engineering geology for society and territory volume 2 · each volume is related to a specific...

45
Engineering Geology for Society and Territory Volume 2

Upload: others

Post on 20-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Engineering Geology for Societyand Territory – Volume 2

Page 2: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Giorgio Lollino • Daniele GiordanGiovanni B. Crosta •

Jordi Corominas • Rafig AzzamJanusz Wasowski • Nicola SciarraEditors

Engineering Geologyfor Society and Territory –

Volume 2

Landslide Processes

123

Page 3: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

EditorsGiorgio LollinoDaniele GiordanInstitute for Geo-Hydrological ProtectionNational Research Council (CNR)TurinItaly

Giovanni B. CrostaDepartment of Earth and Environmental ScienceUniversity of Milan BicoccaMilanItaly

Jordi CorominasDepartment of Geotechnical Engineeringand Geosciences

Universitat Politècnica de CatalunyaBarcelonaSpain

Rafig AzzamDepartment of Engineering Geologyand Hydrogeology

RWTH Aachen UniversityAachenGermany

Janusz WasowskiInstitute for Geo-Hydrological ProtectionNational Research Council (CNR)BariItaly

Nicola SciarraUniversity G. D’Annunzi Chieti PescaraChietiItaly

ISBN 978-3-319-09056-6 ISBN 978-3-319-09057-3 (eBook)DOI 10.1007/978-3-319-09057-3Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946956

© Springer International Publishing Switzerland 2015This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafterdeveloped. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysisor material supplied specifically for the purpose of being entered and executed on a computer system, for exclusiveuse by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under theprovisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use mustalways be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearance Center. Violations are liable to prosecution under the respective Copyright Law.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws andregulations and therefore free for general use.While the advice and information in this book are believed to be true and accurate at the date of publication, neitherthe authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that maybe made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Cover illustration: Landslide affecting the hill of Ruinas, Oristano, Italy. On February, 2005, the phenomenoninvaded the road path and caused difficulties to the traffic. During the emergency, to ensure safety of the road traffic,a particular monitoring and early warning system was deployed. Photo: Daniele Giordan.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 4: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Foreword

It is our pleasure to present this volume as part of the book series on the Proceedings of the XIIInternational IAEG Congress, Torino 2014.

For the 50th anniversary, the Congress collected contributions relevant to all themes wherethe IAEG members were involved, both in the research field and in professional activities.

Each volume is related to a specific topic, including:

1. Climate Change and Engineering Geology;2. Landslide Processes;3. River Basins, Reservoir Sedimentation and Water Resources;4. Marine and Coastal Processes;5. Urban Geology, Sustainable Planning and Landscape Exploitation;6. Applied Geology for Major Engineering Projects;7. Education, Professional Ethics and Public Recognition of Engineering Geology;8. Preservation of Cultural Heritage.

The book series aims at constituting a milestone for our association, and a bridge for thedevelopment and challenges of Engineering Geology towards the future.

This ambition stimulated numerous conveners, who committed themselves to collect alarge number of contributions from all parts of the world, and to select the best papers throughtwo review stages. To highlight the work done by the conveners, the table of contents of thevolumes maintains the structure of the sessions of the Congress.

The lectures delivered by prominent scientists, as well as the contributions of authors, haveexplored several questions ranging from scientific to economic aspects, from professionalapplications to ethical issues, which all have a possible impact on society and territory.

v

Page 5: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

This volume testifies the evolution of engineering geology during the last 50 years, andsummarizes the recent results. We hope that you will be able to find stimulating contributions,which will support your research or professional activities.

Carlos DelgadoGiorgio Lollino

vi Foreword

Page 6: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Preface

Landslides and slope stability are one of the leading professional and research fields forengineering geologists. They have been addressed in the IAEG conferences and meetingssince the very beginning of the Association. More than 400 contributions related to landslideprocesses have been submitted to this 12th IAEG congress. They constitute a representativesample of the developments achieved during the last few years and of the challenges ourgeoscientific community is faced with.

Landslide Mechanisms

Landslides and catastrophic rock and soil failures are due to a variety of mechanisms, some ofwhich are still insufficiently known. This may explain why after more than 35 years, the well-known classification of landslide processes proposed by Varnes in 1978 is still being revisitedand updated.

Several sessions in the Congress are devoted to the mechanisms affecting complex geo-logical formations and large slope failures. One of them is focused on the so-called hard soilsand soft rocks. Overconsolidated clays and argillaceous soft rocks cause frequent problems incivil works regarding the stability and degradation on exposed surfaces. These materialsexhibit a quasi-brittle behavior. Fragility is often associated with loss of cementation of thematerial and consequently a drop of the shear strength which favors strain localization phe-nomena and development of progressive failure. The evolution of the movements may includecatastrophic acceleration.

Significant research efforts have also been devoted to gain better understanding of theevolution of large slope deformations and to the prediction of their potential to catastrophicfailures. Some slope deformations are slow and ductile, moving in a continuous or intermittentmanner, others are brittle and after a certain deformation, or as a result of sudden loading (e.g.,during an earthquake), they may accelerate, fail, and attain extremely rapid velocities. Thefailure of large rock masses may involve in-situ rock blocks bounded by a combination ofnonsystematic joints and intact rock bridges. The instability process may lead to loss ofcohesion, fragmentation of the rock mass, and very rapid flow such as rock avalanching(sturzstroms).

Techniques for Landslide Characterization and Monitoring

Different instrumentation systems have been developed to monitor landslide behavior, andthey are used in many locations around the world. They are often employed in conjunctionwith surface mapping and subsurface investigations for a detailed characterization of slopesand landslides. Landslide monitoring has several purposes: it provides information about thegeometry of the failure, the movement pattern as well as data for the calibration of analytical

vii

Page 7: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

and numerical models. The interpretation of the temporal evolution of the different variables isthe basis of early warning systems.

The automation of piezometers, inclinometers, extensometers, and distance meters hasmade possible the monitoring of virtually continuous motion and pore pressure changes. Theinterpretation of the data recorded has allowed the establishment of consistent relationshipsbetween instability triggers and slope deformations. Furthermore, it has highlighted theimportance of elements such as cracks and macropores in the hydrological response oflandslides.

Many landslides show spatially complex movements. Ground-based equipment such asextensometers or inclinometers are situated at specific locations on a landslide. Such moni-toring devices are often costly to install, require access to the site while they yield spatiallydiscontinuous data. The interpretation of the monitoring results requires a proper under-standing of the landslide’s geomorphological context, and of its different units. Remotesensing techniques are being now increasingly used in landslide investigations, because oftheir ability to survey large areas and acquire data with high accuracy and high spatialresolution without the accessibility constraints of other equipment and their performance inadverse weather conditions. Two main remote sensing techniques have been intensively testedin the recent years: the terrestrial and aerial laser scanner (LiDAR) and radar interferometry(InSAR), both satellite or ground-based. The laser scanner has multiple applications in slopestability, particularly in rock slopes. It generates high-resolution point clouds of the topo-graphic surface from which one can derive detailed DEMs with highlighted geomorphologicalfeatures; this can improve the quality of landslide inventories. Detailed DEMs can be used todefine discontinuity surfaces and their attributes (i.e., orientation, persistence, spacing) and thedeformation pattern of the monitored surfaces allowing the characterization of the instabilityprocess. Multitemporal DEMs analysis can also be used to detect morphological and volu-metric changes over time.

Advanced InSAR techniques have become a powerful tool for spatio-temporal monitoringground movements such as subsidence, surface displacements due to landslides or tectonicactivity. An additional advantage of InSAR is the existence of a historical database of satelliteSAR images (since 1992), enabling retrospective studies.

Other satellite-based sensors are currently available providing information with differentspatial, temporal, and spectral resolution. A large number of crucial input data are obtainedregarding soil type, vegetation, or land cover; these can be converted into maps through spatialinterpolation using environmental correlation with landscape attributes (e.g., geostatisticalinterpolation methods such as cokriging) that can be easily integrated into GIS for landslidesusceptibility and hazard analyses.

Landslide Hazard and Risk Assessment

Risk analysis involves the location, characterization of the landslide (classification, size,velocity, mechanism), and assessment of its travel distance and frequency, which is the hazardanalysis; and the consequence analysis that takes into account the presence of the elements atrisk, their temporal spatial probability and vulnerability. Risk analysis includes both hazardand consequences analyses. In risk assessment, the results of both analyses are evaluatedagainst value judgments and risk acceptance criteria.

There have been significant advances in regional and local mapping of landslide hazard.The contributions presented to this congress nicely show the recent achievements as well asthe shifting of the researchers’ interest from landslide susceptibility to landslide hazardassessment and mapping. Furthermore, a parallel evolution has taken place from qualitative toquantitative approaches. The latter have several advantages as they offer more objectivity inthe assessment; eliminate misinterpretations and the use of ambiguous terms; yield

viii Preface

Page 8: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

reproducible and consistent results; provide a direct input to the cost/benefit analyses. Now-adays, there exist well-founded procedures for the quantitative analysis.

The methods for preparing hazard maps have evolved from the heuristic approaches, to thestatistical analyses and data driven methods, and to the deterministic analyses. The capabilityof the latter has expanded from the stability of individual landslides to spatially distributedmodels that calculate likelihood of rupture in combination with the return period of the triggers(rain and/or seismicity). The main drawback of these models is that they often oversimplify thegeological and geomechanical variables and that should be based on high quality collecteddata.

The reliability of the hazard maps has improved thanks to high-resolution DEM obtainedwith remote sensing techniques and the development of data capture techniques. Severalresearchers have shown that higher resolution DEM on one hand improves significantly theresults of slope stability and susceptibility models and on the other hand reduces the errorsassociated to trajectographic analysis or landslide runout simulations.

The spatial distribution of the hazard may be challenging for long runout landslides forwhich the probability of failure at the source area may differ significantly from the probabilityof the landslide reaching a specific area. In this case, calculation of hazard must take intoaccount that: (a) different landslide types may occur with different time frames; (b) a targetarea may be potentially affected by landslides originating from different source areas; (c) thefrequency observed at any target location or section may change with the distance to thelandslide source. The practical application of the landslide hazard assessment thereforerequires a multiple approach which should take into account the different failure mechanisms,each with different characteristics and causal factors, size, and spatio-temporal probability.

Landslide Prevention and Management

Risk management identifies the measures that may be taken to avoid damages to the society, ifrequired. Different strategies can be considered and they may be synthesized as: risk accep-tance, hazard avoidance, hazard reduction, and risk mitigation. Each strategy implementsspecific measures aiming at either modifying the slope conditions to reduce instability orrestrict its development and damaging capability (active measures), or at avoiding the harmfuleffects of the landslide without interfering with its occurrence (passive measures).

Landslide mitigation measures may include structural measures when they involve any kindof engineering construction or intensive earth work. Stabilization and protection methods areoften expensive and may cause irreversible impacts on the mountain ecosystem. However,structural measures cannot always guarantee full protection; and they require careful engi-neering design, and appropriate maintenance. Among all the options, the avoidance of land-slide-threatened areas is the best alternative, and land use planning is a fundamental tool inpromoting less expensive and sustainable development. However, the landslide preventionmeasures, and specifically the implementation of alert systems, have to be considered whenthe population or infrastructures are directly threatened.

The risk from landslide activity ought to be reducible by implementing early warningsystems (EWS). An EWS does not modify the hazard, but does contribute to a reduction in thelandslides consequences, in particular the loss of lives and thus the risk. It requires appropriatemonitoring, definition of threshold values, short-term prediction of behavior, and then takingaction to minimize risk when hazardous events are expected. The scientific and engineeringcommunity is knowledgeable about what causes landslides and what reactivates them, how-ever predicting short-term evolution of a slope or a change in landslide activity is still sub-jected to uncertainties and errors. Without accurate predictions of short-term behavior (basedon appropriate monitoring), made without false alarms and with sufficient advance warning to

Preface ix

Page 9: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

enable the community at risk to take appropriate action, warning systems cannot be reliedupon.

EWS are installed with the aim of making accurate predictions of the behavior of land-slides. While some systems operate with triggering thresholds such as the recorded rainfall,others are based on the analysis of the deformation trend and for their interpretation adequateknowledge of material rheology is required. The capturing and interpretation of small-scaleprefailure displacements is a fundamental task for landslide prevention. Researchers haveshown that different types of landslide may display different patterns of acceleration beforefailure, and thus that monitoring very small-scale precursory movements offers the prospect offorecasting a slope failure.

