energy efficient control of a smart grid homes · 2012. 12. 18. · energy efficient control of a...

44
Ener gy Efficient Control of a Smart Grid with Sustainable Homes b d Di ib i Ri k based on Distributing Risk Prof. Brian C Williams with support from Masahiro Ono, with support from Masahiro Ono, and Wesley Graybill 8 th CMU Electricity Conference March 14 th , 2012

Upload: others

Post on 01-May-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Energy Efficient Control of a gySmart Grid with Sustainable Homes 

b d Di ib i Ri kbased on Distributing Risk

Prof. Brian C Williamswith support from Masahiro Ono,with support from Masahiro Ono, 

and Wesley Graybill

8th CMU Electricity ConferenceMarch 14th, 2012

Page 2: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Motivation: High Penetration of Renewables

Electrical grid must prepare for high penetration of renewablesrenewables.Challenge: Wind and solar are undispatchable, 

d d blintermittent, and unpredictable.

Page 3: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Key Elements of Approach1. Increase controllability on demand side through

– Flexible specifications of user needs and preferences, and– goal‐directed optimal planning.

2. Improve robustness to uncertainty in supply and demand throughg– risk‐constrained planning and – distributed risk markets.distributed risk markets.

3. Reduce labor, hence adoption barriers, by automatingby automating– Inference of expected user and environmental behavior, and

d l i i i f h i l l d b h i– model acquisition of physical plant and customer behaviors.

Page 4: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Architecture: Risk‐constrained, Goal‐directed Grid Control

Key Technologies Framework

Risk allocationGoal‐direction

Market‐basedResource allocationNon‐dispatchable

l

Dispatchable supply

supply(solar, wind)

Micro-grid

Dispatchable supply(Micro‐CHP, biomass)

Demand

Micro grid

Goal‐directed demand response 

Contingent power dispatch p

(buildings & E‐cars)~24 hr time scale

Page 5: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Goal‐directed Demand Response p

• Today: Demand is inelastic, supply adapts.y pp y p• Goal: introduce flexibility in meeting demand.A h• Approach:– Acquire descriptions of the consumer’s intended activities, constraints and preferences.

– Exploit flexibility in activity descriptions to reducep y y p• overall energy consumption,• peak demand, andpeak demand, and• risk of failing to support important consumer activities.

5

Page 6: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Testbed: Connected Sustainable HomeFederico Casalegno (PI) MIT Mobile Experience LabFederico Casalegno (PI), MIT Mobile Experience Lab

• Goal: Optimally control HVAC, window opacity, washer/dryer, e‐car.• Objective: Minimize energy cost.• Uncertainty: Solar input, outside temp, energy supply, occupancy.• Risk: Resident goals not satisfied; occupant uncomfortable.

6

Page 7: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example Goals: Description of Resident ActivitiesDescription of Resident Activities

“Maintain room temperature after waking up until I go toMaintain room temperature after waking up until I go to work. No temperature constraints while I’m at work, but when I get home, maintain room temperature until I go to g p gsleep. Maintain a comfortable sleeping temperature while I sleep. Cook dinner within at least an hour of arriving home,

d l 3 h b f b d Al d l h b fand at least 3 hours before bed. Also, dry my clothes before morning. I need to use my car to drive to and from work, so make sure it is fully charged by morning It’s acceptable ifmake sure it is fully charged by morning. It s acceptable if my clothes aren’t ready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be p g y yready to use before I leave for work.”

7

Page 8: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example Goals: Description of Resident ActivitiesDescription of Resident Activities

“Maintain room temperature after waking up until I go toMaintain room temperature after waking up until I go to work. No temperature constraints while I’m at work, but when I get home, maintain room temperature until I go to g p gsleep. Maintain a comfortable sleeping temperature while I sleep. Also, dry my clothes before morning. I need to use my

d i d f k k i i f llcar to drive to and from work, so make sure it is fully charged by morning. It’s acceptable if my clothes aren’t ready by morning or if the house is a couple degrees tooready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be ready to use before I leave for work.”f

8

Page 9: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example Goals: Description of Resident ActivitiesDescription of Resident Activities

“Maintain room temperature after waking up until I go toMaintain room temperature after waking up until I go to work. No temperature constraints while I’m at work, but when I get home, maintain room temperature until I go to g p gsleep. Maintain a comfortable sleeping temperature while I sleep. Also, dry my clothes before morning. I need to use my

d i d f k k i i f llcar to drive to and from work, so make sure it is fully charged by morning. It’s acceptable if my clothes aren’t ready by morning or if the house is a couple degrees tooready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be ready to use before I leave for work.”f

