energy management: 2013/2014 primary, final & useful energies sankey diagrams class # 3 prof....

99
Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa [email protected]

Upload: micaela-feliciano

Post on 07-Apr-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management: 2013/2014

Primary, Final & Useful EnergiesSankey Diagrams

Class # 3

Prof. Tânia [email protected]

Page 2: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

• How much energy should we ingest daily?• How much energy do you spend per hour

using an electric heater?

Page 3: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 4: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

Activities (kJ)

IAASA – Global Energy Assessment 2012

Page 5: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 6: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

Activities (MJ-GJ or kWh=3.6MJ)

IAASA – Global Energy Assessment 2012

Page 7: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 8: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

Activities (GJ-TJ or toe=41.87GJ)

IAASA – Global Energy Assessment 2012

Page 9: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

Activities (GJ-TJ or toe=41.87GJ)•In early agricultural societies

– 10-20 GJ/capita/year – 2/3 for food and feed– 1/3 for cooking, heating and early industrial

activities•In UK in the mid-19th century

– 100 GJ/capita/year •In Portugal in 2010

– 108 GJ/capita/year

Page 10: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 11: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 12: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 13: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 14: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales

IAASA – Global Energy Assessment 2012

Page 15: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Forms of Energy - Primary energy

Page 16: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Forms of Energy - Final energy

Page 17: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Forms of Energy – Useful Energy

Page 18: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Forms of Energy

• Primary energy – embodied in resources as it is found in nature (coal, oil, natural gas in the ground)

• Final energy – sold to final consumers such as households or firms (electricity, diesel, processed natural gas)

• Useful energy – in the form that isused: light, heat, cooling and mechanical power (stationary or transport)

• Productive energy – the fraction of useful energy that we actually use

Page 19: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Primary Energy to Energy Services

Page 20: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Primary Energy to Energy Services

IAASA - Global Energy Assessment 2012

Energy Supplyenergy flows driven by resource availability and conversion technologies

Page 21: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Primary Energy to Energy Services

IAASA - Global Energy Assessment 2012

The energy supply sector dealing with primary energy is referred as “upstream” activities

Page 22: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Primary Energy to Energy Services

IAASA - Global Energy Assessment 2012

The energy supply sector dealing with secondary energy is referred as “downstream” activities

Page 23: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Primary Energy to Energy Services

IAASA - Global Energy Assessment 2012

Energy DemandEnergy system is service driven

Page 24: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Primary Energy to Energy Services

IAASA - Global Energy Assessment 2012

Quality and cost of energy services

Page 25: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energetic Balance

• Where are the primary and final energies in the energetic balance?

BALANÇO ENERGÉTICOtep   Total de Carvão Total de Petróleo Gás Natural

(*)

Gases o Outros

Derivados

Total de Eectricidade Calor Resíduos

IndustriaisRenováveisSem Hídrica TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754 PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193 SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

ACERTOS 9. 9 851 - 47 340 - 1 382   12     279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343   4 159 087 1 201 714 38 680 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1   358 801 3 359   87 218 2 366   21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2   66 103 8 444   49 882 30 844   4 155 277

INDÚSTRIAS TRANSFORMADORAS 10.3 71 319 1 085 788 1 027 157   1 340 009 1 154 293 38 680 615 382 5 332 628

CONSTRUÇÃO E OBRAS PÚBLICAS 10.4   576 210 5 063   50 490     21 631 784

TRANSPORTES 10.5   6 680 176 6 659   46 677     3 452 6 736 964 SECTOR DOMÉSTICO 10.6   552 680 300 190   1 157 672     1 180 750 3 191 292 SERVIÇOS 10.7   509 277 154 471   1 427 139 14 211   6 579 2 111 677

Page 26: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energetic Balance

• Where are the primary and final energies in the energetic balance?