Finally, monitored data may be integrated within predictive tools which can involve anempirical and semi-empirical interpretation of deformation field phenomena. This is doneusing quantitative geological and geomorphological criteria or through the development andimplementation of more general and powerful computational models.

x Preface

Page 10: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Contents

Part I Keynote

1 Using the Working Classification of Landslides to Assess the Dangerfrom a Natural Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3David Cruden and Heng-Xing Lan

2 Understanding the Mechanism of Large-Scale Landslides . . . . . . . . . . . . . 13Runqiu Huang

3 Natural River Damming: Climate-Driven or Seismically InducedPhenomena: Basics for Landslide and Seismic Hazard Assessment . . . . . . 33Alexander Strom

4 Key Issues in Rock Fall Modeling, Hazard and Risk Assessment forRockfall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Giovanni B. Crosta, Federico Agliardi, Paolo Frattini, and Serena Lari

5 Observing, Modelling and Checking Slope Behaviour: Is There aBetter Way to Fully Exploit the Expertise of Geologists andEngineers at the Same Time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Luciano Picarelli

6 Landslide Risk Assessment at Cultural Heritage Sites . . . . . . . . . . . . . . . . 79Kyoji Sassa

7 Depletion of the Cretacic Carbonate Aquifer in the Salento Peninsula(Southeastern Italy): The Case of the Chidro Spring. . . . . . . . . . . . . . . . 105Vincenzo Cotecchia, Massimiliano Scuro, and Giuseppe Mezzina

Part II Advanced Landslide Field Instrumentation and Monitoring

8 Monitoring of the Shallow Landslide Using UAV Photogrammetryand Geodetic Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Lukáš Marek, Jakub Miřijovský, and Pavel Tuček

9 Performance of an Acoustic Emission Monitoring System to DetectSubsurface Ground Movement at Flat Cliffs, North Yorkshire, UK . . . . . 117N. Dixon, R. Moore, M. Spriggs, A. Smith, P. Meldrum, and R. Siddle

xi

Page 11: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

10 Application of Modular Underground Monitoring System (MUMS)to Landslides Monitoring: Evaluation and New Insights . . . . . . . . . . . . . 121A. Segalini, L. Chiapponi, and B. Pastarini

11 Reliability of Field Measurements of Displacements in Two Cases ofViaduct-Extremely Slow Landslide Interactions . . . . . . . . . . . . . . . . . . . 125Lucia Simeoni, Edgar Ferro, and Sara Tombolato

12 Monitoring of an Ancient Landslide Phenomenon by GBSARTechnique in the Maierato Town (Calabria, Italy) . . . . . . . . . . . . . . . . . 129Giovanni Nico, Luigi Borrelli, Andrea Di Pasquale, Loredana Antronico,and Giovanni Gullà

13 Bank Slope Monitoring with Integrated Fiber Optical SensingTechnology in Three Gorges Reservoir Area . . . . . . . . . . . . . . . . . . . . . 135Dan Zhang, Bin Shi, Yijie Sun, Hengjin Tong, and Guangya Wang

14 Proposition of a Landslide Monitoring System in Czech Carpathians . . . 139Miloš Marjanović, Jan Caha, and Jakub Miřijovský

15 The Analysis of Landslide Dynamics Based on Automated GNSSMonitoring—A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Biljana Abolmasov, Svetozar Milenković, Branko Jelisavac, Marko Pejić,and Zoran Radić

16 Preliminary Analysis and Monitoring of the Rock Slope on the M-22Highroad Near Ljig in Serbia, Using LiDAR Data . . . . . . . . . . . . . . . . . 147Miloš Marjanović, Uroš Ðurić, Biljana Abolmasov,and Snežana Bogdanović

17 Vein of Groundwater Flow Behavior in a Land-Slide by ContinuousMonitoring of Ground Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Gen Furuya, Akira Suemine, Gonghui Wang, Yūsuke Takano,and Yūki Ichikawa

18 Multi-parameter Monitoring of a Slow Moving Landslide: RipleySlide, British Columbia, Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155Peter Bobrowsky, Wendy Sladen, David Huntley, Zhang Qing, Chris Bunce,Tom Edwards, Michael Hendry, Derek Martin, and Eddie Choi

19 Reliability and Precision of a Network for Monitoring Very SlowMovements with a Total Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Donatella Dominici, Vincenzo Massimi, and Lucia Simeoni

Part III Approaches to Landslide Risk Modelling and Mitigation

20 Role of Neotectonic Activity in Triggering Landslide in DehradunValley, Garhwal Himalaya, India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167B.C. Joshi and S.C. Bhatt

xii Contents

Page 12: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

21 Assessing the Quality of Landslide Hazard Prediction Patterns byCross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Andrea G. Fabbri, Angelo Cavallin, and Chang-Jo Chung

22 Landslide Susceptibility Zoning Using GIS Tools: An Application inthe Germanasca Valley (NW Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Glenda Taddia, Loretta Gnavi, Marco Piras, Maria Gabriella Forno,Andrea Lingua, and Stefano Lo Russo

23 Reduction of Rockfall Risk of the Teleferik Area of Santorini, Greece . . . 183Lekkas Efthimis, Alexoudi Vasiliki, and Lialiaris Ioannis

24 Structure and Characteristics of Landslide Input Data andConsequences on Landslide Susceptibility Assessmentand Prediction Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Sérgio C. Oliveira, José Luís Zêzere, and Ricardo A.C. Garcia

25 Standardization for Flexible Debris Retention Barriers . . . . . . . . . . . . . . 193Axel Volkwein, Reto Baumann, Christian Rickli, and Corinna Wendeler

26 Sensitivity Analysis for Shallow Landsliding SusceptibilityAssessment in Northern Tuscany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Massimo Perna, Alfonso Crisci, Valerio Capecchi, Giorgio Bartolini,Giulio Betti, Francesco Piani, Bernardo Gozzini, Barbara Barsanti,Tommaso Bigio, Filippo Bonciani, Leonardo Disperati,Andrea Rindinella, and Francesco Manetti

27 Evaluating the Effect of Modelling Methods and LandslideInventories Used for Statistical Susceptibility Modelling . . . . . . . . . . . . . 201Stefan Steger, Rainer Bell, Helene Petschko, and Thomas Glade

28 Application of a Geomorphologic-Heuristic Model to Estimatethe Landslides Reactivation Likelihood in the Emilia-RomagnaRegion (Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Mauro Generali and Marco Pizziolo

Part IV Characterization, Monitoring and Modelling of Large SlopeInstabilities and their Interaction with Engineering Structures

29 Gravity-Induced Fracturing in Large Rockslides: Possible Evidencefrom Vajont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213Paolo Paronuzzi and Alberto Bolla

30 Monitoring and Stability Analysis of a Coal Mine Waste Heap Slopein Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Young-Suk Song, Yong-Chan Cho, and Kyeong-Su Kim

31 A Detailed Study of the Cedar City Landslide, Utah, U.S.A . . . . . . . . . . 221Ashley Tizzano and Abdul Shakoor

Contents xiii

Page 13: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

32 New Interpretation of Lemeglio Coastal Landslide (Liguria, Italy)Based on Field Survey and Integrated Monitoring Activities . . . . . . . . . . 227F. Faccini, L. Crispini, L. Federico, A. Robbiano, and A. Roccati

33 Analysis of Seasonal Slope Acceleration at the Beauregard Dam Site(Italy) Using CrEAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233Daniela Anna Engl, Giovanni Barla, Maria Elena Martinotti,and D. Scott Kieffer

34 Interactions Between Tunnels and Unstable Slopes:Role of Excavation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Lionel Causse, Roger Cojean, and Jean-Alain Fleurisson

35 Hazard Assessment of Unstable and Potential Unstable Rock Slopesin Storfjord (Western Norway) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Thierry Oppikofer, Martina Böhme, Aline Saintot, Reginald Hermanns,and Oddvar Longva

36 Characterizing Slope Stability of Colluvial Soils in Ohio UsingLiDAR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Matthew Waugh and Abdul Shakoor

37 Interaction of Extremely Slow Landslides with Transport Structuresin the Alpine Glacial Isarco Valley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255L. Simeoni, F. Ronchetti, A. Corsini, and L. Mongiovì

38 Analysis of the Landslide Mechanic Based on theGroundwater-Induced Landslide Flume Experiments . . . . . . . . . . . . . . . 261Chen Suchin, Wu Chunhung, and Chen Kuanhan

39 Evaluation of the Possibilities for Construction on Ancient Landslide . . . 267Frangov Georgi and Miroslav Кrastanov

40 Characterization, Geometry, Temporal Evolution and ControllingMechanisms of the Jettan Rock-Slide, Northern Norway . . . . . . . . . . . . . 273Lars Harald Blikra, Hanne H. Christiansen, Lene Kristensen,and Mario Lovisolo

41 Landslide Hazard Assessment of Oryahovo Area, Bulgaria . . . . . . . . . . . 279Krastanov Miroslav, Nikolai Dobrev, Plamen Ivanov, and Boyko Berov

42 Tectonic Stress as Possible Co-predisposing Factor for LandslidesAlong the Central Adriatic Coast of Italy . . . . . . . . . . . . . . . . . . . . . . . . 283Angelo Doglioni, Annalisa Galeandro, Alessandro Guerricchio,and Vincenzo Simeone

43 Characterization and Assessment of Large Landslide MovementAlong the Bursa-Inegöl-Bozüyük Highway in Turkey . . . . . . . . . . . . . . . 289Damla Gaye Oral, Haluk Akgün, and Mustafa Kerem Koçkar

xiv Contents

Page 14: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

44 Slope Instability Detection Along the National 7 and thePotrerillos Dam Reservoir, Argentina, Using the Small-BaselineInSAR Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295Clément Michoud, Valérie Baumann, Marc-Henri Derron,Michel Jaboyedoff, and Tom Rune Lauknes

45 Analysis of Slope Stability by Back-Calculation Along the PauteRiver Valley: Application to Construction of the Mazar HydroelectricProject—Ecuador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Borchardt Nicole

46 Understanding the Genesis of Mass Transport Deposits (MTDs) forSafe Mining Planning: Anhovo Quarry, Western Slovenia . . . . . . . . . . . 307Ž. Pogačnik, K. Ogata, G.A. Pini, and G. Tunis

47 Large Induced Displacements and Slides Around an Open Pit LigniteMine, Ptolemais Basin, Northern Greece . . . . . . . . . . . . . . . . . . . . . . . . 311Marinos Vassilis, Tsapanos Theodoros, Pavlidis Spyridon,Tsourlos Panagiotis, Chatzipetros Alexandros, and Voudouris Konstantinos

48 Slope Mechanical Modelling: Contributionof Multi-Geophysical Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317J. Gance, S. Bernardie, G. Grandjean, and J.-P. Malet

49 Velocity Prediction on Time-Variant Landslides Using MovingResponse Functions: Application to La Barmasse Rockslide (Valais,Switzerland) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323Antonio Abellán, Clément Michoud, Michel Jaboyedoff, François Baillifard,Jonathan Demierre, Dario Carrea, and Marc-Henri Derron

50 The Use of Remote Sensing Techniques and Runout Analysis forHazard Assessment of an Unstable Rock Slope at Storhaugen,Manndalen, Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329Freddy X. Yugsi Molina, Halvor S.S. Bunkholt, Lene Kristensen,John Dehls, and Reginald L. Hermanns

51 Comparing Satellite Based and Ground Based Radar Interferometryand Field Observations at the Canillo Landslide (Pyrenees) . . . . . . . . . . 333Jordi Corominas, Rubén Iglesias, Albert Aguasca, Jordi J. Mallorquí,Xavier Fàbregas, Xavier Planas, and Josep A. Gili

52 Methods to Estimate the Surfaces Geometry and Uncertaintyof Landslide Failure Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339Michel Jaboyedoff and Marc-Henri Derron

53 Mechanical Modeling and Geophysical Monitoringfor Landslide Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345Svalova Valentina

54 Investigation, Monitoring and Modelling of a Rapidly EvolvingRockslide: The Mt. de la Saxe Case Study . . . . . . . . . . . . . . . . . . . . . . . 349Giovanni B. Crosta, Paolo Frattini, Riccardo Castellanza,Gabriele Frigerio, Claudio di Prisco, Giorgio Volpi, Mattia De Caro,Paolo Cancelli, Andrea Tamburini, Walter Alberto, and Davide Bertolo

Contents xv

Page 15: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Part V Characterizing and Monitoring Landslide and GroundDeformation Processes Using Remote Sensing and Geophysics

55 Passive Seismic Techniques for the Assessment of Dynamic SlopeStability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Vincenzo Del Gaudio, Sandro Muscillo, and Janusz Wasowski

56 Definition of the Reinoso de Cerrato Active Landslide UsingElectrical Resistivity Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363T. Nieto Sánchez, J.R. Martínez Catalán, M. Yenes, J. Nespereira Jato,and S. Monterrubio Pérez

57 Application of Ambient Vibration Techniques for Monitoringthe Triggering of Rapid Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371D. Jongmans, L. Baillet, E. Larose, P. Bottelin, G. Mainsant, G. Chambon,and M. Jaboyedoff

58 Feasibility Assessment of Landslide Monitoring by Means of SARInterferometry: A Case Study in the Ötztal Alps, Austria . . . . . . . . . . . . 375Simon Plank, Michael Krautblatter, and Kurosch Thuro

59 Remote and Terrestrial Ground Monitoring Techniques Integrationfor Hazard Assessment and Prediction in Densely PopulatedMountain Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379Giulia Chinellato, Christian Iasio, Volkmar Mair, Claudia Strada,David Mosna, Marcia Phillips, Robert Kenner, and Andreas Zischg

