engineering mathematics topic 2

Upload: cyclopsoctopus

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Engineering Mathematics Topic 2

    1/8

    2 - FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

    a) Separation of Variables a!"!a! Separable)

    1st Order DE can be reduced to the form )()( x f y y g = by algebraic manipulations.

    Variables x and y can be separated so that x appears only on RHS and y appears only

    on the HS.

    !o sol"e this e#n$ integrate both sides %.r.t. x &

    += C dx x f dx dx dy

    y g )()(

    E'ample 1&Sol"e * =+ x y y

    Solution&

    +y separating "ariables$ xdx ydy * =

    +y integrating both sides$ therefore the #eneral sol$tion%

    E'ample ,&

    Sol"ey x

    y = $ -)1( =y

    Solution&

    +y separating "ariables$ xdx ydy =

    ntegrate both sides$ the general solution %ill be&

    C x y += ,,

    ,

    1

    ,

    1

    /pply initial condition$ C += ,, 1,1

    -,1

    $ =C

    !herefore parti&$lar sol$tion $ 0,, = x y

    , 2irst Order ODE 3

    C x y += ,, ,,*

  • 8/13/2019 Engineering Mathematics Topic 2

    2/8

  • 8/13/2019 Engineering Mathematics Topic 2

    3/8

    E'ample ,&

    Sol"e ,, )( y xy dx dy

    xy x =+

    Solution&

    !hat is&

    xy x

    y xy dx dy

    += ,

    ,

    et vx y = $

    differentiate implicitly&dx dv

    x v dx dy

    += and substitute vx y = intodx dy

    v v v

    vx x

    x v vx

    xy x

    y xy

    +=

    +=

    +

    1

    ,

    ,,

    ,,,

    ,

    ,

    E#uate dx dy then&

    v v v

    dx dv

    x v +

    =+

    1

    ,

    v v

    v v v v v

    v v v v

    dx dv

    x +

    =

    +

    =

    +

    =

    1,

    11

    ,,,,

    Separate the "ariables

    =+

    dx x dv v v ,1

    ,

    et =

    + dx

    x dv

    v v

    ,1,

    C x v

    v += ln,1ln

    et AC ln= 7

    v A x v

    1lnln,ln +=+

    y x A x

    x y +=

    lnln ,

    y x

    Ae xy =

    &) E a&t E $ation

    , 2irst Order ODE 8

    y x

    A x x y += lnln 2

    xy

  • 8/13/2019 Engineering Mathematics Topic 2

    4/8

    /n e'act e#uation is al%ays in the form of )( x f y dx dy =+ %here is function of x.

    !he coefficient of y is the deri"ati"e of the coefficient ofdx dy

    .

    4hen this is the case HS can be %ritten ( )y dx d .

    E'ample 1&

    Sol"e this e'act e#uation x ey x dx dy

    x ,,- - =+ .

    Solution&

    !he e#uation can be %ritten as ( ) x ey x dx d ,- =

    ntegrating both sides

    +== C edx ey x x

    x

    ,

    ,,-

    --

    ,

    , x C

    x e

    y x

    +=

    E'ample ,&

    Sol"e 1)(sincos = y x dx

    d x

    Solution&

    !he e#uation can be %ritten as 1))((cos =y x dx d

    ntegrating both sides&

    C x y x +=)(cos

    So that x

    C x

    x y

    coscos+=

    ,) Inte#ratin# Fa&tor

    , 2irst Order ODE 0

  • 8/13/2019 Engineering Mathematics Topic 2

    5/8

    Steps of sol"ing 2irst order DE&

    1) 4rite the e#uation in the standard form

    ( ) ( ) x Qy x P dx dy =+

    ,) 2ind the integrating factor$ ( ) x

    ( ) ( )[ ] = x P x e'p dx -) 9ultiply the e#uation in standard form by ( ) x and recalling that the left

    hand side is :ust ( )[ ]y x dx d

    $ obtain

    ( ) ( ) ( ) ( ) ( )

    ( )[ ] ( ) ( ) x Q x y x dx

    d

    x Q x y x x P dx dy

    x

    =

    =+

    ) ntegrate the last e#uation and sol"e for y

    E'ample 1&

    Sol"e 1=+ x y

    dx dy

    Solution&

    ;omparing to standard 1st order linear e#uation&

    x x P 1)( = and 1)( = x Q

    !hen x ee x x dx

    x == = ln1

    )(

    !herefore +== C x xdx xy ,,

    2inally x C x

    y +=,

    E'ample&

    , 2irst Order ODE *

  • 8/13/2019 Engineering Mathematics Topic 2

    6/8

    Sol"e -),(),( = x y dx dy

    x $ 1)( =y

    Solution ,&

    ,),(

    ,

    1 =

    x y x dx

    dy

    ,11),ln(),ln(

    ===

    x eeIF x x

    = dx x x x y ,1

    ),(,

    1 ,

    = dx x x y ),(,1

    C x

    x y +

    =

    ,),(

    ,1 ,

    !herefore ),(,

    ),( - += x C x y is the #eneral sol$tion

    /pply initial condition$ 1)( =y

    ),(,0

    1 C += $ -=C

    !herefore the parti&$lar sol$tion ),(6),( - += x x y

    , 2irst Order ODE 1

  • 8/13/2019 Engineering Mathematics Topic 2

    7/8

    e) .erno$lli/s E $ation

    !he e#uation is in the form nQy Py dx dy

    =+

    %here P and Q are function of x.

    !o sol"e this e#uation$ di"ide both sides by n

    y gi"es&

    QPy dx dy

    y nn =+ 1

    et ny z = 1 $ thendx dy

    y ndx dz n= )1(

    9ultiply e#uation (1) by (1 n) to con"ert the first term intodx dz

    &

    QnPy ndx dy

    y n nn

    )1()1()1( 1

    =+

  • 8/13/2019 Engineering Mathematics Topic 2

    8/8

    x y x dx

    dy y = 1, 1

    so that x z

    x dx

    dz = 1 %hich is of the form QPz dx

    dz =+ that can be sol"ed by

    normal

    integrating factor ( 2).

    x z x dx

    dz = 1

    2 Pdx

    e $ == x dx x Pdx ln1

    x x eeIF x x

    11)ln(ln 1 ====

    = IFdx QIF z $ = dx x x x z 11

    C x dx x z +== 1

    , x Cx z =

    but 1= y z $ ,1 x Cx y =

    !herefore 1, )( = x Cx y .

    , 2irst Order ODE 1,