9

Page 10: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example Goals: Description of Resident Activities

“Maintain room temperature after waking up until I go to

Description of Resident ActivitiesMaintain room temperature after waking up until I go to

work. No temperature constraints while I’m at work, but when I get home, maintain room temperature until I go to g p gsleep. Maintain a comfortable sleeping temperature while I sleep. Also, dry my clothes before morning. I need to use my

d i d f k k i i f llcar to drive to and from work, so make sure it is fully charged by morning. It’s acceptable if my clothes aren’t ready by morning or if the house is a couple degrees tooready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be ready to use before I leave for work.”f

10

Page 11: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example Goals: Description of Resident ActivitiesDescription of Resident Activities

“Maintain room temperature after waking up until I go toMaintain room temperature after waking up until I go to work. No temperature constraints while I’m at work, but when I get home, maintain room temperature until I go to g p gsleep. Maintain a comfortable sleeping temperature while I sleep. Also, dry my clothes before morning. I need to use my

d i d f k k i i f llcar to drive to and from work, so make sure it is fully charged by morning. It’s acceptable if my clothes aren’t ready by morning or if the house is a couple degrees tooready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be ready to use before I leave for work.”f

11

Page 12: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Flexibility Available to Control

• When activities are performed.p

• When to charge/discharge batteries.g / g

• Which activities to shed (when supply is low).Which activities to shed (when supply is low).

12

Page 13: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Encoding: Qualitative State Plan (QSP)

[24 hours]

Maintain room temperature

Wake up

Wake up

Maintain room temperature

Go to work

Home from work

Go to sleep

Maintain comfortable sleeping temperature

[1‐3 hour] [6‐8 hours] [7‐8 hours][7‐9 hours]

“Maintain room temperature after waking up until I go to work. No temperature constraints while I’m at work, but when I get home, maintain room temperatureuntil I go to sleep. Maintain a

f bl l h lcomfortable sleeping temperature while I sleep.”

13

Page 14: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Encoding: Qualitative State Plan (QSP)

[24 hours]

Maintain room temperature

Wake up

Wake up

Maintain room temperature

Go to work

Home from work

Go to sleep

Maintain comfortable sleeping temperature

[1‐3 hour] [6‐8 hours] [7‐8 hours][7‐9 hours]

“Maintain room temperature after waking up until I go to work. No temperature

constraints while I’m at work, but when I get home, maintain room temperatureuntil I go to sleep. Maintain a

f bl l h lcomfortable sleeping temperature while I sleep.”

14

Page 15: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Encode the Qualitative State Plan and Dynamics within a Model-Predictive Controllerwithin a Model-Predictive Controller

minJ(X U) H(x )minU

J(X,U) H(xT )s t Cost function (e.g. fuel consumption)

ttt BuAxx 1

s.t.Dynamics

Cos u c o (e g ue co su p o )

tttTt 110T N M

hiT ij

(Discrete time)

t 0

i 0

j 0

htiT xt gt

ijConstraints

Mixed Logic or Integer

Ttxx0 X State vector (e.g. position of vehicle)

Mixed Logic or Integer

15 Ttuu 10 U Control inputs

Page 16: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

pSulu Results

[24 hours]

Wake up

Wake up

H

16

Maintain room temperature

pMaintain room temperature

Go to work

Home from work

Go to sleep

Maintain comfortable sleeping temperature

Page 17: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Energy Savings: Optimal Control

• 42.8% savings in winter over PID• 15.3%, 16.8%, and 4.4% in spring, summer,

autumn

Page 18: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Energy Savings: Flexibility

• Reduction in energy consumption by considering id t fl ibilitresident flexibility.

• 10.4%, 1.6%, 1.6%, and 0.7% in the winter, spring, summer, and autumn.

Page 19: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Testbed: Connected Sustainable HomeFederico Casalegno (PI) MIT Mobile Experience LabFederico Casalegno (PI), MIT Mobile Experience Lab

• Goal: Optimally control HVAC, window opacity, washer/dryer, e‐car.• Objective: Minimize energy cost.• Uncertainty: Solar input, outside temp, energy supply, occupancy.• Risk: Resident goals not satisfied; occupant uncomfortable.

19

Page 20: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Managing Uncertainty and Risk

• 20% usage rate – Xerox PARC Responsive Environment study, 1993.• Each room has a different occupancy profile

Occupancy is Uncertain Controller must take risk.• Each room has a different occupancy profile.