BALANÇO ENERGÉTICOtep   Total de Carvão Total de Petróleo Gás Natural

(*)

Gases o Outros

Derivados

Total de Eectricidade Calor Resíduos

IndustriaisRenováveisSem Hídrica TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754 PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193 SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

ACERTOS 9. 9 851 - 47 340 - 1 382   12     279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343   4 159 087 1 201 714 38 680 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1   358 801 3 359   87 218 2 366   21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2   66 103 8 444   49 882 30 844   4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 71 319 1 085 788 1 027 157   1 340 009 1 154 293 38 680 615 382 5 332 628

CONSTRUÇÃO E OBRAS PÚBLICAS 10.4   576 210 5 063   50 490     21 631 784

TRANSPORTES 10.5   6 680 176 6 659   46 677     3 452 6 736 964 SECTOR DOMÉSTICO 10.6   552 680 300 190   1 157 672     1 180 750 3 191 292 SERVIÇOS 10.7   509 277 154 471   1 427 139 14 211   6 579 2 111 677

Page 27: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energetic Balance

• Where is the useful energy in the energetic balance?

BALANÇO ENERGÉTICOtep   Total de Carvão Total de Petróleo Gás Natural

(*)

Gases o Outros

Derivados

Total de Eectricidade Calor Resíduos

IndustriaisRenováveisSem Hídrica TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754 PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193 SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

ACERTOS 9. 9 851 - 47 340 - 1 382   12     279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343   4 159 087 1 201 714 38 680 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1   358 801 3 359   87 218 2 366   21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2   66 103 8 444   49 882 30 844   4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 71 319 1 085 788 1 027 157   1 340 009 1 154 293 38 680 615 382 5 332 628

CONSTRUÇÃO E OBRAS PÚBLICAS 10.4   576 210 5 063   50 490     21 631 784

TRANSPORTES 10.5   6 680 176 6 659   46 677     3 452 6 736 964 SECTOR DOMÉSTICO 10.6   552 680 300 190   1 157 672     1 180 750 3 191 292 SERVIÇOS 10.7   509 277 154 471   1 427 139 14 211   6 579 2 111 677

Page 28: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energetic Balance

• How do you go from final to useful energy for household electricity consumption?

BALANÇO ENERGÉTICOtep   Total de Carvão Total de Petróleo Gás Natural

(*)

Gases o Outros

Derivados

Total de Eectricidade Calor Resíduos

IndustriaisRenováveisSem Hídrica TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754 PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193 SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

ACERTOS 9. 9 851 - 47 340 - 1 382   12     279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343   4 159 087 1 201 714 38 680 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1   358 801 3 359   87 218 2 366   21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2   66 103 8 444   49 882 30 844   4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 71 319 1 085 788 1 027 157   1 340 009 1 154 293 38 680 615 382 5 332 628

CONSTRUÇÃO E OBRAS PÚBLICAS 10.4   576 210 5 063   50 490     21 631 784

TRANSPORTES 10.5   6 680 176 6 659   46 677     3 452 6 736 964 SECTOR DOMÉSTICO 10.6   552 680 300 190   1 157 672     1 180 750 3 191 292 SERVIÇOS 10.7   509 277 154 471   1 427 139 14 211   6 579 2 111 677

Page 29: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Useful Energy

• How do you go from final to useful energy for household electricity consumption?

• Electrical resistance 100%• Electrical motor

90%• Fluorescent lamp

50%• Refrigerator

200%• Heat pump 250%

,useful final i ii

E E

Page 30: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey diagrams

• Schematic representation of the energy flow

final

primary

EE

useful

final

EE

productive

useful

EE

Miguel Águas (2009)

Page 31: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey Diagram for Portugal for 2010

BALANÇO ENERGÉTICOtep   Total de

CarvãoTotal de Petróleo Gás Natural Total de

Eletricidade

RenováveisSem

EletricidadeTOTAL GERAL

2010   4 = 1 a 3 22= 15 + 21 23 36 = 31 a 35 46 = 39 a 45 47=4+22+23+30+36+37+38+46

