energy frontier research center for combustion science

34
Energy Frontier Research Center for Combustion Science Stanford University Contribution R. K. Hanson and D. F. Davidson Department of Mechanical Engineering Stanford University 1 Butanol Studies Ignition Delay Times Species Time-Histories Reaction Rate Constants Methyl Ester Studies Ignition Delay Times

Upload: others

Post on 03-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Frontier Research Center for Combustion Science

Energy Frontier Research Center for Combustion Science

Stanford University Contribution

R. K. Hanson and D. F. DavidsonDepartment of Mechanical Engineering

Stanford University

1

• Butanol Studies

• Ignition Delay Times

• Species Time-Histories

• Reaction Rate Constants

• Methyl Ester Studies

• Ignition Delay Times

Page 2: Energy Frontier Research Center for Combustion Science

Long-Term Objectives

• Generate high-quality fundamental kinetics database using shock tube/laser absorption methods

Leading to:

• Improved detailed mechanisms for next-generation fuels

First Targets:

• Isomers of butanol; large bio-derived methyl esters

2

Page 3: Energy Frontier Research Center for Combustion Science

3

Stanford Shock Tube & Laser Facilities

DriverSection

Shock TubeDriven Section

Ring Dye Lasers(UV & Vis)

Diode Lasers(Near IR & Mid-IR)

CO2 Lasers(9.8-10.8 µm)

Shock Tubes (4)

Large Diameter Tubes (15 cm and 14 cm)

High Pressure Tube (5 cm) heatable to 150C

Aerosol Tube (11 cm)

Optical Diagnostics

Laser Absorption(UV, Vis, Near-IR, Mid-IR)

Advantages of Shock Tubes Near-Ideal Constant Volume Test PlatformWell-Determined Initial T & P Clear Optical Access for Laser Diagnostics

Ti:Sapphire Laser(Deep UV)

He-Ne Laser(3.39 µm)

UV/Vis/IREmissionDetectors

Transmitted Beam Detector

PressurePZT

VS VRSP5 T5

Page 4: Energy Frontier Research Center for Combustion Science

Butanol Studies:

4

1. Ignition Delay Times of the 4 Isomers1050-1500 K, 1.5-42 atm, φ=0.5, 1, 4% O2

2. Multi-Species Time-Histories in 1-ButanolOH, H2O & butanol during pyrolysis and oxidation

3. Direct Rate Constant Measurements1-butanol+OH products

Page 5: Energy Frontier Research Center for Combustion Science

1-Butanol Ignition Delay Times:Pressure Dependence (1.5 to 42 atm)

• Data acquired using both low-pressure and high-pressure shock tubes

5

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

100

1000

1-Butanol, 4% O2, Φ = 1

1.5 atm

19 atm

1111 K1250 K1429K

t ign

[µs]

1000/T5 [1/K]

3.0 atm

42 atm

Page 6: Energy Frontier Research Center for Combustion Science

1-Butanol Ignition Delay Times:Pressure Dependence (1.5 to 42 atm)

• Data acquired using both low-pressure and high-pressure shock tubes

• τign scales as P-0.67

over wide pressure range for φ=1

6

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

100

1000

1-Butanol, 4% O2, Φ = 1

1111 K1250 K1429K

t ign

[µs]

1000/T5 [1/K]

All data (1.5-42 atm)normalized to 20 atmusing P-0.67

Page 7: Energy Frontier Research Center for Combustion Science

1-Butanol Ignition Delay Times:Comparison with MIT Mechanism (1.5 to 42 atm)

• Low Pressures: Good agreement with MIT mechanism (Harper,Green 8/10)

7

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

100

1000

P = 1.5 atm

Lines (MIT 2010)

1-ButanolΦ = 1, 4% O2/Ar

1111 K1250 K1429K

t ign

[µs

]

1000/T [1/K]

P = 3 atm

Page 8: Energy Frontier Research Center for Combustion Science

1-Butanol Ignition Delay Times:Comparison with MIT Mechanism (1.5 to 42 atm)

• Low Pressures: Good agreement with MIT mechanism (Harper,Green 8/10)

• High Pressures:Significant differences (up to 50%) between model and experiment

8

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

100

1000

1000K P = 1.5 atm

P = 19 atm

Lines (MIT 2010)

1-ButanolΦ = 1, 4% O2/Ar

1111K1250K1429K

t ign

[µs

]

1000/T [1/K]

P = 3 atm

P = 42 atm

Page 9: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Variation with Isomer (1.5 atm)

• 1-butanol fastest

9

0.60 0.64 0.68 0.72 0.76 0.80 0.84

100

1000

1-butanol2-butanoliso-butanoltert-butanol

1190 K1389 K

t ign

[µs]

1000/T [1/K]

1667 K

Page 10: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Variation with Isomer (1.5 atm)