60 Quantifying the Volume of Potential Landslides: A Case Study . . . . . . . . 385Beate Kotyrba, Thedda Hänssler, Dirk Orlowsky, Rolf Elsen,and Fathy Bahloul

61 Linking Sub-surface Slidequakes to Superficial Fissure Growthand Displacement Analysis: The Super-Sauze Mudslide FieldCampaign 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391Sabrina Rothmund, Marco Walter, and Manfred Joswig

62 Using Data from Multiple SAR Sensors in LandslideCharacterization: Case Studies from Different GeomorphologicalContexts in Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395Alessandro Novellino, Anna De Agostini, Diego Di Martire,Massimo Ramondini, Mario Floris, and Domenico Calcaterra

63 High Resolution PSI for Mapping Ground Deformationsand Infrastructure Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399Janusz Wasowski, Fabio Bovenga, Alberto Refice, Davide Nitti,and Raffaele Nutricato

64 Evaluation of Pleiades Images for Rainfall-Triggered ShallowLandslides Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405Davide Zizioli, Claudia Meisina, Francesco Zucca, Massimiliano Bordoni,Davide Notti, Fabio Remondino, and Paolo Gamba

xvi Contents

Page 16: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

65 Application of Persistent Scatterers Interferometry Time-SeriesAnalysis (PS-Time) to Enhance the Radar Interpretation ofLandslide Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411Silvia Franceschini, Jean Pascal Iannacone, Matteo Berti,Alessandro Corsini, and Simoni Alessandro

66 Surface Displacement Time Series Retrieved by Fully ExploitingSpace-Borne SAR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417F. Casu, A. Manconi, S. Elefante, and I. Zinno

67 Estimation of Ground Movement Using Multi-temporal Data fromAirborne LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421Tomoyuki Takami and Sakae Mukoyama

68 Automatic Rockfalls Volume Estimation Based on Terrestrial LaserScanning Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425Dario Carrea, Antonio Abellan, Marc-Henri Derron, and Michel Jaboyedoff

69 Using Airborne LiDAR DEM to Determine the Bedrock IncisionRate: An Indirect Dating from Landslide Sliding Surface, Taiwan . . . . . 429Yu-Chung Hsieh, Chih-Yu Kuo, Yi-Zhong Chen, Chin-Shyong Hou,Ruo-Ying Wu, and Rou-Fei Chen

70 Rock Slope Monitoring and Risk Management for RailwayInfrastructure in the White Canyon, British Columbia, Canada . . . . . . . 435Hutchinson D. Jean, Lato Matt, Gauthier Dave, Kromer Ryan,Ondercin Matthew, MacGowan Thomas, and Edwards Tom

71 The Use of Airborne LiDAR Data in Basin-Fan System Monitoring:An Example from Southern Calabria (Italy). . . . . . . . . . . . . . . . . . . . . . 441Loredana Antronico, Paolo Allasia, Marco Baldo, Roberto Greco,Gaetano Robustelli, and Marino Sorriso-Valvo

72 Seismic Landslide Evolution and Debris Flow Development: A CaseStudy in the Hongchun Catchment, Wenchuan Area of China . . . . . . . . 445Chuan Tang, Zhilin Jiang, and Weile Li

73 Deformation Monitoring and Recognition of Surface Mine SlopeUsing LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451Hui Hu, Tomas M. Fernandez-Steeger, Mei Dong, and Rafig Azzam

74 Use of Multiple Digital Terrain Models and Aerial Orthophotos forLandscape Evolution in Tsaoling Landslide Area . . . . . . . . . . . . . . . . . . 455Chih-Yu Kuo, Rou-Fei Chen, Ruo-Ying Wu, and Kuo-Jen Chang

Part VI Debris Flows: Mechanics, Modeling, Mitigation Measures,Hazard and Risk Assessment and Management

75 Numerical Simulation of Initiation of Rainfall-Induced Debris Flow . . . . 463Shuyun Wang, Xiaobing Lu, and Tianli Ye

Contents xvii

Page 17: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

76 Debris-Flow Monitoring at the Rebaixader Torrent, CentralPyrenees, Spain. Results on Initiation, Volumeand Dynamic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469Hürlimann Marcel, Abancó Clàudia, and Moya Jose

77 Multiple Load Case on Flexible Shallow Landslide Barriers: ShallowLandslide and Rockfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473Wendeler Corinna and Glover James

78 The Debris Flow Movement Characteristics and Risk Assessmentin the Lamaxi Gully, Sichuan Province, China . . . . . . . . . . . . . . . . . . . . 479Xiaoning Li, Sixiang Ling, Xiyong Wu, Yong Ren, Ganggang Wang,and Baolong Zhu

79 Are Torrent Check-Dams Potential Debris-Flow Sources?. . . . . . . . . . . . 485Jošt Sodnik, Manica Martinčič, Matjaž Miko, and Andrej Kryžanowski

80 Genesis of Coarse Particles in Channels and Slopes of MountainousCatchments, Quadrilátero Ferrífero, Southeastern Brazil . . . . . . . . . . . . 489L.A.P. Bacellar, L.C.F.L. Lopes, F.O. Costa, and P.T.A. Castro

81 Numerical Simulation of Debris Flow Affected Area Caused byDifferent Precipitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495Meei-Ling Lin, Te-Wei Chen, Yu-Chung Lin, Tien-Chien Chen,Chun-Ya Su, Kuo-Lung Wang, Shiao-Yue Huang, and Mei-Jen Chen

82 Heuristic Method for Landslide Susceptibility Assessmentin the Messina Municipality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501Gabriele Leoni, Danilo Campolo, Luca Falconi, Carmelo Gioè,Silvia Lumaca, Claudio Puglisi, and Antonino Torre

83 A Review of “8.8” Debris Flow in Zhouqu . . . . . . . . . . . . . . . . . . . . . . . 505Yu Guoqiang, Zhang Maosheng, Wang Genlong, and Zeng Qingming

84 Contribution to the Runout Evaluation of Potential Debris Flows inPeloritani Mountains (Messina, Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 509Claudio Puglisi, Luca Falconi, Carmelo Gioè and Gabriele Leoni

85 Shallow Landslides Triggered by the 25 October 2011 ExtremeRainfall in Eastern Liguria (Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515Giacomo D’Amato Avanzi, Yuri Galanti, Roberto Giannecchini,and Carlotta Bartelletti

86 Analysis and Reconstructed Modelling of the Debris Flow Eventof the 21st of July 2012 of St. Lorenzen (Styria, Austria) . . . . . . . . . . . . 521Stefan Janu, Susanne Mehlhorn, and Markus Moser

87 Comparison of Scenarios After Ten Years: The Influence of InputParameters in Val Canale Valley (Friuli Venezia Giulia, Italy) . . . . . . . . 525C. Boccali, C. Calligaris, L. Zini, F. Cucchi, and R. Lapasin

xviii Contents

Page 18: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

88 Field Observations of the Disastrous 11 July 2013 Debris Flowsin Qipan Gully, Wenchuan Area, Southwestern China . . . . . . . . . . . . . . 531Zhu Jing, Tang Chuan, Chang Ming, Le Maohua, and Huang Xun

89 Suitability of Mono- and Two-Phase Modeling of Debris Flows forthe Assessment of Granular Debris Flow Hazards: Insights from aCase Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537Cristiano Lanni, Bruno Mazzorana, Pierpaolo Macconi, and Rudi Bertagnolli

90 Massive Debris Flow Event on Pacific Northwest Volcanoes, USA,November 2006: Causes, Effects and Relationship to Climate Change . . . 545S.F. Burns, R. Pirot, K. Williams, and S. Sobieschezk

Part VII Deep-Seated Gravitational Slope Deformations: InnovativeMultidimensional Approaches and Targeted Applications

91 Development History of Landslide-Related Sagging Geomorphologyin Orogenic Belts: Examples in Central Japan . . . . . . . . . . . . . . . . . . . . 553Satoru Kojima, Heitaro Kaneda, Hidehisa Nagata, Ryota Niwa,Naoya Iwamoto, Koichiro Kayamoto, and Tomoyuki Ohtani

92 Deep-Seated Gravitational Slope Deformation in Greywacke Rocksof the Tararua Range, North Island, New Zealand . . . . . . . . . . . . . . . . . 559M.C. McLean, M.-A. Brideau, and P.C. Augustinus

93 Geomorphological Analyses, Geomatic Surveys and NumericalModelling for the Characterization of the Chervaz Deep-SeatedGravitational Slope Deformation, Chambave (AO) . . . . . . . . . . . . . . . . . 565Bacenetti Marco, Spreafico Margherita Cecilia, Elettri Fabrizio,Giardino Marco, Perotti Luigi, Borgatti Lisa, Ghirotti Monica, and Ratto Sara

94 Characterisation and Kinematics of Deep-Seated Rockslides inFoliated Metamorphic Rock Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571Christian Zangerl, Michael Holzmann, Sebastian Perzlmaier, Daniela Engl,Thomas Strauhal, Christoph Prager, Reinhold Steinacher, and Stefan Molterer

95 Catastrophic Landslides and Their Precursory Deep-SeatedGravitational Slope Deformation Induced by the RiverRejuvenation in the Kii Mountains, Central Japan . . . . . . . . . . . . . . . . . 577Masahiro Chigira, Narumi Hiraishi, Tsou Ching-Ying, and Yuki Matsushi

96 CrEAM Modelling of Groundwater-Triggered LandslideAcceleration at the Utiku Landslide (New Zealand) . . . . . . . . . . . . . . . . 583Daniela Anna Engl, Chris Massey, and Mauri McSaveney

97 Recognition and Genetic Mechanism of Sanmashan Deep-SeatedLandslide, Three Gorges Reservoir Area, China . . . . . . . . . . . . . . . . . . . 587Minggao Tang, Qiang Xu, Xuebin Huang, Kaixiang Xu, Wenming Cheng,and Kai Wang

Contents xix

Page 19: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

98 Deep Seated Gravitational Slope Deformations and Large LandslidesInterfering with Fluvial Dynamics; Examples from CentralApennines (Italy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593Marco Materazzi, Domenico Aringoli, Gilberto Pambianchi,Bernardino Gentili, and Marco Giacopetti

99 Inventory of Rock Slope Deformations Affecting Folded SedimentaryLayers in Moderate Relief Context: The Case of the LivingstoneRange Anticlinorium, AB, Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599F. Humair, J.-L. Epard, M.-H. Derron, M. Jaboyedoff, D. Pana, C. Froese,and A. Pedrazzini

100 Inherited and Active Tectonic Controls on the Piz Dora DSGSD (ValMüstair, Switzerland) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605Marta Barbarano, Federico Agliardi, Giovanni B. Crosta, and Andrea Zanchi

101 Recent Advances in Satellite Radar Data Processing and TheirSupport to the Characterization of DSGSDs in the Alps . . . . . . . . . . . . . 609Tamburini Andrea, Del Conte Sara, Novali Fabrizio, Frattini Paolo,and Giovanni B. Crosta

102 Rockslide Monitoring Through Multi-temporal LiDAR DEM andTLS Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613Giovanni B. Crosta, Giorgio Lollino, Frattini Paolo, Daniele Giordan,Tamburini Andrea, Rivolta Carlo, and Bertolo Davide

Part VIII Early Warning Systems for Landslide Hazard and Risk Management

103 Objective Definition of Rainfall Intensity-Duration Thresholds forPost-fire Flash Floods and Debris Flows in the Area Burned by theWaldo Canyon Fire, Colorado, USA . . . . . . . . . . . . . . . . . . . . . . . . . . . 621M. Staley Dennis, E. Gartner Joseph, and W. Kean Jason

104 Landslide Early Warning System and Web Tools for Real-TimeScenarios and for Distribution of Warning Messages in Norway . . . . . . . 625Devoli Graziella, Kleivane Ingeborg, Sund Monica, Orthe Nils-Kristian,Ekker Ragnar, Johnsen Erik, and Colleuille Hervé

105 Case Histories of Slope Failure and Landslide Disaster Prevention byUsing a Low Cost Tilt Sensor Monitoring System . . . . . . . . . . . . . . . . . . 631Wang Lin, Nishie Shunsaku, Seko Ichiro, Uchimura Taro, Towhata Ikuo,and Qiao Jianping

106 Rain and Earthquake-Induced Landslides in West Java, Indonesia,Case Study in Subang Area Near the Baribis Fault, with Implicationsfor an Early Warning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637Zufialdi Zakaria, Febri Hirnawan, and Sri Widayati

107 Monitoring and Risk Management of the Rockfall in Spitz (Austria) . . . . 641Joachim Schweigl

xx Contents

Page 20: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

108 Prediction of the Rainfall-Induced Landslides: Applicationsof FLAME in the French Alps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647Bernardie Séverine, Desramaut Nicolas, Malet Jean-Philippe,Azib Matouk, and Grandjean Gilles

109 The Community-Based Alert and Alarm System for Rainfall InducedLandslides in Rio de Janeiro, Brazil. . . . . . . . . . . . . . . . . . . . . . . . . . . . 653Michele Calvello, Ricardo N. D’Orsi, Luca Piciullo, Nelson M. Paes,Marcelo A. Magalhaes, Rodrigo Coelho, and Willy A. Lacerda

