energy conversation and protection

18
20“ 佐仙琴报 Chinese Journal ofCatalysis 、,01.32 No.6 Article ID:0253—9837(201 1)06·0879·12 DOI:10.1016/S1872-2067(10『160209-4 Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems Kimfung LI,David MARTIN,Junwang TANG+ Department ofChemical Engineering,University College London,Torrington Place,London,WClE 7JE,UK Review:87‘》_1890 Abstract:Over the last several years,the need to find clean and renewable energy sources has increased rapidly because current fossil fuels will not only eventually be depleted,but their continuous combustion leads to a dramatic increase in the carbon dioxide amount in atmos— phere.Utilisation of the Sun’s radiation can provide a solution to both problems.Hydrogen fuel can be generated by using solar energy to split water,and liquid fuels can be produced via direct C02 photoreduction.This would create an essentially free carbon or at least carbon neutral energy cycle.In this tutorial review,the current progress in fuels’generation directly driven by solar energy issummarised.Funda mental mechanisms are discussed with suggestions for future research. Key words:solar energy;photocatalysis;carbon dioxide conversion;water splitting CLC number:0643 Document code:A Received 30 October 2010.Accepted 5 January 2011. +Corresponding author.Tel:+44—20-7679—7393;E-mail:Junwang.tang@ucl.ac.uk This work was supported by the Engineering and Physical Sciences Research Council(EPSR0. English edition available online at Elsevier ScienceDirect(http.'//www.sciencedirect.com/science/journal/1 The increasing demand for global energy has drawn much attention to the field of energy development.It is pre— dicted that the annual amount of energy requirement will double in the next fi肌years from 13.5 TW/year in 2001 to 27 Tw/year in 2050[1,2].At present,the main energy out- put comes from hydrocarbon fuels.and only 20%comes from other energy sources such as tidal power,nuclear en. ergy,biomass,photovoltaics,etc.Hydrocarbon fuels have many advantages over the other types of fuels,including easy storage and transportation,availability and a high volumetric energy density(33 GJ/m’)[3】.The total amount of global hydrocarbon fuel available is limited and the large amounts of C02 emitted from burning hydrocarbon fuels are a significant drawback against their application.MoreoveL safety and health jssues behind the storage of hydrocarbon fuels are often ignored.The oil spill inthe Gulf of Mexico has caused an enormous impact tothe marine ecosystem. which has greatly increased the awareness and need for alternative clean energy.Taking into account all these fac— tors,the development of new sources of renewable and clean energⅣto replace fossil fuels has become one of the most important topics for humans today. Sunlight isthe most abundant renewable energy source in the world.The energy hitting the Earth’s surface isabout 100000 Tw/year[4】.In addition,solar energy is clean, non.monopolized,and environmentally friendly.The only drawback is its intermittent irradiation.Therefore.the abil. ity to capture,convert,and store solar energy for later use is the primary goal for researchers inthe field today.Nature has shown us how toutilise sunlight and learning from it will teach us to develop a sustainable energy source.In natural photosynthesis,plants oxidize water inthe PSII re. action centre leading to the formation of 02 and production of reducing equivalents.These are further used in the Calvin cycle inthe reduction of CO,.Following asimilar mecha. nism.an artificial system can be designed not only to oxi. dize the water ina light driven process to produce 0,but also todrive the reduction of protons to yield hydrogen. Hydrogen has the highest energy density of fuels by weight. Ithas amaximum efficiency of 38%when used inan Otto cycle internal combustion engine.which is 8%higher than a gasoline internal combustion engine.Water is the only combustion product of hydrogen driven system.Due to these advantages,hydrogen generation by a sunlight driven water spitting process has been widely investigated. Besides the concern of the limited amount of hydrocar. bon fuels reserve.the impact of burning fossil mels is huge. Researches based on many climate simulations suggest that atthe current increase rate of atmospheric CO,concentra. tion,the average global temperature will go up about 6。C before the end of this century.6 oC issufncient to switch Earth’s climate from glacial conditions to all ice.free Ant— arctica f5,61.While discussions have begun on means to reduce C02 emissions,it is apparent that the atmospheric CO,concentration will continue toincrease due to hydro. carbon consumption.Approximately l billion barrels of oil 万方数据

Upload: rajivparaj

Post on 11-Nov-2015

221 views

Category:

Documents


4 download

DESCRIPTION

Energy Conversation and protection

TRANSCRIPT

  • 20

    ChineseJournalofCatalysis 0132No6

    ArticleID02539837(2011)06087912 DOI101016S1872-2067(10160209-4

    ConversionofSolarEnergytoFuelsbyInorganic

    HeterogeneousSystems

    KimfungLIDavidMARTINJunwangTANG+

    DepartmentofChemicalEngineering,UniversityCollegeLondonTorringtonPlace,LondonWClE7JE,UK

    Review87_1890

    AbstractOverthelastseveralyearstheneedtofindcleanandrenewableenergysourceshasincreasedrapidlybecausecurrentfossilfuels

    willnotonlyeventuallybedepletedbuttheircontinuouscombustionleadstoadramaticincreaseinthecarbondioxideamountinatmos

    phereUtilisationoftheSunsradiationcanprovideasolutiontobothproblemsHydrogenfuelcanbegeneratedbyusingsolarenergyto

    splitwater,andliquidfuelscanbeproducedviadirectC02photoreductionThiswouldcreateanessentiallyfreecarbonoratleastcarbon

    neutralenergycycleInthistutorialreview,thecurrentprogressinfuelsgenerationdirectlydrivenbysolarenergyissummarisedFunda-mentalmechanismsarediscussedwithsuggestionsforfutureresearch