CONSUMO DE ENERGIA PRIMÁRIA 5. 1 656 757 11 241 129 4 506 817 2 474 507 3 168 351 23 101 751 PARA NOVAS FORMAS DE ENERGIA 6. 1 597 427 563 778 2 857 644 -2 403 968 1 819 195 2 846 994

Produtos de Petróleo 6.3   - 321 179     321 473 - 8 290 Eletricidade 6.6 1 597 427 285 397 1 740 776 -1 787 691 456 792 2 299 882 Cogeração 6.7   562 580 1 116 868 - 616 277 1 040 930 555 402

CONSUMO DO SECTOR ENERGÉTICO 7.   277 453 134 954 589 099 10 1 252 656 Consumo Próprio da Refinação 7.1   215 503 121 238 45 829   633 710 Perdas da Refinação 7.2   58 915     10 58 925 Centrais Eléctricas 7.4   3 035   128 271   131 306 Bombagem Hidroeléctrica 7.5       44 032   44 032 Perdas de Transporte e Distribuição 7.8     13 716 370 355   384 071

DISPONÍVEL PARA CONSUMO FINAL 8. 59 330 9 111 257 1 514 219 4 289 376 1 349 146 17 713 460 ACERTOS 9. 9 130 4 999 4 761 - 132 14 762 CONSUMO FINAL 10. 50 200 9 106 258 1 514 215 4 288 615 1 349 278 17 698 698 AGRICULTURA E PESCAS 10.1   360 870 3 511 88 164 65 455 009 INDÚSTRIAS EXTRATIVAS 10.2   62 582 7 951 47 271 91 151 412 INDÚSTRIAS TRANSFORMADORAS 10.3 50 200 825 308 971 726 1 331 090 590 133 5 101 671 CONSTRUÇÃO E OBRAS PÚBLICAS 10.4   493 136 9 218 52 436   554 790 TRANSPORTES 10.5   6 430 400 12 581 40 857 4 233 6 488 071 SECTOR DOMÉSTICO 10.6   679 765 300 266 1 248 873 724 980 2 953 884 SERVIÇOS 10.7   254 197 208 962 1 479 924 29 776 1 993 861

Page 32: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey diagram for Portugal 2010

Page 33: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 34: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 35: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 36: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 37: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 38: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 39: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 40: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Regional Energy Use in 2005

Page 41: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

• Overall 1st law efficiency in converting primary to final energy?

IAASA – Global Energy Assessment 2012

US – 94 EJ Portugal – 1.1 EJ

final

primary

EE

?

?useful

final

EE

Page 42: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

• Overall 1st law efficiency in converting primary to final energy? 66%

IAASA – Global Energy Assessment 2012

US – 94 EJ Portugal – 1.1 EJ

final

primary

EE

?

?useful

final

EE

Page 43: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

• Overall 1st law efficiency in converting primary to useful energy?

IAASA – Global Energy Assessment 2012

US – 94 EJ Portugal – 1.1 EJ

final

primary

EE

?

?useful

final

EE

Page 44: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

• Overall 1st law efficiency in converting primary to useful energy? 34%

IAASA – Global Energy Assessment 2012

US – 94 EJ Portugal – 1.1 EJ

final

primary

EE

?

?useful

final

EE

Page 45: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Typical values of 1st law efficiencies

• 1st Law efficiencies from primary to final energy

• 1st Law efficiencies from final to useful energy

Page 46: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey Diagram for an Energy Service

• Example?

Page 47: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey Diagram for an Energy Service

• Example?

Page 48: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey Diagram for an Energy Service

• Schematic representation of the energy flow (natural gas electricity light reading)

• What is the aggregate efficiency?

productive

useful

EE

20%

50%

50%

final out

primary in

E WE Q

useful

final

EE

Page 49: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey Diagram for an Energy Service

• Schematic representation of the energy flow (natural gas electricity light reading)

• What is the aggregate efficiency?

productive

useful

EE

20%

50%

50%

final out

primary in

E WE Q

useful

final

EE

Page 50: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

• What is the 1st Law efficiency in a heat pump?