110 Implementation of a Probabilistic Model of Landslide Occurrence ona Civil Protection Alert System at Regional Scale . . . . . . . . . . . . . . . . . . 659Matteo Berti, Mario Loyd Virgilio Martina, Silvia Franceschini,Sara Pignone, Alessandro Simoni, and Marco Pizziolo

111 Traditional Landslides Measurement Practiced in Saiha SinkingArea, Southern Mizoram, North-East India . . . . . . . . . . . . . . . . . . . . . . 663Lal Dinpuia, T.N. Singh, and Shiva Kumar

Part IX Earthquake-Induced Landslides

112 Facies Succession of Rock Avalanches Triggered by WenchuanEarthquake, Sichuan, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671Yu-feng Wang, Qian-gong Cheng, and Qi Zhu

113 Probabilistic Seismic Hazard Assessment of Seismically InducedLandslide for Bakacak-Dϋzce Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 681Onur Balal and Zeynep Gülerce

114 Preliminary Study on Contribution of Predominant FrequencyComponents of Strong Motion for Earthquake-Induced Landslide . . . . . 685Yoshiya Hata, Gonghui Wang, and Toshitaka Kamai

115 Numerical Simulation for an Earthquake-Induced CatastrophicLandslide Considering Strain-Softening Characteristicsof Sensitive Clays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691Akihiko Wakai, Fei Cai, Keizo Ugai, and Tsutomu Soda

116 The Analysis of Dynamics Characteristics of Large-Scale WenjiagouLandslide-Sturzstrom Triggered by Wenchuan Earthquake . . . . . . . . . . 697He-Qing Huang, Qi-Hua Zhao, and Xiang-Long Li

117 Impact of Ground Effects for an Appropriate Mitigation Strategyin Seismic Area: The Example of Guatemala 1976 Earthquake . . . . . . . . 703Sabina Porfido, Eliana Esposito, Efisio Spiga, Marco Sacchi,Flavia Molisso, and Salvatore Mazzola

118 Historical Co-seismic Landslides Inventory and AnalysisUsing Google Earth: A Case Study of 1920 M8.5 HaiyuanEarthquake, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709Weile Li, Runqiu Huang, Xiangjun Pei, and Xiaochao Zhang

Contents xxi

Page 21: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

119 Earthquake-Induced Landslides: An Overview . . . . . . . . . . . . . . . . . . . . 713Hideaki Marui and Chunxiang Wanfg

120 Hazard Mapping of Earthquake-Induced Deep-Seated CatastrophicLandslides Along the Median Tectonic Line in Shikoku by UsingLiDAR DEM and Airborne Resistivity Data . . . . . . . . . . . . . . . . . . . . . . 717Shuichi Hasegawa, Atsuko Nonomura, Jun’ichi Uchida,Katsushi Kawato, Ryota Kageura, Tatsuro Chiba, and Satoshi Onoda

121 Prediction of Susceptible Areas of Future Earthquake Induced byLandslides in Padang Pariaman District, West Sumatera, Indonesia . . . . 721Zahrul Umar, Anuar Ahmad, and Wan Aziz Wan Akib

122 Mapping Earthquake-Induced Landslide Susceptibilityin Central Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727G. Fanelli, D. Salciarini, C. Tamagnini, F. Ponziani, M. Stelluti,and N. Berni

123 The Effect of Vibration Generated by 2D-Seismic Survey Operationon Natural Slope Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731Sophian Irvan, Febri Hirnawan, Zufialdi Zakaria, and Febriwan Mohamad

124 Validating the Classification of Earthquake-Induced LandslideHazard Levels Based on Data Provided by Large Scale Mapping ofFailures Induced by 2003 Lefkada, Greece Earthquake . . . . . . . . . . . . . 737Papathanassiou George, Valkaniotis Sotiris, and Dimaras Kostas

125 A Procedure for Comprehensive Analysis of Slope Failure Duringand Post Mainshock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743Jianliang Deng, Xu Qiang, Chen Longzhu, Ye Wenya, and Koseki Junichi

126 Comparisons and Numerical Simulations of Two Debris-Flow EventsInduced by the 2011 Northern Nagano Prefecture Earthquake and bythe 2008 Iwate-Miyagi Nairiku Earthquake . . . . . . . . . . . . . . . . . . . . . . 747Chunxiang Wang, Hideaki Marui, and Naoki Watanabe

127 A New Movement Mechanism of Earthquake-Induced Landslides byConsidering the Trampoline Effect of Vertical Seismic Loading. . . . . . . . 753Yingbin Zhang, Hao Xing, Guangqi Chen, and Lu Zheng

128 Regional Patterns of Landslides from the 2011 Tohoku, JapanEarthquake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759Wartman Joseph, Dunham Lisa, Tiwari Binod, and Pradel Daniel

129 Earthquake Triggered Landslides: The Case Study of a RoadwayNetwork in Molise Region (Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765Giovanni Forte, Silvia Fabbrocino, Filippo Santucci de Magistris,Francesco Silvestri, and Giovanni Fabbrocino

130 Dynamic Centrifuge Modelling Tests for Toppling Rock Slopes. . . . . . . . 769Xianglong Li, Huiming Tang, Chengren Xiong, Joseph Wartman,and Yueping Yin

xxii Contents

Page 22: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

131 Rock Bridge Failure Caused by the Aysèn 2007 Earthquake(Patagonia, Chile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775Franziska Glueer and Simon Loew

Part X Failure Mechanisms of Large Rock Slopes

132 A Kinematic Analysis of an Ancient Rockslide at Lake Fundudzi,South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783S.G. Chiliza and E.D.C. Hingston

133 A Systematic Approach for the Quantification of Rock Slope Stability. . . 787A. Ghani Rafek and Goh Thian Lai

134 Stability Assessment, Potential Collapses and Future Evolution of theWest Face of the Drus (3,754 m a.s.l., Mont Blanc Massif) . . . . . . . . . . . 791Battista Matasci, Michel Jaboyedoff, Ludovic Ravanel, and Philip Deline

135 Pit Wall Failure Analysis on the West Wall of Batu Hijau Open PitMine, PT. Newmont Nusa Tenggara, Indonesia . . . . . . . . . . . . . . . . . . . 797Thomas A.A. Kristiono, Dio Y. Pratama, Sri K. Pujiastuti,and Irvan Sophian

136 Determination of Parameter Properties for Failure Analysis Based onAtterberg Test in East Wall Area, Batu Hijau Open Pit, Sumbawa,Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801Dyah Manis Novihapsari, Sri Kustanti Pujiastuti, Dio Yudha Pratama,Dicky Muslim, and Irvan Sophian

137 Landslide Process of Baotaping Slope with Horizontal Layer in theReservoir Area of the Three Gorges Project, Yangtze River, China . . . . . 805Q.L. Deng, X.P. Wang, S.Y. Deng, and D.Y. Li

138 A Methodology for a Risk Analysis on Mid-Magnitude Rockfalls, ifOnly a Very Limited State of Data Is Available, Shown on theExample of the Area Berchtesgaden. . . . . . . . . . . . . . . . . . . . . . . . . . . . 809T. Zumbrunnen, K. Thuro, and M. Krautblatter

139 Failure Mechanisms of the Mount Catiello Rock Avalanche in theSorrento-Amalfi Peninsula (Southern Italy) . . . . . . . . . . . . . . . . . . . . . . 813Sebastiano Perriello Zampelli, Pantaleone De Vita, Dario Imbriaco,and Domenico Calcaterra

140 Failure and Mobilization Analysis of Mid-Magnitude Rockfalls on aSteep Limestone Slope in the Bavarian Alps . . . . . . . . . . . . . . . . . . . . . . 817Bettina Sellmeier, Michael Krautblatter, and Kurosch Thuro

141 Characterization of the Invisible: Determine Reliable Parameters fora Sliding Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821Florian Rauh, Peter Neumann, and Markus Bauer

142 Rock Slope Stability Assessment of Limestone Quarry; An Examplefrom Istanbul Cebeci Region, Turkey. . . . . . . . . . . . . . . . . . . . . . . . . . . 827Murat Yılmaz, Atiye Tugrul, Selman Er, Altay Ertin,Nuray Tokgöz, and Ersin Arel

Contents xxiii

Page 23: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

143 Formation and Re-activation of Ancient Translational Rock“Megaslides” in the Echo Cliffs, Grand Canyon Area, Arizona . . . . . . . . 833William V. McCormick, Jeff Richmond, and Keith Dahlen

144 Coupled Hydro-Mechanical Analysis for Rainfall-Induced Failure ofFractured Rock Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839Xiaoli Liu, Peng Lin, Enzhi Wang, and Sijing Wang

Part XI Geotechnical Design and Assessment of New and Existing RiverEmbankments

145 Existing Embankment Structures Vulnerability: A Rapid AssessmentMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847Fedele Cuculo, Alberto di Ludovico, Annunziata di Niro, Maria Pina Izzo,Maria Eugenia Mobbili, Raffaele Moffa, Nicola Scapillati,and Antonio Trivisonno

146 An Innovative Method to Evaluate Degree of Compaction of RiverEmbankments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853Barbara Cosanti, Diego C.F. Lo Presti, and Nunziante Squeglia

147 Construction and Performance of Geo-engineering Structures forCombating Gully Erosion in South-Eastern Nigeria . . . . . . . . . . . . . . . . 857Godwin Ezekwesili Ene and Celestine Obialo Okogbue

148 A Monitoring System to Study Seepage Through River Embankments . . . 865Barbara Cosanti and Diego C.F. Lo Presti

149 Use of Plastic Diaphragms to Improve the Resistance of RiverEmbankments Against Hydraulic Failures . . . . . . . . . . . . . . . . . . . . . . . 871Diego C.F. Lo Presti, Barbara Cosanti, Tommaso Fontana, and Paolo Guidi

150 Seismic Stability Analyses of the Po River Banks . . . . . . . . . . . . . . . . . . 877Cinzia Merli, Andrea Colombo, Claudio Riani, Alessandro Rosso,Luca Martelli, Silvia Rosselli, Paolo Severi, Giulia Biavati, Silvio De Andrea,Dario Fossati, Guido Gottardi, Laura Tonni, Michela Marchi,María Fernanda García Martínez, Vincenzo Fioravante, Daniela Giretti,Claudia Madiai, Giovanni Vannucchi, Elisa Gargini, Floriana Pergalani,and Massimo Compagnoni

Part XII Giant Landslides - Major Hazard from Rare Events

151 Possible Causes of Accelerating Landslide Motionin Confined Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883Alexander Strom

152 The Unsolved Problems of Large Landslide Complexes in Soft Rocks . . . 887Max Barton

xxiv Contents

Page 24: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

153 Preliminary EngineeringGeological Characterization of the ca. 20 km³Dangkhar Landslide in the Spiti Valley, Himachal Pradesh, India. . . . . . . 891Markus Kaspar and D. Scott Kieffer

154 The Gigantic Komansu Rock Avalanche Deposit in the Glaciated AlaiValley, Northern Pamir of Central Asia . . . . . . . . . . . . . . . . . . . . . . . . . 895Reznichenko Natalya and Davies Tim

155 New Pieces to the Flims-Tamins Rockslide Puzzle . . . . . . . . . . . . . . . . . . 899N. Calhoun, A.V. Poschinger, J.J. Clague, M. Giardino, D. Masera,and L. Perotti

156 Giant Landslides in Low-Gradient Landscapes: A Global Perspective . . . 905Tomáš Pánek

157 Massive Rock Slope Failures and Episodic Landform DevelopmentGenerate Complex Geohazards in the Northwest Himalayan Syntaxis . . . 909Kenneth Hewitt

158 Stability and Failure Mechanisms of Large Land-Slides in theVolcanic Island Flanks of the Canary Islands . . . . . . . . . . . . . . . . . . . . . 915Ferrer Mercedes, González-de-Vallejo Luis, González Sergio,and Jiménez Eugenio

159 The Cerro Caquilluco–Cerrillos Negros Giant Rock Avalanches(Tacna, Peru) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921Giovanni B. Crosta, Frattini Paolo, Valbuzzi Elena,and Reginald L. Hermanns

Part XIII Hazard Mapping

160 Modelling Landslide Susceptibility for a Large Geographical AreaUsing Weights of Evidence in Lower Austria, Austria. . . . . . . . . . . . . . . 927Jason N. Goetz, Raymond Cabrera, Alexander Brenning, Gerhard Heiss,and Philip Leopold

161 Hazard and Risk Related to Earthquake-Triggered Landslides . . . . . . . . 931Hans-Balder Havenith, Xuanmei Fan, and Almaz Torgoev

162 Classification as the Basic Tool of Landslide Study—ClassificationProcess Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935G.R. Khositashvili

163 Landslide Susceptibility Maps in the Rock Slopes of the VentoteneIsland (Latium, Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941Ivano Caso, Raffaele D’Angelo, Biagio Palma, Mario Parise,and Anna Ruocco

164 Development of Landslide Susceptibility Map of Croatia. . . . . . . . . . . . . 947Laszlo Podolszki, Davor Pollak, Vlatko Gulam, and Željko Miklin