    KeywordssolarenergyphotocatalysiscarbondioxideconversionwatersplittingCLCnumber0643DocumentcodeA

    Received30October2010Accepted5January2011

    +CorrespondingauthorTel+4420-76797393E-mailJunwangtang@uclacukThisworkwassupportedbytheEngineeringandPhysicalSciencesResearchCouncil(EPSR0

    EnglisheditionavailableonlineatElsevierScienceDirect(http'wwwsciencedirectcomsciencejournal18722067)

    Theincreasingdemandforglobalenergyhasdrawn

    muchattentiontothefieldofenergydevelopmentItispredictedthattheannualamountofenergyrequirementwill

    doubleinthenextfiyearsfrom135TWyearin2001to27Twyearin2050[12]Atpresentthemainenergyout-

    putcomesfromhydrocarbonfuelsandonly20comes

    fromotherenergysourcessuchastidalpowernuclearen

    ergy,biomassphotovoltaicsetcHydrocarbonfuelshave

    manyadvantagesovertheothertypesoffuelsincluding

    easystorageandtransportationavailabilityanda high

    volumetricenergydensity(33GJm)[3Thetotalamountofglobalhydrocarbonfuelavailableislimitedandthelarge

    amountsofC02emittedfromburninghydrocarbonfuelsare

    asignificantdrawbackagainsttheirapplicationMoreoveL

    safetyandhealthjssuesbehindthestorageofhydrocarbon

    fuelsareoftenignoredTheoilspillintheGulfofMexico

    hascausedanenormousimpacttothemarineecosystem

    whichhasgreatlyincreasedtheawarenessandneedfor

    alternativecleanenergyTakingintoaccountallthesefac

    torsthedevelopmentofnewsourcesofrenewableand

    cleanenergtoreplacefossilfuelshasbecomeoneofthe

    mostimportanttopicsforhumanstoday

    Sunlightisthemostabundantrenewableenergysourcein

    theworldTheenergyhittingtheEarthssurfaceisabout100000Twyear[4Inadditionsolarenergyis clean

    nonmonopolizedandenvironmentallyfriendlyTheonlydrawbackisitsintermittentirradiationThereforetheabil

    itytocaptureconvertandstoresolarenergyforlateruseis

    theprimarygoalforresearchersinthefieldtodayNature

    hasshownushowtoutilisesunlightandlearningfromit

    willteachustodevelopasustainableenergysourceIn

    naturalphotosynthesisplantsoxidizewaterinthePSIIre

    actioncentreleadingtotheformationof02andproductionofreducingequivalentsThesearefurtherusedintheCalvin

    cycleinthereductionofCOFollowingasimilarmecha

    nismanartificialsystemcanbedesignednotonlytooxi

    dizethewaterinalightdrivenprocesstoproduce0but

    alsotodrivethereductionofprotonstoyieldhydrogen

    HydrogenhasthehighestenergydensityoffuelsbyweightIthasamaximumefficiencyof38whenusedinanOtto

    cycleinternalcombustionenginewhichis8higherthana

    gasolineinternalcombustionengineWateris theonlycombustionproductofhydrogendrivensystemDueto

    theseadvantageshydrogengenerationbyasunlightdriven

    waterspittingprocesshasbeenwidelyinvestigated

    Besidestheconcernofthelimitedamountofhydrocar

    bonfuelsreservetheimpactofburningfossilmelsishuge

    Researchesbasedonmanyclimatesimulationssuggestthat

    atthecurrentincreaserateofatmosphericCOconcentra

    tiontheaverageglobaltemperaturewillgoupabout6C

    beforetheendofthiscentury6oCissufncienttoswitch

    EarthsclimatefromglacialconditionstoallicefreeAnt

    arcticaf561WhilediscussionshavebegunonmeanstoreduceC02emissionsitisapparentthattheatmospheric

    COconcentrationwillcontinuetoincreaseduetohydro

    carbonconsumptionApproximatelyl billionbarrelsofoil

  • ChinCatal201132879-890

    at-econsumedtosupplytheworldenergyrequirementevery

    12dayswhichrepresentsnearlyI trillionpoundsofC02

    releasedtotheatmosphereInresponsetothisthereare

    severalstrategiesdevelopedtoreduceC02levelsReduc-

    tionofC02levelscarlbcachievedbycarboncaptureand

    storage(ccs)inwhichC02collectedfromitsemission

    sourceswouldbeburiadundertheEach71However)thecompressionandburialofC02requireextraenergygener-

    atingmoreC02InadditiontotheextraenergyrequirementfurstoringC02buryingC02alsohastheriskofleakage

    andin1986theeruptionofnaturallysequestratedC02as-

    phyxiatedl700peopleinCameroon[8

    RecyclingCnandconveningitintoahighenergyfuelisaHadvancedsolutionHowever)COisthethermody-

    nanricfinaIproductofcombustionthusits stableandC02conversionrequireshugeenergyinputC02canbe

    convenodbybiomassproductionprocessthermochemicalelectrochemicalandphotochemicalmethodsBiomassto

    fuelisaviableapproachforcarbonrecyclingandinvolves

    C02absorptionbyplantsduringphotosynthesis[910]However,itiswellknownthatthewholeprocessisvery

    timeconsumingandchazacterizedbYanextremelylow

    efficiencyUnlikephotoreductionofC02thermalorelec-

    trochemicalprocessrequiresveryhightemperaturesora

    strongextemalvoltagebiastoprovideenergytodrivethe

    reaction+whichlowcmtheefficiencyofthedeviceandlim-

    IIsitsdeploymentPhotocatalysiscanreduceC02topro-

    ducehydrocarbonsinasimilarwaytotheCalvincycleIn

    naturalphotosynthesis1mlsisalsoanotherapproachto

    eonvcnandstorelarenergyThefollowingequations(()