Occupancy probability Late lunch @ 2pm100%100%

Max occupancyrate @ 5pm

Crazy night workers

rate @ 5pm

0%

12am 12pm6am 6pm 12am

0%

CSAIL students cannot wake up early

Page 21: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Control Decisions Imply Risk

• When should a controller take risk?– Risk at time t : δt

– Acceptable risk over time horizon: ∆ T

t 0 or pt

tt1

obab

ility 100%

d at

t

δ= 0

ancy

pro

allo

cate

d

δt = ptδt 0

: Occ

upa

0%: Ris

k a

12am 12pm6am 6pm 12am

p t:

δ t

Page 22: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Approach: Risk Allocationwith Masahiro Onowith Masahiro Ono

Framework :– Chance-constrained

Stochastic OptimizationStochastic Optimization.

Methods:– Iterative Risk Allocation (IRA) te at e s ocat o ( )

algorithm.Market based Iterati e Risk Allocation– Market-based Iterative Risk Allocation (MIRA) algorithm.

22

Page 23: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example: Race Car Path Planning

Planned Path

Actual Path

Goal

Actual Path

Walls

Start

23

Page 24: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example: Race Car Path Planning

C t t 100%Planned Path

Actual Path

• Cannot guarantee 100% safety.

Goal

Actual Path• Driver wants a probabilistic

guarantee:Walls P(crash) < 0.1%

Chance constraint.

Start

24

Page 25: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Chance‐Constrained Optimal Planning

)(min uJs t

)(min :1:1

Tu

uJT

T UCost function (e.g. fuel consumption)

Convex function

Stochastic dynamics

s.t.

tttt

T

twBuAxx

1

1

0

( g p )

),0(~ tt Nw Risk bound(Upper bound of the probability of failure)

t0

),( tt

),(~ 0,00 xxNx probability of failure)Assumption: Δ < 0.5

1Pr iiT

NTgxh

,

Chance constraint

25

1Pr

11 tttitgxhChance constraint

Page 26: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Example: Race Car Path Planning

C t t 100%Planned Path

Actual Path

• Cannot guarantee 100% safety.

GoalSafety Margin

Safe

• Driver wants a probabilistic guarantee:

Walls

ty Margin

P(crash) < 0.1%Chance constraint.

Start

n

• Approach: design safetyApproach: design safety margin.

26

Page 27: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Iterative Risk Allocation (IRA) Algorithm

• Starts from a suboptimal risk allocation.• Improves the risk allocation through iteration• Improves the risk allocation through iteration.

Iteration

27

Page 28: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Iterative Risk Allocation AlgorithmAlgorithm IRANo gap = Constraint is active

1 Initialize with arbitrary risk allocation.

2 Loop3 Compute the best path for

Gp p

the current risk allocation.4 Decrease risk where a

t i t i i ti

Goal

Best available path constraint is inactive.

5 Increase risk where a constraint is active.

given the safety margin

constraint is active.6 End loopStartSafety margin

28

Gap = constraint is inactive

Page 29: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Iterative Risk Allocation AlgorithmAlgorithm IRA

1 Initialize with arbitrary risk allocation.

2 Loop3 Compute the best path for

Gp p

the current risk allocation.4 Decrease risk where a

t i t i i ti

Goal

constraint is inactive.5 Increase risk where a

constraint is active.constraint is active.6 End loopStartSafety margin

29

Page 30: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Iterative Risk Allocation AlgorithmAlgorithm IRA

1 Initialize with arbitrary risk allocation.

2 Loop3 Compute the best path for

Gp p

the current risk allocation.4 Decrease risk where a

t i t i i ti

Goal

constraint is inactive.5 Increase risk where a

constraint is active.constraint is active.6 End loopStartSafety margin

30

Page 31: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

MPC for Dynamic WindowRobust-IRA-

Solar heat input

Outside temperature

Heat the room using sunlight

6am 12pm 6pm

pera

ture

Optimal temperature

ble

rang

e Heat the room using sunlight…

oom

Tem

p

Com

forta

b

so that the temperature will stay within the comfortable

Ro C …so that the temperature will stay within the comfortable

range WITHOUT using heaters in the night

31

Page 32: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Application: Building Control

30°C

(a) First Iteration (b) Second Iteration

22°C25°C

30°CActive  Active 

Home HomeAsleep 

Home Home

18°C

22 C

20°C

Inactive

Asleep  Away  Away 

12 pm 5 pm 12 pm 0 am 5°C

12 pm 5 pm 12 pm0 am 8 am 8 am

Inactive

: S f t i: Optimal plan at current iteration : Optimal plan at previous iteration

: Safety margin

Take risk of violating resident constraints where largest energyconstraints where largest energy savings are possible.