Contents xxv

Page 25: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

165 Using of Analytic Hierarchy Process for Landslide Hazard Zonationin Zanjan Province, Iran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951Mehdi Boroumandi, Mashalah Khamehchiyan,and Mohammad Reza Nikoudel

166 Shallow Landslide Process and Hazard Mapping Using a SoilStrength Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957Yasuhito Sasaki

167 Evaluation of Slope Stability of Small Valleys Based on the SoilStrength Probe: An Example in Southern Gifu Prefecture,Central Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961Hideki Tsujioka, Michio Takami, Hitoshi Ito, Yasuhito Sasaki,Hiroshi Hosoda, Masahiro Nomizo, Shoji Ueno, and Shin Ando

168 Landslides Inventory in the Messina Municipality Area: Integrationof Historical and Field Survey Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967Simona Malerba, Elisa Brustia, Danilo Campolo, Valerio Comerci,Luca Falconi, Carmelo Gioè, Mauro Lucarini, Silvia Lumaca,Claudio Puglisi, and Antonino Torre

169 Nationwide Landslide Hazard Analysis and Mapping in Taiwan . . . . . . . 971Chyi-Tyi Lee and Li-Yuan Fei

170 A Novel Approach to Integrate Effects of Vegetation Changes onSlope Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975Rosalie Vandromme, Nicolas Desramaut, Christophe Garnier,and Séverine Bernardie

171 Broad Gauge Rail Link Between Sivok in West Bengal and Rangpoin the State of Sikkim with Future Connectivity toGangtok (Sikkim)—Shallow-Landslide Susceptibility Map . . . . . . . . . . . 979Davide Murgese, Davide Marchisio, Pasqualino Notaro, and Rossella Vigna

172 GIS-Based Landslide Susceptibility Mapping in the Great LakesRegion of Africa, Case Study of Bujumbura Burundi . . . . . . . . . . . . . . . 985Léonidas Nibigira, Salah Draidia, and Hans-Balder Havenith

173 Towards the Evaluation of Landslide Hazard in the MountainousArea of Evritania, Central Greece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989Vassilis Marinos, George Papathanassiou, Evlampia Vougiouka,and Eustratios Karantanellis

174 Landslide Susceptibility Mapping with Data Mining Methods—aCase Study from Maily-Say, Kyrgyzstan . . . . . . . . . . . . . . . . . . . . . . . . 995Anika Braun, Tomas Fernandez-Steeger, Hans-Balder Havenith,and Almaz Torgoev

175 Cycloids: Construction of a Dynamic Pattern for CartographicRepresentation of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999P.F. Sciuto

xxvi Contents

Page 26: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Part XIV Interpretation of Landslide Mechanisms for Risk Mitigation

176 Contrasting Anthropogenically Influenced Landslides in TwoDifferent Terrain Conditions in the Southwestern Partof Peninsular India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005K.S. Sajinkumar and V.R. Rani

177 Geotechnical Characterisation and Stability Assessment of TwoPitwall Slopes at a Large Aggregate Quarry, Durban, South Africa . . . . 1011Andrew J. Greet, Brendon R. Jones, and Egerton D.C. Hingston

178 Study on Formation Mechanism of Rockfall in Kaiyang PhosphateMining Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015Zhao Hua, Zheng Da, and Huang Gang

179 Landslide Phenomena in Greece: Types of Movement Related to theLithology and Structure of the Geological Formations . . . . . . . . . . . . . . 1023George Koukis, Lambros Pyrgiotis, and Athanasia Kouki

180 Diagnosis of Slow Landslides Affecting Tectonised Clayey Slopes(Southern Apennines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029Federica Cotecchia, Francesca Santaloia, Giuseppe Pedone, Claudia Vitone,Piernicola Lollino, and Giuseppina Mitaritonna

181 Engineering Geological and Hydrogeological Characterizationof Acero Landslide (Upper Sturla Valley, Northern Apennine) . . . . . . . . 1033F. Faccini, R. Lazzeri, and A. Robbiano

182 Geomorphological Analysis of Large Scale Slope Instability,Trotternish, Isle of Skye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037Clark Fenton, Peter Martin, Fergus Cheng, and Brian Murphy

183 Physically Based Rainfall Thresholds for Shallow LandslideInitiation at Regional Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041Diana Salciarini and Claudio Tamagnini

184 The Instability of Colluvial Mantle in Turbidite Flysch Series of theCilento Region (Campania–Southern Italy): the November 26, 2010,Ostigliano Translational Slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045Pantaleone De Vita, Vincenzo Allocca, Enrico Di Clemente,Francesco Fusco, Ferdinando Manna, Gianfranco Mastrogiovanni,and Elisabetta Napolitano

185 Relationships between Landslides Phenomena and Road Network:An Example from the Hilly Region of Asti Province(North-Western Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049Luca Di Martino, Luciano Masciocco, Giuseppe Ricca, and Maurizio Toja

186 The “Tektonik” Landslide at Mailuu Suu, Kyrgyz Republic . . . . . . . . . . 1055Höfer-Öllinger Giorgio, Keuschnig Markus, Pohl Wolfhart,and Radoncic Nedim

Contents xxvii

Page 27: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

187 Landslides in Tertiary Basalts at Murrurundi, Australia. . . . . . . . . . . . . 1061Stephen Fityus, Greg Hancock, and John Gibson

188 Landslide Activity and Integrated Monitoring Network: The GreciSlope (Lago, Calabria, Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065Stefano Calcaterra, Piera Gambino, Luigi Borrelli, Francesco Muto,and Giovanni Gullà

189 Hydro-mechanical Analysis of an Unsaturated Pyroclastic SlopeBased on Monitoring Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069Marianna Pirone, Raffaele Papa, Marco Valerio Nicotera,and Gianfranco Urciuoli

190 Basic Features of the Landslides’ Viscous Flow . . . . . . . . . . . . . . . . . . . 1075Farshed Karimov

191 The Geomorphologic Survey as Tool to Support Risk ManagementAfter Landslide Reactivation: The Case Study of Sauna di CorniglioLandslide (Northern Apennines, Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . 1079Alessandro Chelli, Andrea Ruffini, Stefano Castagnetti, and Claudio Tellini

192 Geotechnical Characterization and Slope Stability of a RelictLandslide in Bimsoils (Blocks in Matrix Soils) in DowtownGenoa, Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083Diego Minuto and Luca Morandi

193 Landslide Investigation and Monitoring at Ciloto,West Java, Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089Sumaryono, C. Sulaiman, Y. Dasa Triana, R. Robiana, and Wawan Irawan

Part XV Landslide Dam: Formation and Stability

194 Weathering Geochemical Behavior and Slope Failure Characteristicsof Black Strata in Guizhou and Guangxi Province, Southwest China. . . . 1099Xiyong Wu, Sixiang Ling, Xin Liao, Jiwei Li, Siyuan Zhao,and Jinhang Zhang

195 Longevity of Landslide Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105Po-Jung Lai, Chih-Fan Chiu, Shu-Kun Hsu, and Jia-Jyun Dong

196 Shear Strength and Collapsibility of Gypsifierous Soils . . . . . . . . . . . . . . 1109Ali N. Ibrahim and Tom Schanz

197 Study on the Stability of Unsaturated Soil Slope Based on the FiniteElement Strength Reduction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117Wen-can Wang, Jun Feng, Xi-yong Wu, Qi-xiang Yang, and Bao-long Zhu

198 The Landslide Dam of Ventia Creek (Umbria, Central Italy) . . . . . . . . . 1125Corrado Cencetti, Pierluigi De Rosa, and Andrea Fredduzzi

xxviii Contents

Page 28: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

199 Landslide Hazard: Risk Zonation and Impact Wave Analysis for theBumbuma Dam—Sierra Leone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129Battaglia Daniele, Strozzi Tazio, and Bezzi Alberto

200 Study on Reactivation and Deformation Process of XierGuaziAncient-Landslide in Heishui Reservoir of Southwestern China . . . . . . . . 1135Jian Guo, Mo Xu, and Yong Zhao

201 The Classification of Damming Landslides and Landslide DamsInduced by the Wenchuan Earthquake . . . . . . . . . . . . . . . . . . . . . . . . . 1143Xuanmei Fan, Cees J. van Westen, Chenxiao Tang, Qiang Xu,Runqiu Huang, and Gonghui Wang

202 Large-Scale Shaking Table Tests of Landslide Dams . . . . . . . . . . . . . . . 1149Zhen-Ming Shi, You-Quan Wang, Sheng-Gong Guan, Jian-Feng Chen,and Ming Peng

203 Seepage Stability and Dam-Breaking Mode of Tangjiashan BarrierDam Induced by the Wenchuan Earthquake . . . . . . . . . . . . . . . . . . . . . 1155X.W. Hu, G. Luo, J.L. Lv, Y.Y. Hu, J.X. Liang, and L. Fang

204 The Internal Structure and Stability of Some Large Landslide DamsInduced by the 2008 Wenchuan (Mw7.9) Earthquake, China. . . . . . . . . . 1163Gonghui Wang, Runqiu Huang, and Toshitaka Kamai

205 Detecting Premonitory Phenomena of Landslide DamFailure by Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171Fawu Wang, Yohei Kuwada, Austin C. Okeke, Yasuhiro Mitani,Hufeng Yang, Fikri Faris, Hisao Hayashi, and Shinya Baba

206 A Large-Scale Test on Overtopping Failure of Two Artificial Dams inTaiwan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177Su-Chin Chen, Zheng-Yi Feng, Chiang Wang, and Tzu-Yang Hsu

Part XVI Landslide Forecast Using New Techniques and EarlyWarning Systems

207 Monitoring of Rainfall Induced Landslides in Relation to WeatherConditions at Selected Locations in Polish Carpathians. . . . . . . . . . . . . . 1185Zbigniew Bednarczyk

208 ArcGIS V.10 Landslide Susceptibility Data Mining Add-in ToolIntegrating Data Mining and GIS Techniques to Model LandslideSusceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191Darshika Palamakumbure, David Stirling, Phil Flentje,and Robin Chowdhury

209 Linking Vegetation Patterns and Landslide Occurrence:An Empirical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195M. Teresa Carone, Eleonora Gioia, Maurizio Ferretti,and Fausto Marincioni

Contents xxix

Page 29: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

210 A Geographical Information System (GIS) Based ProbabilisticCertainty Factor Approach in Assessing Landslide Susceptibility:The Case Study of Kimi, Euboea, Greece . . . . . . . . . . . . . . . . . . . . . . . . 1199Ioanna Ilia, Ioannis Koumantakis, Dimitrios Rozos, Georgios Koukis,and Paraskevas Tsangaratos

211 Comparative Study of the Methods for Assessing LandslideSusceptibility in Ialomiţa Subcarpathians, Romania . . . . . . . . . . . . . . . . 1205Zenaida Chitu, Alexandru Istrate, Mary-Jeanne Adler, Ionut Sandric,Bogdan Olariu, and Bogdan Mihai

212 Effect of Shearing Rate on Residual Strength of Landslide Soils . . . . . . . 1211Deepak R. Bhat and R. Yatabe

Part XVII Landslide Numerical Modeling

213 Influence of Rock Masses Properties on the Slope Stabilities: A StudyBased on Slope Failures During the 2008 Wenchuan Earthquake . . . . . . 1219Xiaoli Chen, Bengang Zhou, Hongliu Ran, Wei Min, and Qing Zhou

214 Back-Analysis of a Failed Rock Wedge Using a 3D Numerical Model . . . 1225Paolo Paronuzzi, Elia Rigo, and Alberto Bolla

215 Footing on the Crest of Slope: Slope Stability or Bearing Capacity? . . . . 1231Lysandros Pantelidis and D.V. Griffiths

216 Influence of Spatial Variability on Rock Slope Reliability Using 1-DRandom Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235Lysandros Pantelidis, Elias Gravanis, and D.V. Griffiths

217 A Finite Element Analysis of the Brindisi di Montagna ScaloEarthflow (Basilicata, Southern-Italy). . . . . . . . . . . . . . . . . . . . . . . . . . . 1239Vincenzo De Luca, Bentivenga Mario, Giuseppe Palladino,Salvatore Grimaldi, and Giacomo Prosser

218 Geomechanical Modelling of 1999 Cervinara Debris AvalanchePropagation (Southern Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245Sabatino Cuomo, Manuel Pastor, Leonardo Cascini,and Giuseppe Claudio Castorino

219 The Formation and Distribution of Stress Concentration Zonesin Heterogeneous Rock Masses with Slopes . . . . . . . . . . . . . . . . . . . . . . 1251O.V. Zerkal, E.V. Kalinin, and L.L. Panasyan

220 Numerical Modeling of the Climate Effect on the Evolutionof the Landslide of Ain El Hammam (Algeria) . . . . . . . . . . . . . . . . . . . . 1255Lynda Djerbal and Bachir Melbouci

221 Analysis of Deformation and Failure for Embankment Slope Basedon FLAC: A Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261Wang Genlong, Xu Youning, Yu Guoqiang, and Wu Faquan

xxx Contents

Page 30: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

222 Back Analysis of Johnsons Landing 2012 Landslide Using TwoDynamic Analysis Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267Giacomo Marinelli, Jordan Aaron, Lisa Borgatti, Peter Jordan,and Oldrich Hungr