    8))ilinslratesolarfuelgenerationpathwaysincluding

    solarH2pmductinnandconversionofC02topotentialfuels

    drivenbyphotocatalysis]SolarhydrogenChemicalpotential(eVvsNHE)

    21t20+4h+02+4H I 23 ()

    21t++2e_H2 0 (2)C02conversion

    C02+e_C02 149 (3)C02H+2f_HC00H019 H1

    C0+2H7+2e_CO+HO019 f51

    CO+4H+4e_HCH0+HO006 f61

    C02+6H++6e1_CH30H+H20+003 (7)

    C02+8H+8e-C}14+H20+018 (8)Thisshortreviewcusesonsolarhydrogenproduction

    fromwatersplittingandC02conversionbyinorganicbet-

    erogeneoussystemsandtheuseofsemiconductorphoto-

    catalystsTheprineiplesofbowinorganicphotocamlysts

    operateundersunlightaxefirstdescribedandthenthereis

    ananalysisoftheup-todateresearchsituationincludingthe

    activematerialsfurbothreactionpathwaysandsomeim-

    portantfactorsinfluencingconversionefficiencyFinally,mechanisticworkthatisbeingcarriedouttoguidethede-

    signofthenextgenerationofmaterialswillbediscussed

    Photocatalyticfuelproductionhasbeenwidelystudied

    andIsa fastmovingfieldAnumberofexcellentreview

    articleshavebeenpublishedinnyears15There-fomweconcentrateonalimitednumberofrepresentative

    mterialsIntbistutorialreviewWedoriotconsiderlndetailtheuseofphotocamlyticfilmsa5photoanodesandphoto-cathodesandhomogeneoussystems

    WatersplittingandC02conversionprocessessharethe

    samcenergyschemefFig11Whenlightisincidentonthe

    semiconductor,electconslocatedlnthevalencebandfVB

    inthesemiconductorcanbeexcitedbylighthavingenergy

    greatermanthebandgapofsemiconductor,theenergydif-

    femncebetweenthetopofthefilledvalencebandandthe

    bottomoftheemptyconductionband(cB)resultinginthe

    electronsbeingpromoted^DmtheVBtotheCBsimulta

    neouslyleavingpositivelychargedholesintheVBThpair

    canifrecombinationdoesnothappenasfastasseparation

    mldtransportatic|nwe10thesurfaceofsemiconductor

    andsplitwstertoproduceoxygenandhydrogenorreduce

    C02toyieldhydrocarbons(egalcohols)

    EVNHE

    +

    000eV

    lIomV23ev!

  • wwwchxbcn KimfungLIeta1ConversionofSolarEnergytoFuelsbyInorganicHeterogeneousSystems 881

    -2O

    -1O

    0

    l10

    2O

    4O

    Fig2BandlevelsofsimplesemiconductorsReproducedfromRef[12

    Thereforethedevelopmentofaphotocatalystwithactivity

    fromtheUVthroughtovisiblewavelengths(-750am)andwithaVBandCBthatstraddlethereactionpotentialsisone

    ofkeygoalsinobtainingoptimumsolartofuelefficiencyThebandgapsofsomesimplesemiconductorshavebeen

    measuredandareshowninFig2

    Thereactionprocessonsemiconductorphotocatalystsis

    oftenconsideredascomprisingthreesteps(1)chargecar-

    tier(electronhole)generationfollowingabsorptionofa

    photonofsuitableenergy,(2)chargecarrierseparationand

    transportation(3)chemicalreactionbetweensurfacespe-ciesandthechargecarriersThefirsttwostepsarephotophysicalandthefinalstepisachemicalprocessAphoto

    catalyticreactionisthereforeacomplicatedcombinationof

    photophysicalandphotochemicalprocessesBesidesen

    hancingtheabilityofvisiblelightharvesting(step(1))thereisequalimportanceinthedevelopmentofa fast