Are there 1st law efficiencies > 1?

Page 51: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

• What is the 1st Law efficiency in a heat pump?

Typical values of between 3 – 5

• What is the Sankey diagram like?

Are there 1st law efficiencies > 1?

1 11

out out

inout in

out

Q QQW Q QQ

Page 52: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

• What is the 1st Law efficiency in a heat pump?

Typical values of between 3 – 5

• What is the Sankey diagram like?

Are there 1st law efficiencies > 1?

1 11

out out

inout in

out

Q QQW Q QQ

Page 53: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Sankey DiagramA coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. 1.Draw the Sankey Diagram

Page 54: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. 1.Draw the Sankey Diagram2.What is the overall efficiency?

Sankey Diagram

Coal Mine Coal at the Power Plant Electricity

40%93%

Coal at the coal mine

Coal at the Power Plant

Electricity at the Power Plant

7%

60%

1 Mcal = 4.187 MJ1 toe = 41868 MJ

Page 55: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. 1.Draw the Sankey Diagram2.What is the overall efficiency?3.What is the coefficient of conversion between final and primary energy in MWhe/TOE?

Sankey Diagram

Coal Mine Coal at the Power Plant Electricity

40%93%

Coal at the coal mine

Coal at the Power Plant

Electricity at the Power Plant

7%

60%

1 Mcal = 4.187 MJ1 toe = 41868 MJ

Eficiency = 2800/7500 = 37%

Page 56: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. 1.Draw the Sankey Diagram2.What is the overall efficiency?3.What is the coefficient of conversion between final and primary energy in MWhe/TOE?

Sankey Diagram

Coal Mine Coal at the Power Plant Electricity

40%93%

1 Mcal = 4.187 MJ1 toe = 41868 MJ

37 41868 3600MWhFinal Energy 37toe MWh4.3Primary Energy 100 toe 100 toe toe

Page 57: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Conversion between F.E and P.E

• Conversion coefficients are efficiencies and not direct conversions– From coal (P.E) to electricity (F.E)

– Direct conversion

• What about the conversion coefficient from natural gas to electricity?

Page 58: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Are first law efficiencies enough?Heating of a house can be done by one of the following methods:1.Electrical heating using the Joule effect2.Central heating 3.Heating using a heat pump

Page 59: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Are first law efficiencies enough?Heating of a house can be done by one of the following methods:1.Electrical heating using the Joule effect2.Central heating (burning natural gas in a furnace with a 90% efficiency)3.Heating using a heat pump (COP=3).Suppose that electricity has a production efficiency of 45% and costs 0.12 euros per kWh, natural gas is transported with a 99% efficiency, and costs 0.0708 euros per kWh.a)Compare the alternatives in terms of primary energy, final energy and cost for 1 kWh of thermal energy. Draw the Sankey Diagramsb)Discuss the investment associated with each solution.

Page 60: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Are first law efficiencies enough?Heating of a house can be done by one of the following methods:1.Electrical heating using the Joule effect2.Central heating (burning natural gas in a furnace with a 90% efficiency)3.Heating using a heat pump (COP=3).Suppose that electricity has a production efficiency of 45% and costs 0.12 euros per kWh, natural gas is transported with a 99% efficiency, and costs 0.0708 euros per kWh.a)Compare the alternatives in terms of primary energy, final energy and cost for 1 kWh of thermal energy. Draw the Sankey Diagramsb)Discuss the investment associated with each solution.

Electrical Resistance

Central Heating Heat Pump

Primary (kWh) 1/0.45=2.22 (1/0.90)/0.99=1.12 (1/3)/0.45=0.74

Final (kWh) 1 1/0.90=1.11 1/3=0.33

Useful (kWh) 1 1 1

Cost (euros) 1*0.12 ((1/0.9))*0.0708 1/3*0.12

Page 61: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Are first law efficiencies enough?