• 1-butanol fastest

• 2-butanol and iso-butanol similar

10

0.60 0.64 0.68 0.72 0.76 0.80 0.84

100

1000

1-butanol2-butanoliso-butanoltert-butanol

1190 K1389 K

t ign

[µs]

1000/T [1/K]

1667 K

OH

OH

Page 11: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Variation with Isomer (1.5 atm)

• 1-butanol fastest

• 2-butanol and iso-butanol similar

• Tert-butanolslowest (~2-3x) with larger EA

11

0.60 0.64 0.68 0.72 0.76 0.80 0.84

100

1000

1-butanol2-butanoliso-butanoltert-butanol

1190 K1389 K

t ign

[µs]

1000/T [1/K]

1667 K

Page 12: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Comparison with MIT Mechanism (1.5 atm)

• 1-, 2-butanol:Good agreement with MIT (8/10) model

12

0.60 0.64 0.68 0.72 0.76 0.80 0.84

100

1000

1-butanol2-butanol

1190 K1389 K

t ign

[µs]

1000/T [1/K]

1667 K

Page 13: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Variation with Isomer (1.5 atm)

• 1-, 2-butanol:Good agreement with MIT (8/10) model

• iso-, tert-butanol:Poorer agreement with model

13

0.60 0.64 0.68 0.72 0.76 0.80 0.84

100

1000

iso-butanoltert-butanol

1190 K1389 K

t ign

[µs]

1000/T [1/K]

1667 K

Page 14: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Comparison with Other Laboratories

• 1-Butanol (low P):Good agreement with Moss et al. (RPI)

14

0.55 0.60 0.65 0.70 0.75 0.80

100

1000

Current Study Moss et. al. (2008)

1333 K

t ign

[µs]

1000/T [1/K]

1667 K

1-Butanol/3%O2/Ar

1.2 atm, φ=1

MIT Model (2010)

Page 15: Energy Frontier Research Center for Combustion Science

Butanol Ignition Delay Times:Comparison with Other Groups

15

0.55 0.60 0.65 0.70 0.75 0.80

100

1000

1333 K1667 K

Current Study Oehlschlaeger et al. (RPI)

t ign

[µs]

1000/T [1/K]

2-Butanol/6%O2/Ar1.2 atm, φ=1

MIT Model (2010)

• 1-Butanol (low P):Good agreement with Moss et al. (RPI)

• 2-, tert-, & iso-butanol :Poor agreement with RPI data

Page 16: Energy Frontier Research Center for Combustion Science

Species Time-Histories:1-Butanol

Pyrolysis and Oxidation

Species: OH, H2O, 1-Butanol

16

Page 17: Energy Frontier Research Center for Combustion Science

1-Butanol Pyrolysis:OH and H2O Species Time-Histories

• First speciestime-history data for 1-butanol pyrolysis

• Goal: quantify evolution of all keyC, H & O species

17

1431 K, 1.49 atm,1% 1-butanol in argon

10 100 1000

10

100

1000

10000 H2O

Mol

e Fr

actio

n [p

pm]

Time [µs]

OH

Page 18: Energy Frontier Research Center for Combustion Science

1-Butanol Pyrolysis:OH and H2O Species Time-Histories

• Significant differences between MIT model and data

• Future Work: Carbon and oxygen closure by addition of CO, CH2O, CH4, C2H4, C3H6, C2H2measurements

18

1431 K, 1.49 atm,1% 1-butanol in argon

10 100 1000

10

100

1000

10000 H2O

Mol

e Fr

actio

n [p

pm]

Time [µs]

OH

MIT Model

Page 19: Energy Frontier Research Center for Combustion Science

1-Butanol Oxidation:OH and H2O Species Time-Histories

• First time-history data for 1-butanol oxidation

19

1433 K, 1.51 atm, φ=1 1000 ppm 1-butanol in O2/argon

10 100 1000

10

100

1000

10000

H2O

Mol

e Fr

actio

n [p

pm]

Time [µs]

OH

Page 20: Energy Frontier Research Center for Combustion Science

1-Butanol Oxidation:OH and H2O Species Time-Histories

• First time-history data for 1-butanol oxidation

• Major differences in model and data time scales

20

1433 K, 1.51 atm, φ=1 1000 ppm 1-butanol in O2/argon

10 100 1000

10

100

1000

10000

H2O

Mol

e Fr

actio

n [p

pm]

Time [µs]

OH

MIT Model

Page 21: Energy Frontier Research Center for Combustion Science

1-Butanol Oxidation:OH and H2O Species Time-Histories

• First time-history data for 1-butanol oxidation

• Major differences in model and data time scales

• Future: Complete picture of ignition by addition of fuel, intermediates, and product profiles

21

1433 K, 1.51 atm, φ=1 1000 ppm 1-butanol in O2/argon

10 100 1000

10

100

1000

10000

H2O

Mol

e Fr

actio

n [p

pm]