    chargeseparationsystem(step(2))andalteringmaterial

    morphologyandsurfacemodificationtoincreasethereac

    tionrate(step(3))Therehavebeennumerousexamplesintheliteratureof

    semiconductormaterialsthatareabletoevolveeitherhy

    drogenoroxygenfromwaterinthepresenceofasuitable

    chargecarrierscavenger(egtohaveH2productionahole

    scavengerisemployed)However,themajorityoftheseare

    unabletoproducebothoxygenandhydrogensimuitane-

    ouslyinstoichiometricratiointheabsenceofsacrificial

    reagentsThisdemonstratesthatalthoughthecorrectposi

    tioningandenergyofthebandgapareprerequisiteitisnot

    thesolefactorindeterminingtheheterogeneousphotocata-

    lyricactivityOtherfactorssuchaskineticcompetition

    throughchargecarrierrecombinationwhichmayoccurata

    fasterratethantherequiredsurfacereductiveandoxidative

    chemistry,canbethedominantfactorindeterminingreac

    tivitytowardsthewatersplittingreaction

    Incontrasttowatersplicingonlyfewexampleshave

    beenreportedforC02photoconversionAlthoughC02

    photoconversionhasasimilarmechanismitrequires2-8

    electronstoreduceCOintothedesiredproductInother

    wordsmorefreeelectronsarerequiredinthephotocatalyst

    Thedifficultyforbuildingupahighconcentrationoffree

    electronsinthesemiconductoristhattherecombinationrate

    woulddramaticallyincreasetoo

    2 Materialdevelopment

    21 Solarhydrogengeneration

    In1972FuiishimaandHondafl61foundthatTi02can

    produceaphotocurrentinanelectrochemicalcellwhenthey

    usedPtasthecounterelectrodeandappliedanelectrical

    biasExtensiveresearchhasbeenputintothisfieldafterthis

    originalbenchmarkwassetTi02hasbeencontinuallyin

    vestigatedbyvariousmethodsincludingdopingwithdif-

    ferentelementschangingtheparticlemorphologyandapplyingdifferentcocatalystsIn1985YamagutiandSato

    71foundthatRhandNaOHcoloadedTi02hadanenor

    mousincreaseinactivitycomparedtoTiOitselfinphoto

    catalyticwatersplicingprocessSellieta1[18reportedelectrontransportationfromTi02photoanodetothePt

    cathodewasenhancedbyapHdilye-rencebetweenthetwounderanexternalbiasDuonghongeta1[19reporteda

    TiOcolloidloadedwithPtandRu02ledtoanincreased

    quantumyieldandobtainedbothhydrogenandoxygen

    underUVilluminationH2generationratereached28mlh

    whichwasmuchhigherthanthel mlhwithoutRu0220]

    02productionwasnotdetectedatthebeginningoftheex

    pefimentwhichwasassumedduetoitsstrongadsorption

    onthecatalystintheinitialperiodInsteadofusinganatase

    Ti02Fueta121studiedbicrystallinetitania(TiOz(B))Thevsynthesisedandinvestigatedaheteropolybluesensi

    tizerandPtloadedTi02(B)nanoribbonforwaterdecompo

  • 882 201132879_890

    sitionforhydrogenev01utionTheirresultshowedthata

    mixtureofTi02(B)andanatasegavethemaXimumquantum

    yield(quantumyield(QY)=811)suggestingthatinter

    facialchargeseparationimpmVedtheeciencyInanother

    reportbythisgroupthesolventeaectofwatersplittingwas

    inVestigatedThehydrogenproductionratewasfoundtobe

    increasedinthepresenceofmonochlomaceticacidand

    dichloroaceticacidwithPtP25asthephotocatalyst[22AlaenumberofinVestigationshadmadeenstoimprovethischestableandnontoxicmaterialUnfortunately

    Ti02isstilllimitedbyitslaebandgapwhichmakesthe

    photocatalystonlyresponsivetotheuVornearUVregionofthesoIarspectrumDespitethisscientistshaVepioneered

    arangeofUVresponsivephotocatalyticmaterials

    Domensgrouppaidpanicularattentiont0SrTi03a

    pemvskitestructuredmaterial[2328TheyexaminedtheuseofaNiococatalystmountedonSIjri03asaphotoca1ystinwateruIlderUVradiationandreponedbothoxygen

    andhydrogenproductionThestudyshowedtheNi0co

    catalystwaspreparedbyH2reductionandsubsequent02

    oxidationonNiotofomaNiNiqdoublelayer(tennedNiO)Kimeta1[29studiedanotherimponanttitanate

    La2Ti207whichisalayeredstructurematerialconsistingof

    fburTi06itslabssamtedbyLaionslayersThey

    reportedthatwhenLa2Ti207splitswaterH2and02were

    pmducedinlargeamounts(QYuptol2)illtllepresenceofaNiOcocatalystunderUVZr02hasaVerylaeband

    gap(5o_57v)butcallsplitwaterwimouta cocatalystunderUVillumination[30SayamaandArakawa[31r}

    portedtheuseofZr02withaddedalkalicarbonateinwater'

    NaHC03gavethehighestemciencyinwatersplittingItis

    wonhnotingthattheadditionofothercommonmetalsand

    metaloxidescocatalystst0Zr02ledtoadecreasein

    photocatalicactivityiIlwaterspliningwhichdiffbred

    fmmotherphotocatalystsThissuggeststhatthereisalaeeneeticbarTjcrbetWeenthecocatalystandsemiconductor

    asaresultofthelaebandgapandpositionoftheCBand

    VBJiangeta1[32tumedtheirattentiontoZrW208in

    ordertoovercomettleproblemofZrOhavinglargeband

    gZrW208wasestimatedtohaveabandgapofabout40evItshowedabilitodecomposewatertoyieldhydmgen

    oroxygeninthepresenceofanappropriateelectronorhole

    scaVengerundera300WHgXelampTheproductionrate

    Vasntparticularlyhighwith234molhofhydrogenand

    98molllofoxygen[32Tantalatesandniobateshaveshownhiperfoancesin

    photocatalyticactivit)rforwatersplittingManyresearchers

    havestudiedandreponedMTa033336M2Ta207

    [3739]MTa20640andM2Nb207(M=alkalinemetalor

    earthalkalinemetal)384041gaVebothhydrogenand

    oxygenproductionsimultaneouslywhenreactedwithwater

    underUVilIuminationAlthouthelaebandgsof

    mesematerialslimitmeirabilitoabsorbthemaiorpansofsunIightthefacilemodificationofthephotocatalystbytheincoorationofasuitableforeignmetalintotheMorBsitesin theperoVskjtestmcture(AB03)ortanta-

    latesniobatesaIlowsthepreparationofadircntderiva-tiVephotocalystKatoeta1[3435reportedNiOloaded

