energy systems for feedstuffs energy is the potential to do work

22
Energy Systems for Feedstuffs Energy is the potential to do work

Upload: carol-patrick

Post on 21-Jan-2016

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Systems for Feedstuffs Energy is the potential to do work

Energy Systems for Feedstuffs

Energy is the potential to do work

Page 2: Energy Systems for Feedstuffs Energy is the potential to do work
Page 3: Energy Systems for Feedstuffs Energy is the potential to do work

Definitions– Calorie (cal)

• Amount of heat required to increase the temperature of 1 g of water from 14.5 to 15.5oC

– Kilocalorie (kcal) = 1000 cal– Megacalorie (Mcal) = 1000 kcal = 1,000,000 cal

Page 4: Energy Systems for Feedstuffs Energy is the potential to do work

Determine Feed Energy Value

• Total Digestible Nutrients (TDN)• Partitioning of Feedstuff Energy • Roughage / Concentrate Ratio

Page 5: Energy Systems for Feedstuffs Energy is the potential to do work

TOTAL DIGESTIBLE NUTRIENTS (TDN)

• Traditional system to express digestible energy concentration of feedstuffs

• Basis of TDN are physiological fuel values

Nutrient Heat of combustion,

kcal/g

Heat of combustion of

metabolic products,

kcal/g

Nutrient absorption, %

Physiological fuel value,

kcal/g

Carbohydrates 4.1 - 98 4.0

Fats 9.45 - 95 9.0

Protein 5.65 1.30 92 4.0

Page 6: Energy Systems for Feedstuffs Energy is the potential to do work

• Determining TDN

– Conduct a digestibility trial and determine the apparent digestion coefficient of:• Crude protein• Crude fiber• Nitrogen free extract• Ether extract

– Calculate concentration of each digestible nutrient– Using all Dry Matter Basis

• Digestible protein (DP) = CP x CP dig. %• Digestible crude fiber (DCF) = CF x CF dig. %• Digestible NFE (DNFE) = NFE x NFE dig. %• Digestible EE (DEE) = EE x EE dig. % x 2.25

– Calculate TDN• TDN, %DM = %DP + %DCF + %DNFE + (2.25 x %DEE)• Expressed as a % of the ration OR in units of weight (Lb, kg, etc…)• Conversion:

• 1 Lb TDN = 2,000 Kcal digestible energy• 1 Kg TDN = Kcal digestible energy

Page 7: Energy Systems for Feedstuffs Energy is the potential to do work

Limitations of TDN– Limitations associated with digestion trials

• Errors in chemical analyses• Errors in sample collections

– Low feed intake increases digestibility– DMI at 3x maintenance reduces TDN by 8%

– Does not include all energy losses in metabolism• Does not include urine losses• Does not include methane gas losses

– End product of rumen fermentation– 3 – 10% of feed energy

• Does not include:– Work of digestion– Heat of fermentation– Heat of nutrient metabolism

– Overestimates the usable energy value of feeds• Particularly of forages

Heat increment

Page 8: Energy Systems for Feedstuffs Energy is the potential to do work

Energy Partitioning

Gross Energy (GE)

Digestible Energy (DE)

Metabolizable Energy (ME)

Net Energy (NE)

Production (NEp)Maintenance (NEm)

Fecal energy loss (FE)

Urine (UE) and gas products of digestion (GPD)

Heat Increment (HI)•Fermentation•Digestion•Metabolism

Page 9: Energy Systems for Feedstuffs Energy is the potential to do work

GROSS ENERGY (GE)

• Total potential energy of the feedstuff• Measure by bomb calorimeter

– Burn until completely oxidized– Measure amount of heat released

• Fats > Proteins > Carbohydrates– Average ratio 2.5 - 1.7 - 1.0

• Water and Ash have no energy

• GE doesn’t differentiate between availability of energy– Little correlation between GE and usefulness to animal

• Corn grain- 4.5 kcal/g • Oat straw- 4.7 kcal/g

Page 10: Energy Systems for Feedstuffs Energy is the potential to do work

Digestible Energy•Gross Energy - Fecal losses

– Fecal Losses• Ruminants > Monogastrics

• Ruminants-

– Can be as great as 60% in low quality forage diets• Monogastrics-

– Digestibility of energy increases slightly as body weight increases

• Cannot be used to express energy requirements of poultry (or reptiles)

•Relation to Total Digestible Nutrients– 1 lbs. TDN = 2000 Kcal DE– 1 kg TDN = 4400 Kcal DE

DIGESTIBLE ENERGY (DE)

Page 11: Energy Systems for Feedstuffs Energy is the potential to do work

METABOLIZABLE ENERGY (ME)• ME = DE – (Gas + Urinary Energy)

– Must be calculated in a neutral growth animal• Zero nitrogen balance• Protein stored or lost from muscle will distort values

– Urine (Urea) ~ 5% of GE• Lost as a result of protein metabolism• Ruminants>Monogastrics

– Combustible gases• Ruminants >>> Monogastrics

– Primarily lost as CH4 ~ 3-10% of GE– Monogastric losses are small and usually ignored ~ 0.1-