Time [µs]

OH

Page 22: Energy Frontier Research Center for Combustion Science

Elementary Reaction Rate Constant Measurements:

1-Butanol+OH Products

22

Page 23: Energy Frontier Research Center for Combustion Science

1-Butanol + OH Products

• Importance of OH+Fuel reactions under lean conditions

• No previous data

• Large uncertainty in estimations of OH rate constant for 1-butanol oxidation

23

0.7 0.8 0.9 1.0 1.11E12

1E13

1E14 1000K

Reac

tion

Rate

[c

c/m

ol/s

]

1000/T, (1/K)

Black et al. 2010 (NUI) Moss et al. 2008 (RPI) Harper et al. 2010 (MIT) Westbrook model 2010 (LLNL)

1250K

Page 24: Energy Frontier Research Center for Combustion Science

1-Butanol + OH Products

3 Part Strategy:

1. Fast OH source: TBHP (tert-butyl-hydroperoxide)TBHP OH + CH3 + CH3COCH3

2. pseudo-first order removal1-butanol >> OH

3. Monitor OH using laser absorptionppm detection sensitivity

24

Page 25: Energy Frontier Research Center for Combustion Science

Representative OH Laser Absorption Data

• OH laser absorption provides high SNR

• Strong sensitivity to title reaction

• Low overall uncertainty: +/- 14%

25

Reflected Shock Conditions: 1165K, 2 atm

150ppm C4H9OH/10ppm TBHP/Ar

0 10 20 30 40 50 60

0

5

10

15

k=2.1x1013 Best Fit k=1.0x1013

k=4.2x1013

OH

[pp

m]

Time [µs]

Page 26: Energy Frontier Research Center for Combustion Science

Arrhenius Plot: 1-Butanol+OH Products

• Excellent agreement with recent theory byZhou, Simmie et al. (2010)

26

0.7 0.8 0.9 1.0 1.11E12

1E13

1E14 1000K

Reac

tion

Rate

[c

c/m

ol/s

]

1000/T, (1/K)

Zhou, Simmie (2010) Moss et al. 2008 (RPI) Westbrook et al. (LLNL) Black et al. 2010 (NUI) Harper et al. 2010 (MIT)

1250K

Page 27: Energy Frontier Research Center for Combustion Science

Methyl Ester Studies:

1. Use of Aerosol Shock Tubeaccess to low-vapor-pressure fuels

2. Bio-Derived Methyl Esters and Surrogatesmethyl decanoate, methyl oleate

27

Page 28: Energy Frontier Research Center for Combustion Science

Aerosol Shock Tube for Low-Vapor-Pressure Fuels

• Does not require heated shock tube• Eliminates fuel cracking and partial distillation• Provides access to low-vapor-pressure fuels:

Jet fuel, diesel, bio-diesel surrogates

Laser

Detector

28

Page 29: Energy Frontier Research Center for Combustion Science

Aerosol Shock Tube Operation Regime

• Unheated ST provides access up to C3 methyl esters

• Heated ST provide access up to methyl decanoate(C10:0)

• AST provides access up to large (C25:0) methyl esters

29

Shock Tube Access to Fuels: Saturated Methyl Esters

T5=1000K, P5=10atmΦ=1 in air

Page 30: Energy Frontier Research Center for Combustion Science

Preliminary τign Data for Methyl Decanoateand Comparison with Diesel

• Previous AST studies have provided Diesel τign data

30

Page 31: Energy Frontier Research Center for Combustion Science

Preliminary τign Data for Methyl Decanoateand Comparison with Diesel

• First ignition delay data for bio-diesel surrogate methyl decanoate(C11H22O2, C10:0)

• Critically needed for model validation

• Experiments in progress at other conditions

31

Page 32: Energy Frontier Research Center for Combustion Science

First τign Data for Methyl Oleate (9/10/10)

32

• Demonstrates abilityof 2nd Gen AST to study very-low vapor pressure compounds

C19H36O2, C18:1

Page 33: Energy Frontier Research Center for Combustion Science

Future Work• Rate constant measurements of Butanol+OH for all isomers

i.e., 2-butanol, iso-butanol, tert-butanol

• Extend τign measurements to low temperatures

• Establish ignition delay time and species time-history databasefor methyl oleate (C19H36O2), methyl stearate (C19H38O2)

• Extend species time-history measurementsto CO, CO2, CH2O, CH4, C2H4, C3H6, …

• Continued collaboration with EFRC mechanism team

33

Page 34: Energy Frontier Research Center for Combustion Science

Acknowledgements

• Visit Stanford website http://hanson.stanford.edu/ for

Fundamental Kinetics Database Using Shock Tubes

• Thanks to our four shock tube/laser jockeys:

Dr. S. Vasu (OH) I. Stranic (τign) M. Campbell (τign) R. Cook (OH, H2O) 34