    NaTh03exhibitedaparticularlyhighquantumyield(QY=20at270nIll)forbothhydrogenandoxygenproductionInsubsequentwork[36theyfoundthatbydopingNa-

    Th03Niowith2m01LathequantumyieIdwasin

    creaseddmmaticallyto56ItwasbelievedthattheLaion

    hadaneffectinreducingtheparticlesizeandenhancedthe

    materialssuceareaandreactionsitesM4Nb6017atypicallayeredmaterialwaLsactiveforcompletewatersplitting

    underUVlightasreponedbySayama[33IIlamrther

    studyitwassuggestedthatH2and02wereproducedin

    diaerentlayerswhichreducedthechanceofchaerecom-

    binationAlthoughM4Nb6017wasabIetosplitwaterwith

    OutanycocatalystDomenreportedthathydrogenproduc

    tiOncouldbeenhancedbysuitableholescavengersdueto

    thejonexchangeofprotons[25BesidesthetransitionmetaIphotocatalystsmainoup

    metaloxidematerialshaVealsobeeninVestigatedasphoto

    catalystsforwatersplittingbymanyresearchersElements

    ingroups13and14egInSnSbGaandGehavebeen

    reportedtobeactiveforwatersplittingwhenmountedwith

    appropriatecocatalystsSatoeta1[4243]reportedMIn204

    (M=CaSrandBa)whichhaddistonedIn06octahedrain

    thelatticeshowedH2d02pmduction)mpurewaterwhena cocatalyst(RuOx)wasaddedtothematerials

    throughanimpregnationmethodCaIn204exhibitedthe

    highestactiVityunderUVlightYeta1[44_46reponedMSn03(M=CaSrandBa)suspendedinpurewatergavehydrogenandoxygeninthepresenceofaRu02cocatalyst

    SrSn03hadthehighestphotocatalyticactiVityduetoa

    suitablebandpositionandfastphotogeneratedchargecrieransferintheproperdistonionofSn06inSrSn03A

    studyoftlleSrSn03morphologyfoundthatSrSn03nano

    rodsachieveda l0foldincreaseinphotocatalyticactiviwhencomparedtostandardpanicleswithasimilarsUdace

    areaandopticaldensi46Satoeta147havealsofoundM2Sb207cansplitwaterint0hydrogenaIldoxygenin

    aneastoichiometricratiounderUVradiation

    AnumberofnonoxidematerialssuchassulDhidesand

    nitrideshavebeenrecognisedfortheirabilitytosplitwater

    underUVillinationThevalencebandsofthesematerialsarecomposedofsorNorbitals111thiscategoznShasbeenmostinvestigatedYanagidaeta1486fst

    reportedthepmductionofhydrogenf-romZnSunderl25W

    Hglampilluminationusingtetrahydromranasholescaven

    gerInaIlotherexperimentD20wasusedinsteadofwater

    toconnnnthattheevolutionofhydrogenwasdirectly

  • Mchxbcn KimmngLIeta1ConVersionofSolarEnegytoFuelsbyInorganicHeterogeneousSystcms 883

    causedbyphotocatalyticwatersplitting[48Rebereta1

    [49]systematicallyexaminedznSphotocatalyticactiVityoverarangeofchangingconditionsincludingelectrondo

    norpHandtemperatureTheyreporteda90quantum

    vieldforhydmgenproductionat313nmilluminationof

    ZnScoatedwithPtinasolutionofNaSH1POandNaOH

    [4950KobayakawaetaI5lobtainedhydrogennom

    CuInS2andCuIn5S8suspendedinwaterwithasulphitehole

    scavenerunderUVilluminationHoweverallthesemetal

    sulphidesornitridessufferedf}ompoorstdbilityinthesys

    temandtheywereeasilyoxidisedbywater

    over43ofsunlightisinthevisiblepanofthespec

    tnlmwithonly4ofsunlightinUVregionInorderto

    maximisetheuseofsolarenergvthedevelopmentofvisible

    lightdriVenphotocatalystsisthusofthenrstpriorityThis

    meansthatthebandgapofthematerialmustbesmall

    Howeveritishardtofindsuchanarrowbandgapmaterial

    withsuitabIeCBandVBenergyIevelstoprovidethe

    over-potentialsfor theredoxreactionsW03is a

    wellI(nownphotocatalystforoxygenproductioninwater

    oxidationbuttheconductionbandpositionofitmakeshy

    drogenproductioneneeticallyunfavourableAttemptsat

    incorporatingdifferentelementshavebeentriedtoenable

    hy(Irogenproductionontungstenoxidetoovercomethe

    pmblemAgInW208AgBiW208andA92W04weresaidto

    haveahjgherconductionbandthanW03basedontheoreti

    calcalculationsandwhichwouldallowhydrogenproduc

    tionThelattermaterialcanactivelyproducebothoxygen

    andhydrogenasshownbyThngetal5253Kudoeta1

    [5456reportedmonocIinicBiV04animportantphotocatalvstcommonlvusedinwateroxidationtopmduceoxy

    genhasamaximumQYof9undervisiblelight(450nm)imdiationItwasf10undtobeheavilydependentontheprarationmethodandthecstalphasesampleobtained

    fromsoftchemicalsynthesiswiththemonoclinicphase

    exhibitedahigheractiVitythansampIesfmhightempem

    turesolidreactionsregardlessofthesurl'aceareaofthe

    catalystThelowerefficiencywasprobablyduetothe

    highernumberofdefectsitesinthematerjalincreasingthe

    recombinationprobabiliMostofthevisiblelightdrivenphotocatalystsforwater

    splittingrequireappropriatesacnciaIreagentsonlyafew

    metaloxideshavebeenreponedacveforcompletewater

    spliningZoueta1[57reportedNi-dopedInTh04cansplitwaterinabsenceofscavengerspeciesInthepresenceofa

