ItalyOctober 9-13, 2005

  • 8/8/2019 Engineering Metallurgy 1

    70/84

    7

    Engineering Metallurgy

    Institute of Metal Forming (IBF)

    RWTH Aachen University

    Germany

    Conical Tube-Upsetting Test:

    A New Method for Accurate Determinationof the Friction Coefficient

    R. Kopp, R. Volles, M. Albaouni, L. Neumann*

    Conical Tube-Upsetting Test:

    A New Method for Accurate Determinationof the Friction Coefficient

    R. Kopp, R. Volles, M. Albaouni, L. Neumann*

  • 8/8/2019 Engineering Metallurgy 1

    71/84

    OUTLINEOUTLINE

    1. Introduction

  • 8/8/2019 Engineering Metallurgy 1

    72/84

    7

    Engineering Metallurgy

    2. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement

    1. Summary / Future Work

    FEM ModelingFEM Modeling

    600

    800

    1000

    MPa

    kf

  • 8/8/2019 Engineering Metallurgy 1

    73/84

    Engineering Metallurgy

    0

    200

    400

    600

    0.0 0.5 1.0

    logarithmic strain

    flow

    stress

    Closed-die forging

    Rolling with

    longitudinalstrip tension

    min max

    min max

    kf

    program used: ABAQUS/Standard (elastic/plastic)

    element type: axisymmetric quadrilateral (CAX4R)

    contact type: surface to surface contact

    strain rate: ~1/s

    Flow curve of C 45

    510

    15

    510

    15

    1

    51015

    21

    23

    25

    20 18 16 14 12 10 8 6 5

    3

    1

    19

    Albaouni:Margarita, bitte Beschriftungen auf Arial 18stellen und anordnen.

    Albaouni:

    Margarita, bitte Beschriftungen auf Arial 18stellen und anordnen.

  • 8/8/2019 Engineering Metallurgy 1

    74/84

    Engineering MetallurgyPosition of the contact nodesPosition of the contact nodes

    RU testbefore

    upsetting

    CTU testbeforeupsetting

    CTU testafterupsetting(=0.4)

    15

    10

    15

    10

    1525 22 20 18 16 14 12 10 8 6 4 3 2 1

    RU test after upsetting (=0.4)

    19

    OUTLINEOUTLINE

    1. Introduction

  • 8/8/2019 Engineering Metallurgy 1

    75/84

    7

    Engineering Metallurgy

    2. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement

    1. Summary / Future Work

    Distribution of the contact pressure (=0.40)Distribution of the contact pressure (=0.40)h= 50%

    h= 25% h= 10% h= 50%

    h= 50% h= 25%

    h= 25% h= 10%

    h= 10%

    RU Test CTU Test ( = 25)

  • 8/8/2019 Engineering Metallurgy 1

    76/84

    Engineering Metallurgy

    0

    500

    1000

    1500

    2000

    1 6 11 16

    Node No

    contactpressureinM

    Pa

    0

    500

    1000

    1500

    2000

    1 6 11 16 21Node No.

    contactpressureinM

    Pa

    NoNode No.Node No. NoNoNode No.Node No.Node No.Node No.

    RU Test ( )

    Distribution of the contact pressure (=0.05)Distribution of the contact pressure (=0.05)

    1500

    RU Test CTU Test ( = 10)

  • 8/8/2019 Engineering Metallurgy 1

    77/84

    Engineering Metallurgy

    0

    500

    1000

    1500

    0 5 10 15 20 25

    Node No

    contactpressurein

    MPa

    0

    500

    1000

    1500

    0 5 10 15 20 25Node No

    contactpressureinMPa

    h= 50%h= 25% h= 10% h= 50%h= 50%h= 25% h= 25% h= 10% h= 10%

    workpiece

    tool

    Differences in the contact pressureDifferences in the contact pressure

    200

    300

    400

    500

    600

    900

    1200

    MPa

    MPa

    h = 25 %h = 10 %

  • 8/8/2019 Engineering Metallurgy 1

    78/84

    7

    Engineering Metallurgy

    0

    300

    600

    900

    1200

    1500

    0 0.2 0.4

    0

    100

    200

    0 0.2 0.4

    0

    300

    0 0.2 0.4

    RU Test CTU Test

    pin

    pin

    pinMPa h = 50 %

    OUTLINEOUTLINE

    1. Introduction

  • 8/8/2019 Engineering Metallurgy 1

    79/84

    7

    Engineering Metallurgy

    2. Finite element modelling

    Conical Tube Upsetting (CTU) Test

    Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement

    1. Summary / Future Work

  • 8/8/2019 Engineering Metallurgy 1

    80/84

    Max. difference in the relative displacementMax. difference in the relative displacement

    4

    4.5

    ve

    RU Test CTU Test

  • 8/8/2019 Engineering Metallurgy 1

    81/84

    8

    Engineering Metallurgy

    0

    0.5

    1

    1.5

    22.5

    3

    3.5

    0 0.2 0.4Friction coefficient

    Max.difference

    inrelativ

    displacemen

    tinmm

    sticking zone appears

    OUTLINEOUTLINE

    1. Introduction

  • 8/8/2019 Engineering Metallurgy 1

    82/84

    8

    Engineering Metallurgy

    2. Finite element modelling

    Conical Tube Upsetting (CTU) Test Ring Upsetting (RU) Test

    1. Simulation results

    Comparison of the contact pressure

    Comparison of the relative displacement

    1. Summary / Future Work

    Ring-upsetting (RU) und conical tube-upsetting (CTU)tests have been compared through simulation.

    SummarySummary

    2000

    p kf MParelative displacement

    [mm]

    1000

    relative displacement

    [mm]

    0

  • 8/8/2019 Engineering Metallurgy 1

    84/84

    8

    Engineering Metallurgy

    (h1-h0)/h0

    (D1-

    D0

    )/D

    0