223 Numerical Modelling to Calibrate the Geotechnical Modelof a Deep-Seated Landslide in Weathered Crystalline Rocks:Acri (Calabria, Italy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271Sarah Carmen Maiorano, Luigi Borrelli, Nicola Moraci,and Giovanni Gullà

224 Plant Root Reinforcement Against Local Failure Mechanismof Natural Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275Younus Ahmed Khan and Habibah Lateh

225 Sensitivity of Soil Cohesion on the Stability of Gougerd Landslide,Northwest of Iran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281Akbar Khodavirdizadeh, Ebrahim Asghari-Kaljahi,and Sepideh Abolhasanzadeh

Part XVIII Landslide Recognition, Early Warnings and Risk Management

226 Remaining Tectonic Faults Hinder Distinguishing a Landslide Bodyand Basement Rock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287Yasuhiko Wakizaka

227 Establishment of Criteria for Traffic Regulations Along the NationalRoad Based on Numerical Simulations During Torrential Rainfall . . . . . 1293Yuto Tsuruzawa, Tomofumi Koyama, Hideki Nakamura, Keita Lee,Naoki Fukuyama, and Masayoshi Yamada

228 Understanding of Landslide Science in the Nepal Himalaya . . . . . . . . . . 1299Ranjan Kumar Dahal

Part XIX Long-term Monitoring of Deep-Seated Gravitational SlopeDeformations for Hazard Assessment and Mitigation

229 Long-Term Monitoring to Support Landslide Inventory Maps: TheCase of the North-Western Coast of the Island of Malta . . . . . . . . . . . . . 1307Stefano Devoto, Matteo Mantovani, Alessandro Pasuto,Daniela Piacentini, and Mauro Soldati

230 Geomorphological Characterization, Monitoring and Modeling of theMonte Rotolon Complex Landslide (Recoaro Terme, Italy) . . . . . . . . . . . 1311Francesco Fidolini, Veronica Pazzi, William Frodella, Stefano Morelli,and Riccardo Fanti

231 Monitoring of the Evolution of a Deep-Seated Landslide in LushanArea, Taiwan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317Kuo-Lung Wang, Meei-Ling Lin, Jun-Tin Lin, Ssu-Chung Huang,Ray-Tang Liao, and Chao-Wei Chen

Contents xxxi

Page 31: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

232 GPS Monitoring of the Scopello (Sicily, Italy) DGSD Phenomenon:Relationships Between Surficial and Deep-Seated Morphodynamics . . . . . 1321Valerio Agnesi, Edoardo Rotigliano, Umberto Tammaro, Chiara Cappadonia,Christian Conoscenti, Francesco Obrizzo, Cipriano Di Maggio,Dario Luzio, and Folco Pingue

233 Ganderberg Landslide Characterization Through Monitoring . . . . . . . . . 1327Giulia Bossi, Simone Frigerio, Matteo Mantovani, Gianluca Marcato,Luca Schenato, and Alessandro Pasuto

234 Real-Time Monitoring of Deep-Seated Gravitational SlopeDeformation in the Taiwan Mountain Belt . . . . . . . . . . . . . . . . . . . . . . . 1333Rou-Fei Chen, Ya-Ju Hsu, Shui-Beih Yu, Kuo-Jen Chang, Ruo-Ying Wu,Yu-Chung Hsieh, and Ching-Wee Lin

235 Long-Term Continuous Monitoring of a Deep-Seated CompoundRock Slide in the Northern Apennines (Italy) . . . . . . . . . . . . . . . . . . . . . 1337Alessandro Corsini, Francesco Bonacini, Marco Mulas, Marcello Petitta,Francesco Ronchetti, and Giovanni Truffelli

Part XX Mathematical-Numerical Modelling Approaches for SlopeStability Analyses

236 Use Accelerogram of Real Earthquakes in the Evaluation of theStress-Strain State of Landslide Slopes in Seismically Active Regionsof Ukraine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343O. Trofymchuk, I. Kaliukh, K. Silchenko, V. Polevetskiy, V. Berchun,and T. Kalyukh

237 Reconstruction of the Geotechnical Model Considering RandomParameters Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347Calista Monia, Pasculli Antonio and Sciarra Nicola

238 Complex Dynamics of Landslides with Time Delay Under ExternalSeismic Triggering Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353Srđan Kostić, Nebojša Vasović, Dragutin Jevremović, Duško Sunarić,Igor Franović, and Kristina Todorović

239 Artificial Neural Networks and Kriging Method for SlopeGeomechanical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357Romina Secci, M. Laura Foddis, Alessandro Mazzella, Augusto Montisci,and Gabriele Uras

240 Comparative Study of System Reliability Analysis Methods for SoilSlope Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363Xiao Liu, D.V. Griffiths, and Hui-ming Tang

241 Simplification of the Stratigraphic Profile in Geotechnical Models ofLandslides: An Analysis Through a Stochastic Approach . . . . . . . . . . . . 1367G. Bossi, L. Borgatti, G. Marcato, and G. Gottardi

xxxii Contents

Page 32: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

242 Slope Stability Integrate Analyses: The Study Case of Mount Falcone(Central Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1371Domenico Aringoli, Marco Materazzi, Bernardino Gentili,Gilberto Pambianchi, and Nicola Sciarra

Part XXI Mechanisms of Initiation of Rapid Landslides

243 Landslide-Quake: A New Mechanism of Initiation of Large RapidLandslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379Xiaoyan Zhao, Houtian Hu, and Ziying Xiong

244 Qiao Ergou Landslide Formation Mechanism and Characteristics . . . . . . 1383Yongzhi Wang, Wei Qi, Yangyang Zhou, Jiao Jin, Yudong Liu,and Fasuo Zhao

245 Influence of Geological, Morphological and Climatic Factors in theInitiation of Shallow Landslides in North Western Italy . . . . . . . . . . . . . 1389Michela Rosa Palladino, Laura Turconi, Fabio Luino,Maria Teresa Brunetti, Silvia Peruccacci, and Fausto Guzzetti

246 Recent Extreme Rainfall-Induced Landslides and GovernmentCountermeasures in Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393Su-Gon Lee and Stephen R. Hencher

247 Morphological and Climatic Aspects of the Initiation of the SanMango Sul Calore Debris Avalanche in Southern Italy . . . . . . . . . . . . . . 1397Luigi Guerriero, Paola Revellino, Nazzareno Diodato, Gerardo Grelle,Aldo De Vito, and Francesco Maria Guadagno

Part XXII Monitoring and Early Warning

248 Radar Evaluation Movements Structures and Field . . . . . . . . . . . . . . . . 1403J.-P. Duranthon, F. Lemaître, and M.-A. Chanut

249 Temperature Monitoring in Piping-Prone Hydraulic Structures . . . . . . . 1409S. Bersan and A.R. Koelewijn

250 Geophysical and Geodetical Monitoring of Slope Movements at theThree Gorges Dam Area of the Yangtze River in China . . . . . . . . . . . . . 1415Simon Kremers, Karsten Zimmermann, and Alexander Fleer

251 Wireless Sensor Networks and Sensor Fusion for Early Warning inEngineering Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421Tomás M. Fernandez-Steeger, Hui Hu, Cheng Li, and Rafig Azzam

252 Optical Fiber Technology to Monitor Slope Movement . . . . . . . . . . . . . . 1425Arslan Arzu, Kelam Mehmet Abdullah, Eker Arif Mert, Akgün Haluk,and Koçkar Mustafa Kerem

Contents xxxiii

Page 33: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Part XXIII Monitoring and Modeling of Landslide Processes

253 Real-Time Monitoring and Data Analysis of an Active Landslide inthe Three Gorges Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433Haifeng Huang, Wu Yi, Qinglin Yi, and Shuqiang Lu

254 GIS-Based Deterministic Analysis of Deep-Seated Slope Stability in aComplex Geological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437Martin Mergili, Ivan Marchesini, Massimiliano Alvioli, Mauro Rossi,Michele Santangelo, Mauro Cardinali, Francesca Ardizzone,Federica Fiorucci, Barbara Schneider-Muntau, Wolfgang Fellin,and Fausto Guzzetti

255 Slope Stability Analyses of the Proposed Reconstituted Slope of theQuarry Heights Drive Landslide, Durban, South Africa . . . . . . . . . . . . . 1441P. Naidoo, E.D.C. Hingston, and K. Ribbink

256 Landslide Modeling Basing on Probability Theoryof Renewal Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1447A.S. Victorov, T.V. Orlov, and O.N. Trapeznikova

257 Empirical Verification of Stochastic Theory for Landslide HazardForecasting (Seattle Case Study) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1451T.V. Orlov and A.S. Victorov

258 Map Numerical Modelling of Landslides Using Data from DifferentMonitoring Systems: The Example of Rosone (Western Alps) . . . . . . . . . 1455Davide Notti, Claudia Meisina, Francesco Zucca, Giuseppe Balduzzi,and Alessio Colombo

259 Modelling of Landslide Seismicity Using the Smooth Particle Method . . . 1461Andreas S. Eisermann and Manfred Joswig

260 About the Landslide Hazard Criteria for the Transportation Safetyof the 2014 Sochi Olympics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469Postoev German, Kazeev Andrey, and Fedotova Ksenia

Part XXIV Numerical and Analytical Methods for Prediction ofLandslide Deformation Evolution

261 Mechanical Behavior of Cores of Earth Dams Built with Marls:Analysis of the Influence of Organic and Inorganic Carbonates. . . . . . . . 1475F. Lamas and R. Bravo

262 Monitoring of the Shear and Compression Deformation in a SandyModel Slope Under Artificial Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . 1481Katsuo Sasahara, Naoki Sakai, and Kazuya Itoh

263 Numerical Simulations for the Possible Future Geohazard Events inthe Rječina Valley, Croatia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1485Chunxiang Wang, Hideaki Marui, Naoki Watanabe, and Gen Furuya

xxxiv Contents

Page 34: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

264 The Influence of Shear Heating on the Developmentof Creeping Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1491Sujeevan Vinayagamoorthy and Antonis Zervos

265 Natural Slope Stabilization with Self-Compacting Concrete:Numerical Simulation with the Finite-Element Method . . . . . . . . . . . . . . 1495J.L. Piqueras Sala, J.A. Ramos Martín, R. Mingorance Mingorance,and F. Lamas Fernández

266 Evaluation on Effect of Landslide Control Based on Hierarchy-FuzzyComprehensive Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501Yong Zhang, Sheng-wei Shi, Jun Song, and Ying-jian Cheng

267 Slope Stability Evaluation of Stiff Fissured Clays and Shales forDifferent Failure Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507Chrysanthos Steiakakis, Zacharias Agioutantis, and Evangelia Apostolou

268 The Ivancich Active Landslide Process (Assisi, Central Italy)Analysed via Numerical Modeling Jointly Optimized by DInSARand Inclinometric Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513R. Castaldo, P. Tizzani, P. Lollino, F. Calò, F. Ardizzone, M. Manunta,F. Guzzetti, and R. Lanari

269 3D Stability Analysis of the Portalet Landslide Using Finite ElementMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519Guadalupe Bru, Jose Antonio Fernández-Merodo,Juan Carlos García-Davalillo, Gerardo Herrera, and Jose Fernández

Part XXV Passive Seismic Methods for Unstable Masses Monitoring

270 Microseismicity and Acoustic Emission for Landslide Monitoring(North-East Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527Giuliana Zoppè, Giovanni Costa, Neil Dixon, Matthew Peter Spriggs,and Gianluca Marcato

271 Analysis of Pre-collapse Failure Signals from a Destructive Rockfallby Nanoseismic Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531Marco Walter, Ulrich Schwaderer, and Manfred Joswig

272 Seismic Monitoring of a Rockslide: The Torgiovannetto Quarry(Central Apennines, Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1537A. Lotti, G. Saccorotti, A. Fiaschi, L. Matassoni,G. Gigli, V. Pazzi, and N. Casagli

273 SeiSlide: A Matlab® Processing Framework for the SeismologicalMonitoring of Unstable Geological Masses . . . . . . . . . . . . . . . . . . . . . . . 1541Saccorotti Gilberto, Fiaschi Andrea, Matassoni Luca, and Lotti Alessia

Contents xxxv

Page 35: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

Part XXVI Prediction Methods for Rainfall Triggered Landslides

274 Preliminary Remarks About Rainfall Thresholds for TriggeringDebris Flows on the Messina Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1547Luca Falconi, Carmelo Gioè, Simona Malerba, and Claudio Puglisi

275 Rainfall Threshold and Landslides in the Post-orogenic Complexof the Esino River Basin, Central Italy. . . . . . . . . . . . . . . . . . . . . . . . . . 1553Eleonora Gioia, Gabriella Speranza, Federica Appiotti, Maurizio Ferretti,and Fausto Marincioni

276 Hysteresis Effect on the Deep-Seated Landslide by Rainfall: The Caseof the Kualiangzi Landslide, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557Qiang Xu, Wenhui Li, Hanxiang Liu, Ran Tang, Sijiao Chen, and Xu Sun