• Providing 1 kWh of heat at 30ºC to a building with an outside temperature of 4ºC

• First law efficiencies do not provide information on how much you can improve your efficiency

Electrical Resistance

Central Heating

Heat Pump

Ideal Heat Pump

Final (kWh)

1 1/0.90 1/3 1/12

Useful (kWh)

1 1 1 1

First Law 100% 90% 300% 1200%

Page 62: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Second law efficiencies

• Ratio between 1st law real and best efficiencies • Providing 1 kWh of heat at 30ºC to a building

with an outside temperature of 4ºC

• Second law efficiencies provide information on how much you can improve your efficiency

Electrical Resistance

Central Heating

Heat Pump

Ideal Heat Pump

Final (kWh) 1 1/0.90 1/3 1/12

Useful (kWh) 1 1 1 1

First Law 100% 90% 300% 1200%

Second Law 8.3% 7.5% 25% 100%

Page 63: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Typical values of 2nd law efficiencies

• Overall 2nd law efficiency in converting primary to final is 76% and primary to useful energy is 10%

IAASA - Global Energy Assessment 2012

Page 64: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Population (lines) Primary energy use (bars)

industrialized countries(white squares and bars) developing countries(gray triangles and bars)

Energy use data includes estimates of noncommercial energy use

Primary Energy Use 1800-2000

Grubler, A. “Energy Transitions”

Page 65: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Population (lines) Primary energy use (bars)

industrialized countries(white squares and bars) developing countries(gray triangles and bars)

Energy use data includes estimates of noncommercial energy use

•Primary energy use increased more than 20-fold in 200 years•Heterogeneity in per capita primary energy use:

• In industrialized countries population increased linearly while primary energy use increased exponentially until recently

• In developing countries energy use increased proportionally to population until recently

•Primary Energy Mix ?

Primary Energy Use 1800-2000

Grubler, A. “Energy Transitions”

Page 66: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Grubler, A. “Energy Transitions”

Primary Energy Mix 1850-2010

IAASA – Global Energy Assessment 2012

Page 67: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Grubler, A. “Energy Transitions”

Primary Energy Mix 1850-2010

• Mostly biomass in 1850• Increasing diversification of energy vectors

IAASA – Global Energy Assessment 2012

Page 68: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Grubler, A. “Energy Transitions”

Primary Energy Mix 1850-2010

Page 69: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Mix 1800-2040

• Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Page 70: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Mix 1800-2040

• Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Energy Transition biomass to coal

Page 71: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Mix 1800-2040

• Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Energy Transition biomass to coal Energy Transition coal to oil

Page 72: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Mix 1800-2040

• Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Energy Transition biomass to coal Energy Transition coal to oil

Stabilization

Page 73: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Eras and Transitions

• Energy Transformations before industrial civilization:

Page 74: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Eras and Transitions

• Energy Transformations before industrial civilization: – Solar radiation – food & feed, light and heat– Animate labor from humans and work animals (levers,

inclined planes, pulleys) – mechanical work & transport– Kinetic energies of water & wind – mechanical work &

transport– Biomass fuels (wood, charcoal, crop residues, dung) –

residential & industrial heat and light

Page 75: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Eras and Transitions

• Energy Transformations before industrial civilization: – Dominant in the western world until the 2nd half of the 19th century– Dominant for most of humankind until middlle of the 20th century– Annual per capita primary energy consumption 20 GJ

Page 76: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Eras and Transitions

• Energy Transformations that came with industrial civilization: – Fossil fuels – heat & mechanical work & transport (steam

engines, internal combustion engines and steam turbines)

Page 77: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Transitions

• An aggregated transition to other energy source(s) includes numerous services and sectors

Page 78: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Transitions

• The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

16th century (tall narrow chimneys and suitable grates )17th century (coal gets even cheaper)

Page 79: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Transitions

• The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

1709 (coke)18th century (efficiency improvments)

Page 80: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Transitions

• The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

1804 (1st steam locomotive)

Page 81: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Why do energy transitions occur?