    RuoorNi0cocatalvstestoichiometricratioofHand

    02was21withaQYof066at402nmTheundoped

    NioInTh04hasalsobeeninvestigatedandfoundtobeless

    activewhichwasduetothereplacementofNiptoIn

    inducingacontractionofthelatticeandthepartiallyfilled

    NiorbitalsreducedthebandgapofthemateriaIleadingto

    Visiblelitabsotion(

  • 884 C^fChf20ll32879890

    ReductionofC02bya singIecstalsemiconducting

    materialinaphotoelectricsystemwasreportedbyHalmarul

    f731ItwasfoundthatinaneIectmchemicalcellC02can

    bereducedtoveformicacidfomlaldehvdeandmetha-

    n01TheconditionswereasingleptVpeGaPcrystalasa

    photocathodeacarbon)dasthecounterelectrodeaque-

    ousbufkredelectrolytes01utionandCObubbledthrough

    thesolutionwhichwereirradiatedbyamercurylampIn

    laterworktheuseofptypeGaAsandptypeInPsingle

    crystalstoreduceC02tomethanolinC02saturatedNa2S04

    solutionunderbiaswasreportedbvCanfieldandFrese[74TheresultsDublishedsofarshowedthatsemiconductor

    nanoparticlespossesshigherphotocatalyticpeIfbITnancefor

    002reductioncomparedtobulkmaterialExtremelysmalI

    Ti02panicleshavinglargebandgapsshowedthehighest

    eciencyforCH4fonnation[75FujishimaandInoueet

    a1[76firstreportedthephotocatalyticreductionofC02on

    varioussemiconductorpowdersincludingGaP'Ti02Zn0

    CdSSiCandW03inanaqueoussuspensionsystemwith

    C02bubblingilluminatedbyaXelampwithoutofaidofan

    extemalbias0verallasmallamountoffornlicacidfor

    maldehydemethaneandmethanolwereproducedThey

    suggestedtheconVersionofa32tohydmcarbonproducts

    occuedbyamuItistepreactionpathwayandthefornlation

    selectiviofproductwasinnuencedbytheconduction

    bandpositionofthephotocatalystTheyieldofmethanol

    increasedastheconductionbandoftheDhotocatalystsbe

    camemorenegativecomparedtotheredoxpotentialof

    CH{0HH2C01W03hasamorepositiveconductionband

    thanCHOHHC01andthereforemethanolwasnotob-

    tainedintheprocessYahayaeta1[77]studiedTi02Ni0andZnOforC02rcductionundera355nmpulsedlaser

    Fromtheirresulttheysuggestedthatthereductionprocess

    of002doesnotfollowasinglemechanismandthereduc

    tionofHC01andcarbonateionsasweUasothermecha

    nismsalsoaff-ecttheDroductionofmethan01

    TiohasalsodrawnmuchinterestintheCODhotocata

    lyticreductionresearchneldduetotIlesuitabilitvofits

    bandgapaswellastheaforementionednontoxiclowcost

    andstablepropertiesTherehavebeennumerousmodifica

    tionsmadeonTi02AnpoandChjba78]useddispersedTi02anchoredonporous1VycorglasstoreduceC02under

    UVilluminationwhichresultedintheproductionofmeth

    anemethanoLandcarbonmonoxideFromthedirectdetec

    tionofintemediatespeciestheyproposedthatmethanecame6_omthereactionbetweencarbonradjcalsandatomic

    hydrogenThephotoreactionefficiencystronglydepended

    onthe002toH0ratioandreactiontemperature

    IchikawaandDoif79reducedC02tomethaneandeth

    ylenebyNafionfilmwithTi02andZnOCucoatedondif

    ferentsidesunderanextemalbiaswith82oftheC02

    convertedgiving44ofmethaneand24ofethylene

    TheirsystemconsistedofaperforatedthinnImtitaniaand

    anelectrocatalystseparatedbyaprotonseparatorWater

    nowedintothethinfilmandC02waspassedthroughthe

    photoelecnocatalystSasirekhaeta1 [80reponedthe

    photoreductionofC02inwatertoproducemethanolover

    RudopedTi02onSi02Itwasirradiatedwitha l000W

    highpressuremercuDrVapourlampwithapeaklightinten

    sityat365nmilluminationTheratiobetweenRudoping

    andTiOwasfoundtohaveaneectontheeciencvOfthereactionEnhancementsofefnciencvwereachieved