3.0% of DE

Page 12: Energy Systems for Feedstuffs Energy is the potential to do work

Metabolizable Energy (ME) cont

• Commonly used in poultry, swine, companion animal formulations

• Relation to DE– Ruminants

• ME, kcal/kg = DE x 0.82– Swine

• ME, kcal/kg = DE x (1.012 - (0.0019 * Protein%))• May overestimate energy value of byproduct feedstuffs

– Dogs• ME (kcal) = DE – (1.04 x g protein)• Works best for industry’s highly digestible diets

– Cats• ME (kcal) = DE – (0.77 x g protein)

Page 13: Energy Systems for Feedstuffs Energy is the potential to do work

NET ENERGY (NE)• The amount of energy that is completely useful to the animal

for maintenance, lactation, or growth• NE = ME – HI

– Heat Increment- increase in heat lost because of the energy costs of digestion and the metabolic processes

• Work of Digestion– Activity, Chewing, & GI contractions

» As much as 30% of total heat lost in animals (ruminants)» Low quality forage increases work of digestion» Movement and excitement for meal

• Heat of fermentation– Heat released by microbes during fermentation

» ~ 5-10 % of GE» Low quality forage increases heat of fermentation» Increased lipids decreases heat of fermentation

• Heat of Nutrient Metabolism– ~10-30% of GE lost

– Heat increment:• Contributes to thermal regulation in cold climate• Contributes to heat load in warm climate

Page 14: Energy Systems for Feedstuffs Energy is the potential to do work

NEm REQUIREMENT

• Maintenance requirement (zero gain or loss of energy from body tissues)– The amount of feed energy needed for:

• Basal metabolic activities• Body temperature regulation• Physical activity:

• Requirements:– Beef cattle

• NEm = 0.077 Mcal/EBW0.75

– Dairy cattle

• NEm = 0.080 Mcal/EBW0.75

– Varies with weight, breed, age, sex, season, temperature, nutritional status,

physiological status• Significance in net energy calculations for growing animals

– Must always calculate the amount of feed necessary to maintain an animal

before calculating how much feed would remain or be needed to achieve a

given level of body weight gain

Page 15: Energy Systems for Feedstuffs Energy is the potential to do work

NEm DETERMINATION• Calorimetry

– Animal placed in animal calorimeter– ME intake and heat production measured – NE, Mcal/kg = (ME intake – Heat production)/DMI

• Comparative slaughter – Feed group a common diet for two weeks– Slaughter a portion of a group of animals and grind carcass and

organs – determine energy on whole body (E1)

– Feed several levels of feed for a period of time– Slaughter remainder on animals and grind carcass and organs –

determine energy on whole body (E2)

– Retained Energy (RE) = (E2 - E1)

– NE, Mcal/kg = RE/DMI (assumes a linear relationship)– Use of NE for maintenance (NEm), body weight gain (NEg), or

lactation (NEl) determined by regression

Page 16: Energy Systems for Feedstuffs Energy is the potential to do work

Relationship to ME

Beef cattle (based on comparative slaughter)NE (maintenance)= NEm = 1.37ME – 0.138ME2 + 0.0105ME3 - 1.12NE (gain) = NEg = 1.42ME – 0.174ME2 + 0.0122ME3 - 1.65

SwineNE = 0.726 x ME + 1.33 x EE + 0.39 x Starch – 0.62 x CP – 0.83 x ADF

Page 17: Energy Systems for Feedstuffs Energy is the potential to do work

EFFICIENCY OF NE USE FOR LACTATION

Low Energy in DietHigh

Maintenance

Lactation

Growth

En

erg

y b

ala

nce

0

_

+

Page 18: Energy Systems for Feedstuffs Energy is the potential to do work

NET ENERGY FOR GAIN (NEg)

• Net energy remaining after maintenance requirements are met

• Net energy is used less efficiently for gain than for maintenance

Page 19: Energy Systems for Feedstuffs Energy is the potential to do work

EFFICIENCY OF NE USE FOR LACTATION

Low Energy in DietHigh

Maintenance

Lactation

Growth

En

erg

y b

ala

nce

0

_

+

Page 20: Energy Systems for Feedstuffs Energy is the potential to do work

• Significance of equal efficiency of energy use for maintenance and lactation– Net energy requirements for dairy cows can be

expressed with one value• Net energy for lactation, Nel

– Energy requirement for lactation considers• Amount of milk produced• Fat percentage of milk produced

Page 21: Energy Systems for Feedstuffs Energy is the potential to do work

COMPARISON OF ENERGY FRACTIONS IN DIFFERENT FEEDSTUFFS

Corn grain

kcal/g

Alfalfa Hay

(midbloom)

kcal/g

Oat Straw

kcal/g

Gross Energy 4.5 -- 4.7

Digest. Energy 3.92 2.56 2.21

Metab. Energy 3.25 2.10 1.81

NEm 2.24 1.28 0.97

NEg 1.55 0.68 0.42

Page 22: Energy Systems for Feedstuffs Energy is the potential to do work

• Energy in Beef Nutrition– Predict weight gain– Estimate intake for desired weight gain

– This week in lab:

NE requirements: Table 2-3 & 2-4, p 105 – 106

NE content: Table 2-5, p 106 - 107