Page 33: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Robust-IRA-MPC Results

Margin protects against uncertaintyagainst uncertainty

33

Page 34: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Results

Page 35: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Improvement in Comfort

• Deterministic control (Sulu): 30% comfort i l tiviolations.

• Risk-sensitive control (p-Sulu): near 0% violations.

Page 36: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

(Sub)Urban Scale Sustainability( ) y• Heterogeneous

connected homes withconnected homes with different energy sources.

• Symmetric energy exchange between houseshouses.

• Challenge: – How to distribute

energy optimally, – while limiting the risk of

an energy shortage,gy g ,– without centralized

control.

Page 37: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Allocation between Risk‐coupled Agentsp g

IMulti‐agent Operator

)(min

1:1:1

NI

i

ii

UUJ

II U

System’s risk bound: 0.1%specifies

1Pr ..

11

in

iiTn

N

n

I

igXhts

iSystem s risk bound: 0.1%

Risk is distributed among agents

IDecomposed, deterministic RA reformulation 

+0.04% 0.06%

I

i

ii

U INi

IIUJ

1,)(min

:1:

:1:1 U

I N

in

in

in

iiTnni

i

mgXhts .. 1 1 1 2 2 2

Risk is distributed among constraints

i n

in

1 1

37

1 2 3 1 2 30.02% 0.01% 0.02% 0.03%0.01% 0.01%

Page 38: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Allocation between Risk‐coupled Agentsp g

IMulti‐agent Operator

)(min

1:1:1

NI

i

ii

UUJ

II U

System’s risk bound: 0.1%specifies

1Pr ..

11

in

iiTn

N

n

I

igXhts

iSystem s risk bound: 0.1%

Risk is distributed among agents

IDecomposed, deterministic reformulation 

+0.04% 0.06%

I

i

ii

U INi

IIUJ

1,)(min

:1:

:1:1 U• Need to optimize risk allocation between

I N

in

in

in

iiTnni

i

mgXhts .. p

agents since they have different sensitivities to risk.

i n

in

1 1

38

Individualrisk bounds System’s

risk bound

Page 39: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Market‐based Iterative Risk Allocation• Treat each agent as an i d d d k

Operator supplies risk

Operatorindependent decision maker.

• Agents communicate through System’s risk bound: 0.1%specifies

market.• Find a globally optimal 

System s risk bound: 0.1%

Risk is distributed among agentsg y p

solution through iteration.• Approach is economically

+0.04% 0.06%

Approach is economically inspired (tâtonnement):– Risk is a resource traded in aAgents consume risk  – Risk is a resource traded in a market.

– Each agent has a demand for riskEach agent has a demand for riskas a function of the price of risk.  

39 Individualrisk bounds System’s

risk bound Demandsfor risk Supply

of risk

Page 40: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Based on Dual Decomposition

i’th t (P i l)

Decentralized OptimizationRisk taken by the i’th agentCentralized Optimization

(decomposed, deterministic form)

ii

UUJ

iii )(min

U

i’th agent: (Primal)

ipDI

ii UJ )(min

( p , )

it

iit

iit

T

t

U

uBxAxts

iN

ii

11

,

..

:1U

iiiiiTI

iU INi

II

uBxAxts

UJ1,

)(min:1:

:1:1 U Dual variable= Price of risk

in

in

in

iiTn

N

n

t

mgXh

1

1

in

in

in

iiTn

NI

tttti

mgXh

uBxAxts 111

..

in 1

I N

in

nnnnnii

g11

Demand for riskfrom i’th agent

iN

n

in

iD1

i n

n1 1

Convex optimization

I

i pD* )(

Market (Dual)

40

i

pD1

)(

Root finding problem

Page 41: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

41

Page 42: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Market-based Contingent Power Dispatch

• Two kinds of energies are traded in a market: – Nominal power– Contingent power

Predicted loaden

sity

babi

lity

de

Micro-gridLoad (kW)

Pro

b

Load (kW)

Mean: 300kWN i l

Standard deviation: 50kW= Contingent power

=Nominal power

Page 43: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Key Elements of Approach1. Increase flexibility on demand side through

– flexible specifications of user needs and preferences, and– goal‐directed optimal planning.

2. Improve robustness to uncertainty in supply and demand throughg– risk‐constrained planning, and– Distributed risk markets.Distributed risk markets.

3. Reduce labor, hence adoption barriers, by automatingInference of expected user behavior and– Inference of expected user behavior, and

– Models of environment and plant.

Page 44: Energy Efficient Control of a Smart Grid Homes · 2012. 12. 18. · Energy Efficient Control of a Smart Grid with Sustainable Homes bdbased on Di ib iDistributing Ri kRisk Prof. Brian

Questions?