    when05ofRu(200umolofmethanolandmethane

    f-romC02)orl0ofTi02(250molofmethanoland

    methanefromC021was10adedwithSi02However

    RuTioSiOhadaloweractivitythanTi0SioThein

    creaseinefnciencVwasattributedtotheUVtmnsparent

    propertyofsilicasuchthattherewasnolossofeffective

    nessoftheUVimdiationonTiOaswasthecasewithbulkTi0f811

    Xiaeta1821reportedtheuseofmultiwalledcarbon

    nanotubesblendedwithTiOforCOandwaterreduction

    Theselectivityoftheproductdependedonthemethodused

    in materialpreparationfomcacidwasobtainedfrom

    hydrothennalsynthesisandethanolwasproducedfrom

    s01gelsynthesisArecentresearchinthephotocatalyticreductionofgasphaseoD2bysolarradiationwasreponedbyVaheseandcoworkers[83]usjngTj02nanotubear

    rayswithcopperandPtnanopaniclesWatervapoursaturatedcarbondioxidewasreducedtomethaneandotherhv

    drocarbonswithoutanextemalbiasVarioushvdrocarbOns

    wereobtainedataproductionrateofl60pl(gh)underAM

    15sunlightwithloadedCuandPt

    u84]reportedmethanolproduction(412mol(gh))whena 10wtATi02photocatalyst(coatedaroundan

    opticalfibre)wasirradiatedundera lightintensityof1O

    Wcmina speciallVdesignedreactorAninsituFT_IR

    (Fouriertransfonllinfraredspectroscopy)studywascarried

    outtoinvestigatethemechanismof00reductionThe

    studyproposedthereductionofC02underUViITadiation

    occurredbyamultistepmechanismstartingfmthead

    sorptionoflinearC02Anelectronandonehydrogenatom

    wereaddedtoyieldpmductsinthefornlateHCOODi-

    oxymethylene(H2COO)wasthenproducedbyaddingan-

    otherhydrogenatomDioxymethylenemigratedtotheoxy-

    genvacancyontheTi02siteandacceptedoneelectronand

    oneoxygenatomwasdetachedtofonnfoaldehyde

    (H2Co)Followingthismethoxy(CH30)wasfonedfrom

    acceptinganotherhydrogenatomFinallythemethoxyre

    actedwithwatertogiVemethanol84InanotherreportNiOloadedInla04wasexaminedinanopticalfibrereactor

    Methanolwasyieldedwithproductionratel13mol(gh)underconcentratedsunlightandl 11pmol(gh)underl00

    Whalogenlamp[85

  • www_chxbcnKimfhngUeta1ConversionofSolarEnergytoFuelsbyInorganicHeterogeneousSysems 885

    BesidethedevelopmentsmadeonTi02severalreports

    havebeenpublishedonnewphotocatalicmaterialsfor

    a32reductionARerZr02wasreportedtobephotocata

    licaIIyactiVeforwatersplitlingSayamaandArakawa

    [3lalsofoundthatZr02canreduceC02Theyinvestigatedthephenomenausinga1CucocatalystloadedZ102asthe

    photocatalystinaNaHC03solution(topIovidetheC02)underHglampilluminaonThereactionproduced195

    mmolmhydmgenl08mmolhoxygenand25mmol

    carbonmonoxideLoeta1f86havealsoinvestigatedthe

    useofZr02andP25powderfbrC02photoconVersionusing

    COmixedwithHandwaterunderUVilluminationCa

    bonmonoxidewasproducedasasoleproductwithZr02

    whilewjthP25mechanecarbonmonoxideandethene

    wereobtainedHalmanneta1761examinedC02photoreductionbySrTi0undersunlightinaqueouss01utionwith

    C02bubblingFoicacidf-ormaldehydeandmethanolwereproducedasproductsMatsumotoeta1[87reponeda

    ptypeCaFe204insodiumhydroxjdesoJutionunderHg

    lamptoconvenC02andobtainedmethanolandfomalde

    hydeasthemainproductYaneta1[88Verecentlyre-

    ducedC02bytheUVdrivenmatealZnGa204ingaseous

    C02withasmallamountofwaterundera300WXelampIethanewasdetectedunderJjghtinradiationTheproduc

    tionrateincreasedwhenmesoporousZnGa204wasused

    insteadofthebulkmaterialThemethaneDroductionrate

    (48mol(gh))increasedlOf01dwhenthecatalystwas

    loadedwithl Ruoasco-catalvstonmesoporous

    ZnGa204LatelyZnGa204nanoribbonwasalsosynthe-

    sizedwhichexhibitedanevenhighermethaneproduction

    rateunderthesameconditionsMethaneDroductionmte

    reached25mol(g'h)when1Ru02and1Ptwere

    loaded891

    1esearchershaveshownthatincreasingthedispersionof

    thephotocatalystshadapositiVeeffectonphotoreactiviZeoliteorsilicatefhmeworksofreruniqueporestructures

    andionexchangecapacitiesphotocatalystspreparedwithin

    thezeolitecaVityarehighlydispersedAnpoeta1[90reponedthereductionofC02withwatervaporbytitaniaan

    choredonzeoliteat328Kunder75WHglampItwas

    foundtohavehiselectivityformethanolfomlationThe

    additionofaPtcocatalystledtoashiRinproductselectiv

    itymethanewasobtainedinsteadofmethan01Inbothre

    ponstheyemphasizedthattheTi0+-0chaeansfcrredtotheexitedstateofanchoredtitaniumoxideplayedasig

    nificantroleindetemliningphotoactivity[7890Inanother

    reporthereponedTi-containingporousSi02filmreduced

    C02withwatervaporgaveCH4andCH30Hwiththequan-

    tumyieldof028underHglampradiationTheyproposeda ligandtometalchargetransferexcitationofisolatedTi