277 Monitoring and Modelling of Soil–Atmosphere Interaction on a SlopeAffected by Shallow Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563Roberto Valentino, Massimiliano Bordoni, Claudia Meisina,Davide Zizioli, Marco Bittelli, and Silvia Chersich

278 Long-Term Hydrological Modelling of Pyroclastic Soil MantledSlopes for Assessing Rainfall Thresholds Triggering Debris Flows:The Case of the Sarno Mountains (Campania—Southern Italy). . . . . . . . 1567Elisabetta Napolitano, Pantaleone De Vita, Francesco Fusco,Vincenzo Allocca, and Ferdinando Manna

279 A Prelimilary Study of the Rainfall Threshold and Early WarningSystem for Landslide in Taiwan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571Lun-Wei Wei, Ching-Fang Lee, Chuen-Ming Huang, Wei-Kai Huang,Hsi-Hung Lin, and Chung-Chi Chi

280 Catalogue of Rainfall Events with Shallow Landslides and NewRainfall Thresholds in Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575Maria Teresa Brunetti, Silvia Peruccacci, Loredana Antronico,Devis Bartolini, Andrea Maria Deganutti, Stefano Luigi Gariano,Giulio Iovine, Silvia Luciani, Fabio Luino, Massimo Melillo,Michela Rosa Palladino, Mario Parise, Mauro Rossi, Laura Turconi,Carmela Vennari, Giovanna Vessia, Alessia Viero, and Fausto Guzzetti

281 Rainfall Intensity-Duration Thresholds for Triggering ShallowLandslides in the Eastern Ligurian Riviera (Italy) . . . . . . . . . . . . . . . . . 1581Roberto Giannecchini, Yuri Galanti, and Michele Barsanti

282 Establishing Landslide Susceptibility Along a Coastal RangeHighway in Eastern Taiwan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585Ching-Fang Lee, Wei-Kai Huang, Lun-Wei Wei, Ting-Chi Tsao,Yu-Lin Chang, and Shu-Yeong Chi

283 Prediction Analysis of Rainfall Induced Landslide in a SamniteProne Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1593Grelle Gerardo, Revellino Paola, Guerriero Luigi, Soriano Marcella,Diodato Nazzareno, and Guadagno Francesco Maria

xxxvi Contents

Page 36: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

284 Landslides Triggered in the Continental Part of Croatia by ExtremePrecipitation in 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599Sanja Bernat, Snježana Mihalić Arbanas, and Martin Krkač

285 Modeling the Shallow Landslides Occurred in Tizzano Val Parma inApril 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605Lorella Montrasio, Andrea Terrone, and Martina Chiara Morandi

286 Spatial Pattern of Hydrological Predictabilityof Landslide-Prone Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1611Diodato Nazzareno, Guerriero Luigi, Revellino Paola, Grelle Gerardo,and Guadagno Francesco Maria

287 Landslide Susceptibility Assessment on Slopes in Flysch Deposits:A Deterministic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1615Sanja Dugonjić Jovančević, Martina Vivoda, and Željko Arbanas

Part XXVII Rapid Landslide Propagation: Physical and Numerical Modeling

288 Effects of Flow Volume and Grain Size on Mobility of GranularFlows of Angular Rock Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1621Bruno Cagnoli and Giovanni Paolo Romano

289 On the Use of Numerical Models for Flow-like Landslide Simulation. . . . 1625Marina Pirulli, Claudio Scavia, and Mauro Tararbra

290 Evaluation of the Trent2D Model Capabilities to Reproduce andForecast Debris-Flow Deposition Patterns Through a Back Analysisof a Real Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629Giorgio Rosatti, Nadia Zorzi, Lorenzo Begnudelli, and Aronne Armanini

291 Inverse Analysis for Rheology Calibration in SPH Analysisof Landslide Run-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635Sabatino Cuomo, Michele Calvello, and Valentina Villari

292 Sliding of Rapid Granular Masses: Analytical Modelingand Empirical Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641Francesco Federico and Chiara Cesali

293 Study on the Mechanical Behaviour of Flexible Barriers by in situTesting and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1651Roberto Brighenti, Anna Maria Ferrero, Andrea Segalini, and Gessica Umili

294 Discrete Element Modeling of a Rockfall in the South of the “MassifCentral”, France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657Stiven Cuervo, Dominique Daudon, Vincent Richefeu, Pascal Villard,and Julien Lorentz

295 Numerical Simulation of Shallow Grain-Fluid Flowsin a Rotating Drum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663Alessandro Bosco, Roland Kaitna, Marina Pirulli, Oldrich Hungr,Manuel Pastor, and Claudio Scavia

Contents xxxvii

Page 37: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

296 Comparison of Debris Flow Depositional Scenarios UsingDifferent DTMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1667Chiara Deangeli, Davide Tiranti, Federica Marco, and Marco Volpato

297 Modeling Debris-Flow Runout Pattern on a Forested Alpine Fan withDifferent Dynamic Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . 1673Schraml Klaus, Thomschitz Barbara, McArdell Brian, Graf Christoph,Hungr Oldrich, and Kaitna Roland

298 Propagation and Erosion of a Fast Moving Granular Mass. . . . . . . . . . . 1677Giovanni B. Crosta, Mattia De Caro, Giorgio Volpi, Fabio De Blasio,Silvia Imposimato, and Dennis Roddeman

299 Applicability of Two Propagation Models to Simulate the RotolonEarth-Flow Occurred in November 2010 . . . . . . . . . . . . . . . . . . . . . . . . 1683Simonetta Cola, Giulia Bossi, Stefano Munari, Lorenzo Brezzi,and Gianluca Marcato

Part XXVIII Rapid Mass Movement of Rock

300 Peculiarities of Large Landslides’ Morphology and InternalStructure: Constraints of Their Motion Modelling . . . . . . . . . . . . . . . . . 1691Alexander Strom

301 The Normal Stress on the Slip Surface: A Dominating Factor on theRun-Out Distance of the Sliding Rock Mass . . . . . . . . . . . . . . . . . . . . . . 1695Che-Ming Yang, You-Ren Chen, Jia-Jyun Dong, Huai-Houh Hsu,and Win-Bin Cheng

302 Assessment of the Stability of a Rock Slope by Using DifferentMethodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1701Pedro Preto, Isabel Fernandes, and Maria dos Anjos Ribeiro

303 Complex Interactions of Rock Avalanche Emplacement with FluvialSediments: Field Structures at the Tschirgant Deposit, Austria . . . . . . . . 1707Anja Dufresne, Christoph Prager, and John J. Clague

304 Stochasticity of Rockfall Tracjectory Revealed by a Field ExperimentRepeated on a Single Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1713Hengxing Lan, Langping Li, and Yuming Wu

305 In Situ Test on Dynamic Response of Single Surface Slope . . . . . . . . . . . 1723Shengwen Qi, C. Derek Martin, Shenglin Qi, and Yu Zou

306 Rockfall-Simulation with Irregular Rock Blocks . . . . . . . . . . . . . . . . . . . 1729James Glover, Perry Bartelt, Marc Christen, and Werner Gerber

307 Orthogonal Test Analysis on the Sensitivity of Stability InfluenceFactors of Dao Guapai Perilous Rock in Jiangyou . . . . . . . . . . . . . . . . . 1735Pei-dong Su and Wan-lin Chen

xxxviii Contents

Page 38: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

308 Fragmenting Granular Flow: A Personal Account of the Concept . . . . . . 1741Mauri J. McSaveney

309 Rock Falls in Horizontal Strata Due to Differential Weathering . . . . . . . 1745Tian-ming Su, Yan-ge Zhang, Tie-zhu Zhang, and Yi-lin Liu

310 Quick Assessment on Impact Stress Over Buried PipelinesDue to Rockfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1753Wenkai Feng and Runqiu Huang

Part XXIX Risk Analysis, Assessment and Management

311 Landslide Risk Assessment with Uncertainty of Hazard ClassMembership. An Application of Favourability Modeling in the DebaValley Area, Northern Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1759Andrea G. Fabbri, Juan Remondo, and Chang-Jo Chung

312 A Simple Method to Include Uncertainties in Cost-Benefit Analyses . . . . 1763Pierrick Nicolet, Michel Jaboyedoff, and Sébastien Lévy

313 Challenges of Geologic Catastrophes in Georgia and Ways of TheirReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1767Tsereteli Emil, Gobejishvili Ramin, Gaprindashvili George,and Gaprindashvili Merab

314 Glossary of Terms on Landslide Hazard and Risk . . . . . . . . . . . . . . . . . 1775Jordi Corominas, Herbert Einstein, Tim Davis, Alexander Strom,Giulio Zuccaro, Farrokh Nadim, and Thierry Verdel

315 Climate as an Integral Synthesizer in Development-ReactivationProcesses of Landslide and Diagnostic Criterion of Its Evaluation . . . . . . 1781Nana Bolashvili, Emil Tsereteli, Omar Qutsnashvili,George Gaprindashvili, and Otar Kurtsikidze

316 What Does Hazard Mean? Seeking to Provide Further Clarificationto Commonly Used Landslide Terminology . . . . . . . . . . . . . . . . . . . . . . 1789Anthony S. Miner, Darren R. Paul, Steve Parry, and Phil Flentje

317 Population Landslide Vulnerability Evaluation: The Case of theIndigenous Population of Pahuatlán-Puebla, Mexico . . . . . . . . . . . . . . . . 1793Franny Murillo-García, Mauro Rossi, Federica Fiorucci,and Irasema Alcántara-Ayala

318 An Integrated Hydrological-Geotechnical Model in GIS for theAnalysis and Prediction of Large-Scale Landslides Triggered byRainfall Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1799Roberto Passalacqua, Rossella Bovolenta, and Bianca Federici

319 Engineering Geological Mapping as a Part of Landslide Mitigation atSurface Mining Site in Desa Licin, Sumedang, West Java, Indonesia . . . . 1805Luthfan Harisan Jihadi, Fikri Noor Azy, Muhammad Bey Anural,and Zufialdi Zakaria

Contents xxxix

Page 39: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

320 Probability of Landslide Impact on Vehicles on Two-Lane Highways . . . 1809Daniela S. Cardoso, Manuel G. Romana, and Dennis R. Hiltunen

321 Quantitative Rockfall Risk Assessment in the Roadways of Gipuzkoa . . . 1813Jordi Corominas and Olga Mavrouli

322 Risk Analysis of Slopes on Vitória-Minas Railroad . . . . . . . . . . . . . . . . . 1817Stefânia Moreira Alves and Romero César Gomes

323 Case History: Failure of a Clay Slope Involving Time Effects . . . . . . . . . 1823Håkon Heyerdahl, Hans Petter Jostad, Trond Vernang, and Bjørn G. Kalsnes

324 Management of Rock Fall Risk on the Main Roads of Southtirol . . . . . . 1829Claudia Strada, Silvia Tagnin, Matteo Mottironi, Verena Larcher,Giovanni Villa, and Volkmar Mair

325 The Use of DInSAR Data for the Analysis of Building DamageInduced by Slow-Moving Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . 1835Settimio Ferlisi, Dario Peduto, Giovanni Gullà, Gianfranco Nicodemo,Luigi Borrelli, and Gianfranco Fornaro

326 Assessing Vulnerability to Landslides in Italy . . . . . . . . . . . . . . . . . . . . . 1841Caterina De Lucia, Claudia Ceppi, and Dino Borri

327 Determination and Analysis of Desertification Process with SatelliteData Alsat-1 and Landsat in the Algerian Steppe . . . . . . . . . . . . . . . . . . 1847Zegrar Ahmed

Part XXX Rockfall Protection

328 Kinematic Response of an Impacted Rockfall ProtectionEmbankment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1855Stéphane Lambert, François Nicot, and Philippe Gotteland

329 Quantifying the Relevance of Rebound Modelling Approaches UsingField Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1859Franck Bourrier, Oldrich Hungr, and Luuk Dorren

330 Dynamic Behavior of Rock Fall Protection Net Fences:A Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1863Marie-Aurélie Chanut, Laurent Dubois, and François Nicot

331 Structural Design of Rockfall Protection Embankments: Can a StaticApproach Solve a Dynamic Problem? . . . . . . . . . . . . . . . . . . . . . . . . . . 1869Bernd Kister

332 Strategy for the Foundation Design of Rockfall Barriers . . . . . . . . . . . . . 1875Giorgio Giacchetti, Alberto Grimod, and Daniele Peila

333 Rockfall Mitigation Using Simple Drapery System: Design Approach . . . 1881Giorgio Giacchetti and Alberto Grimod

xl Contents

Page 40: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

334 Superficial Consolidation of Rock Slope: Design at the Ultimate andSeriviceability Limit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1885Giorgio Giacchetti and Alberto Grimod

335 Felled Trees as a Rockfall Protection System: Experimental andNumerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1889Ignacio Olmedo, Franck Bourrier, David Bertrand, Frederic Berger,and Ali Limam