• Main Drivers/Catalyst for adoption of a new energy carrier:– Price of energy– Better/Different Service– Technological change and innovation– Efficiency improvments

Page 82: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Decarbonization of Energy Systems

Decreasing trend in CO2 emitted per GJ from 1850 to 2000

2010: 108 GJ/capita/year

7600 kg CO2/capita/year

Page 83: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Decarbonization of Energy Systems

Historically energy related biomass burning has not been carbon-neutral (maximum estimated value of 38%)

Page 84: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Decarbonization of Energy Systems

Why a slight increasing trend in the last 10 years?

Page 85: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Power generation 1990-2010

• Despite an increasing contribution across two decades, the share of non-fossil generation has failed to keep pace with the growth in generation from fossil fuels.

© OECD/IEA 2012

Ele

ctric

ity g

ener

atio

n (T

Wh)

Sha

re o

f ele

ctric

ity (%

)

Share of coal-based electricity

Share of non-fossil electricity

Nuclear

HydroNon-hydro renewables

IEA - Energy Technology Perspectives 2012

Page 86: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy from 1900-2000World final energy use by consumers.Solids (such as coal and biomass,brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green).

Grubler, A. “Energy Transitions”

Page 87: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy from 1900-2000World final energy use by consumers.Solids (such as coal and biomass,brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green).

“With rising incomes, consumers pay increasing attention to convenience and cleanliness, favoring liquids and grid-delivered energy forms”

Grubler, A. “Energy Transitions”

Page 88: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy from 1900-2000World final energy use by consumers.Solids (such as coal and biomass,brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green).

Developing countries

OECD (squares)

Grubler, A. “Energy Transitions”

Page 89: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy from 1900-2000World final energy use by consumers.Solids (such as coal and biomass,brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green).

Heterogeneity in final energy quality

Grubler, A. “Energy Transitions”

Page 90: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy per capita in 2010

• Heterogeneity in Final Energy Use per capita:

IAASA – Global Energy Assessment 2012

Page 91: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

What is Final Energy used for?

• UK 1800-2000

IAASA – Global Energy Assessment 2012

Page 92: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

What is Final Energy used for?

• Regular expansion ofenergy services in 19th

– dominated by heat and transport

• High volatility due topolitical and economic events

• Moderated growth after 1950– Decline in industrial energy services compensated by strong

growth in transport

• Saturated at a level of 6 EJ or 100 GJ/capita• What about energy services?

IAASA – Global Energy Assessment 2012

Page 93: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

From Final Energy to Energy Services

• UK 1800-2000

IAASA – Global Energy Assessment 2012

Page 94: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

• UK 1800-2000

• Increasing efficiencies in converting final energy to energy services– Ranges between a factor

of 5 for transportation and 600 for lighting

From Final Energy to Energy Services

IAASA – Global Energy Assessment 2012

Page 95: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

• UK 1800-2000• Lower prices of energy

services– Ranges between a factor

of 10 for heating and 70 for lighting

From Final Energy to Energy Services

IAASA – Global Energy Assessment 2012

Page 96: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Services 2005• Energy services cannot be

expressed in common units• Transport

– 13 km/day/per capita– 1 ton 20 km/day/per capita

• Industry– 9 ton/year/per capita (steel +

fertilizers + constructionmaterials + plastics …

• Buldings– Heating/cooling to 20m2/per capita

• Useful energy – minimizes distortions among

different energy service categories, as it most closely measures the actual energy service provided.

Page 97: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

Page 98: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

• Second law efficiencies provide information on the destruction of exergy

• What is exergy?

Power = 0 W Power = 150 kW

Δz = 0m Δz = 120m

Second law efficiencies

Page 99: Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy vs. Exergy

160ºC 25ºC

Potential Work = 34 MJ Potential Work = 1.8 MJ

environment20ºC

Energy = 105 MJ Energy = 105 MJ

Exergy = 34 MJ Exergy = 1.8 MJ