336 A Coastal Cliff Stability Study in Peniche (Portugal). . . . . . . . . . . . . . . . 1895Cláudia Santos, Alexandre Santos-Ferreira, and Elisabete Dias

337 Effect of Forest Presence on Rockfall Trajectory. An Examplefrom Greece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1899Haralambos Saroglou, Frederic Berger, Franck Bourrier, Pavlos Asteriou,George Tsiambaos, and Dimitrios Tsagkas

Part XXXI Rockfall Risk Assessment and Management - CurrentPractice and Developments

338 The Extraordinary Rock-Snow Avalanche of Alpl, Tyrol, Austria.Is it Possible to Predict the Runout by Means of Single-phaseVoellmy- or Coulomb-Type Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1907Alexander Preh and Johann Thomas Sausgruber

339 Rockfall Runout Simulation Fine-Tuning in Christchurch,New Zealand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1913Andrea Valagussa, Giovanni B. Crosta, Paolo Frattini, Stefania Zenoni,and Chris Massey

340 Investigating Rock Fall Frequency and Failure Configurations UsingTerrestrial Laser Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1919Julie D’Amato, Antoine Guerin, Didier Hantz, Jean-Pierre Rossetti,and Michel Jaboyedoff

341 Evaluation of a Rockfall Risk Management System for Mountainousand Touristic Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925A.A. Antoniou

342 Rockfall Analysis, Modeling and Mitigation Along Al-Hada DescentRoad, Saudi Arabia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1931Bahaaeldin Sadagah

343 2D- and 3D-Rock Fall Simulations as a Basis for the Designof a Protection Embankment for a Development Area . . . . . . . . . . . . . . 1937Bernd Kister and Olivier Fontana

344 Characteristics of Some Rockfalls Triggered by the 2010/2011Canterbury Earthquake Sequence, New Zealand . . . . . . . . . . . . . . . . . . 1943C.I. Massey, M.J. MacSaveney, and L. Richards

Contents xli

Page 41: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

345 A New Susceptibility Index for Rockfall Risk Assessment on RoadNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1949C. Mignelli, D. Peila, S.M. Ratto, E. Navillod, M. Armand, M. Cauduro,and A. Chabod

346 Regional Mapping of Forest with a Protection FunctionAgainst Rockfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1957D. Toe and F. Berger

347 Improving Rebound Models in 3D Rockfall Simulation CodesUsed for the Design of Protection Embankments . . . . . . . . . . . . . . . . . . 1961D. Toe, S. Lambert, F. Bourrier, and F. Berger

348 Improving the Integration of Coppice Forest Protectionin Rockfall Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1965D. Toe, F. Bourrier, and F. Berger

349 Study on Formation Mechanism and Evolution of Cracking-TopplingRockfall Affected by Underground Mining: A Case Studyof Shangyang River Rockfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1969Da Zheng, Nengpan Ju, Hua Zhao, and Huo Li

350 Integrated Evaluation of Rockfall Triggering Mechanismfor Road Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975Evangelia Apostolou, Zacharias Agioutantis, and Chrysanthos Steiakakis

351 Rockfall Risk Assessment and Management Along the “Viadell’Amore” (Lovers’ Lane) in the Cinque Terre NationalPark (Italy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1979F. Faccini, E. Raso, C. Malgarotto, and G. Antonielli

352 How Can Reliability-Based Approaches Improve the Designof Rockfall Protection Fences? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1985Franck Bourrier, Julien Baroth, and Stéphane Lambert

353 Rockfall Hazard and Risk Assessment: The Promontory of thePre-Hellenic Village Castelmola Case, North-Eastern Sicily (Italy) . . . . . . 1989Giovanna Pappalardo and Simone Mineo

354 The Study on the Determination Method of 3D JointRoughness Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1995Hua Li, Runqiu Huang, Xiangtao Xu, Janguo Xiao, and Xingrong Zhong

355 New Developments in Rock Fall Hazard Assessment and Zoning: AnApplication of the Cadanav Methodology . . . . . . . . . . . . . . . . . . . . . . . . 2001Jacopo M Abbruzzese and Vincent Labiouse

356 Rockfall Trajectory Analysis with Drapery Systems . . . . . . . . . . . . . . . . 2007K. Thoeni, A. Giacomini, C. Lambert, and S.W. Sloan

357 A Framework for Risk Management in Rockfall Protection . . . . . . . . . . 2013Lovorka Libric, Mario Bacic, and Meho Sasa Kovacevic

xlii Contents

Page 42: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

358 Rockfall Susceptibility Assessment at the Municipal Scale(Bovec Municipality, Slovenia) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2017Magda Čarman, Miloš Bavec, Marko Komac, and Matija Krivic

359 Evaluation of Rockfall Restitution Coefficients . . . . . . . . . . . . . . . . . . . . 2023N. Sabatakakis, N. Depountis, and N. Vagenas

360 Rock Fall Analysis on the City of Lubango, SW Angola . . . . . . . . . . . . . 2027Pedro Santarém Andrade, Gracinda Gonçalves, and Mário Quinta-Ferreira

361 Assessing Rockfall Along the Illawarra Escarpment . . . . . . . . . . . . . . . . 2031Phil Flentje, Darshika Palamakumbure, and Jack Thompson

362 3D Rockfall Modeling and Mitigation Design Reliability . . . . . . . . . . . . . 2037Runing Zhang and Alan Rock

363 Rockfalls: Effect of Slope Surface Weathering on the Coefficientsof Restitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2041Sofia Giokari, Pavlos Asteriou, Charalampos Saroglou,and George Tsiambaos

364 The Influence of Shape on the Inherent Rolling Potentialof Loose Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2045Stephen Fityus, Anna Giacomini, and Klaus Thoeni

365 Rock Avalanche Investigation in Tempi Valley, Greece . . . . . . . . . . . . . . 2049Kaspar Graf, Bernd Rathmayr, and Valentin Raemy

366 Geological Investigations of Rockfall Along Neijiang–LiupanshuiRailway in Hengjiang to Daguan Section, Sichuan . . . . . . . . . . . . . . . . . 2053Ying Wang, Tengyuan Zhao, and Zhi-yong Bai

367 Stability Analysis of Cut Slopes in Ohio, USA:A Quantitative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2057Yonathan Admassu and Abdul Shakoor

368 Rockfall Risk Analysis Along Transportation Facilities . . . . . . . . . . . . . . 2061Paolo Frattini, Giovanni B. Crosta, Andrea Valagussa, Andrea Tamburini,and Walter Alberto

Part XXXII Slope Stabilization and Protection Measures: Concepts and Methods

369 Landslide at Sunuapa 401, Chiapas, México (HidrocarbonExploration Well); Risk Reduction by Stabilization Construction . . . . . . 2067O. Cuanalo, G. Polanco, and J. Rivera

370 Modeling of Engineered Slopes for the Effective Design of ProtectionStructures: Example in the City of Sochi (Russia). . . . . . . . . . . . . . . . . . 2071Matsiy Sergey, Leyer Darya, Bezuglova Ekaterina, and Riabukhin Aleksandr

371 Numerical Analysis of Slopes Reinforced with a Row of Short Piles . . . . 2077Lirer Stefania, Ramondini Massimo, and Toraldo Caterina

Contents xliii

Page 43: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

372 Floating Anchors in Landslide Stabilization: The Cortiana Case inNorth-Eastern Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2083Bisson Alberto, Cola Simonetta, Tessari Giulia, and Floris Mario

373 A Cliff Failure in Ericeira (Centre of Portugal) Fishing HarbourSouth Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089Alexandre Santos-Ferreira, Ana Paula F. da Silva, Cláudia Santos,Elisabete Dias, Mónica Cabral, Liliana Ribeiro, and Cláudia Rocha

374 Investigation of the Freeway No. 3 Landslide in Taiwan . . . . . . . . . . . . . 2093Lien-Kuang Chen, Su-Chin Chen, and Ming-Chun Ke

375 Assessment of Slope Stability Problems in an Open Pit Quarry; anExample from Istanbul Cebeci Region, Turkey. . . . . . . . . . . . . . . . . . . . 2097Selman Er, Murat Yılmaz, Atiye Tugrul, Altay Ertin, Nuray Tokgöz,and Ersin Arel

376 Slope Stabilization Design in Environmentally Sensitive Areas . . . . . . . . 2101Dimitris Tsagkas and Haralambos Saroglou

Part XXXIII Water in Slope Instability: Hydrological, Mechanical andChemical Processes

377 Study on the Water-Rock Interaction Behavior of Xigeda Strata inLamaxi Gully, Sichuan Province, China . . . . . . . . . . . . . . . . . . . . . . . . . 2107Sixiang Ling, Xiyong Wu, Xin Liao, Xiaoning Li, and Siyuan Zhao

378 Soil Water Content and Triggering of Debris Flows in the MessinaArea (Italy): Preliminary Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2113Rosario Napoli, Cinzia Crovato, Luca Falconi, and Carmelo Gioè

379 Description and Mechanism of a Landslide in SE QueenslandFollowing Ex-tropical Cyclone Oswald . . . . . . . . . . . . . . . . . . . . . . . . . . 2119Bari I. Thomas and Graham Rose

380 Analysis of Transient Pore Pressure Distribution and Safety Factor ofa Slow Clayey Deep-Seated Landslide by 2D and 3D Models . . . . . . . . . 2123Roberto Vassallo, Giuseppe Maria Grimaldi, and Caterina Di Maio

381 Hydrogeology, Hydrochemistry and Isotopic Investigation to Definethe Lateral Hydraulic Boundaries of a Deep Rock Slide (BercetoLandslide: Northern Apennines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2129Manuela Deiana, Federico Cervi, Alessandro Corsini, Antonio Ambanelli,Michela Diena, Luigi Lopardo, Giovanni Truffelli, and Francesco Ronchetti

382 Influence of Pore Fluid Composition on the Residual Strengthof a Clayey Landslide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2133Caterina Di Maio, Gianvito Scaringi, and Roberto Vassallo

383 Hydrochemical Approach of Mechanical Degradationof the Séchilienne Unstable Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2137C. Bertrand, A. Vallet, and J. Mudry

xliv Contents

Page 44: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

384 Hydrogeological Threshold Using Support Vector Machinesand Effective Rainfall Applied to a Deep Seated Unstable Slope(Séchilienne, French Alps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2143Aurélien Vallet, Davit Varron, Catherine Bertrand, and Jacques Mudry

385 Geotechnical Investigations in an Old Landslide Situatedin Fine-Grained Neogene Sediments (Alkofen, Bavaria, Germany). . . . . . 2147Georg Stockinger, Marion Nickmann, and Kurosch Thuro

386 Steady Lateral Flow in Sloping Soils: Which is the Effect of theConductivity at Saturation Profile? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153Stefano Barontini, Marco Falocchi, and Roberto Ranzi

387 Estimation of Long-Term Strength of Rock Based on SubcriticalCrack Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2157Yoshitaka Nara, Yuma Oe, Sumihiko Murata, Tsuyoshi Ishida,and Katsuhiko Kaneko

388 Characterization of Laterites for Engineering Geological Applications . . . 2161R. Nagarajan

Erratum to: Objective Definition of Rainfall Intensity-DurationThresholds for Post-fire Flash Floods and Debris Flowsin the Area Burned by the Waldo Canyon Fire, Colorado, USA . . . . . . . . . . . E1Dennis M. Staley, Jason W. Kean, and Joseph E. Gartner

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2167

Contents xlv

Page 45: Engineering Geology for Society and Territory Volume 2 · Each volume is related to a specific topic, including: 1. Climate Change and Engineering Geology; 2. Landslide Processes;

The Istituto di Ricerca per la Protezione Idrogeologica (IRPI), of the Italian ConsiglioNazionale delle Ricerche (CNR), designs and executes research, technical and developmentactivities in the vast and variegated field of natural hazards, vulnerability assessment and geo-

risk mitigation. We study all geo-hydrologicalhazards, including floods, landslides, erosionprocesses, subsidence, droughts, and hazards incoastal and mountain areas. We investigate theavailability and quality of water, the exploitationof geo-resources, and the disposal of wastes. Weresearch the expected impact of climatic andenvironmental changes on geo-hazards and geo-resources, and we contribute to the design ofsustainable adaptation strategies. Our outreachactivities contribute to educate and inform ongeo-hazards and their consequences in Italy.

We conduct our research and technical activities at various geographical and temporal scales,and in different physiographic and climatic regions, in Italy, in Europe, and in the World. Ourscientific objective is the production of new knowledge about potentially dangerous naturalphenomena, and their interactions with the natural and the human environment. We developproducts, services, technologies and tools for the advanced, timely and accurate detection andmonitoring of geo-hazards, for the assessment ofgeo-risks, and for the design and the implemen-tation of sustainable strategies for risk reductionand adaptation. We are 100 dedicated scientists,technicians and administrative staff operating infive centres located in Perugia (headquarter),Bari, Cosenza, Padova and Torino. Our networkof labs and expertizes is a recognized Centre ofCompetence on geo-hydrological hazards andrisks for the Italian Civil Protection Department,an Office of the Prime Minister.

Consiglio Nazionale delle Ricerche

Istituto di Ricerca per laProtezione Idrogeologica

xlvii