    centersofflrameworksubstitutedmicroormesoDoroussili

    catesbyUVlightwhichcanbeusedtoreduceC02with

    HOatsubstantianVbetterefciencythanthedensephase

    Ti02particles[9lUlagappamandFI_ei[92reducedgaseousCObvTisiIicatemolecularsievesunder266UVradiationt0obtainfornlicacidaceticacidandCOFTIR

    studiesofthereactionshowedthatfbationofCowasproducedbythephotolysisoffbnnicacidandaceticacid

    weresvnthesisedfmtheTischenkoreactionoffonnalde

    hyde921Linandcoworkersf931studiedthe1eductionof

    C02andwatervapourD20vapourbyTiMCM4l molecularsieveunderlaserlightCarbonmonoxidewastheonIV

    productinthereactionandtheproductionmtewasdirectIy

    proportionaltothepowerofthelaserFrIRdatashowed

    thatfbmlationofCOwasduetothedoubleelectrontransfer

    ofC02InLinandFreiswork

    ZrCu(1)-MCM4l silicatesieve

    tiontogiveCOand02

    94C02wasreducedbyunder355nmUVirradia-

    Whileseveralnewoxidephotocatalystswerebeingde

    Velopedtheprocessofphotoreductionbymetalliccomplex

    catalystssuchasf1JthenjumcompJexeshasalsodrawn

    equalinterest1_akedaeta1[95reponedthereductionof

    C02byarheniumcomplexinDMFsolutiontoveCOLehnandZiessel961 investigatedtheuseof

    Ru(22-bipyridine)32+cobalt(II)chlorideinamixtuIeof

    CH3CNH20N(CH2CH3)3toreduceC02undervisible1ight

    illuminationCraigeta1[97reportedC02canbereduced

    byRu(bpy)rwithaNicomplexcocatalystinanadsorbate

    bufkredsolutiontogiveCOThereisseriousconcemof

    costandstabilityofthesenoblemetalbasedconlplex

    photocatalystsinaqueoussolutionFujita98hassumma

    risedtheearlydevelopmentsinthisneldusingdifrerent

    metalcomplexes

    Inthemajorit)rofthesereportsnoconcurrent02produc-tionwasreportedandmost002reductionreactionswere

    achievedinanelcctmchemicalcellrequiringUVillumina

    tionandoranelcctricalbiasThemaximumconversionof

    C02wasatthemicmmolelevelperhourTheefciencyof

    thisprocessisthercforeextremelyIowatthisstageandthe

    detailsofthemechanismofthisreactionhavevettobe

    clari6edwhichlagsconsiderablybehindsolarhydrogen

    researchHoweverthepotentialofthefieldishugethis

    technologycanprovidethebestsolutiontodecreaseC02

    emissionandthedesjredpmductsarecompatiblewithprc

    sentfueltransponationandstoragesystemswhichthuscan

    beuseddirectlybyusersForfuturedevelopmentmore

    efncientmaterialsandstmctureneedtobefoundGiventhe

    importanceofthemechanismunderlying002photoconve

    sionithashardlVbeenaddressedandshouldbepaidmore

    attentioninthetIeFormoreonCOconversionthe

    VeryrecentreponofRoyeta1l3isrecommendedwhichdiscussedtheconversionofC02withdieIentsnategies

    includingbiomassthermochemicalelecDchemicaland

    photochemicalconversionsUsubharatanaeta141have

  • ChinCatal201132879890

    alsosummarizedtheprogressofphotocatalystdevelopment

    concentratingonthedesignofthephotoreactoLeffectof

    C02concentrationandreactiontemperature

    3 Keyfactorsindeterminingphotocatalyst

    activity

    31 Particlesizeofphotocatalyst

    Theparticlesizeofaphotocatalysthasadirecteffecton

    thephotocatalyticreactivityThechangeinreactivitymay

    becausedbyseveralfactorsasfollows(1)Totalsurface

    areapervolumeofthephotocatalystincreasesItisex

    pectedthatthesurfaceareahasadirecteffectonthephOtO

    catalyticactivityTheincreaseinsurfaceareaprovidesmore

    reactionsites(2)Theparticlesizehasasignificanteffect

    oninitialchargecarriertransportationandseparationand

    thusontherateofelectronholerecombinationForexam

    pieinthestudyonNaNb03samplesanincreasefrom17

    m2gto38mginsurfaceareabychangingthesynthesis

    method1edtoatriplinginOevolutionrateandtheH

    productionrateincreasedsixfold[99](3)Severaltheoreticalresultshavebeenpublishedshowingthattheparticle

    sizeofthesemiconductornanoparticlehasadirecteffecton

    thesemiconductorbandgap[100-104]Adecreaseinpatticlesizeresultedinanenlargementofthebandgapofthe

    photocatalystconsequentlybothoxidisingandreduction

    powerbecamestronger104]

    32 Choiceofcocatalyst

    Cocatalystshavebeenshowntobeveryimportantandto

    someextentcmciaindeterminingtheactivityofasystem

    ForphotochemicalwatersplittingcocatalystssuchasNiO

    Ru02PtandRh2-xCrx03areoftenemployedNiOhasbeen

    verywidelyusedtoachievestoichiometrichydrogenand

    oxygenproductionfromwater281Theeffectsofcocata

    1ystsareclearlyshownonthetwomostactivematerialsfor

    photocatalyticwatersplittingundervisiblelightThe

    NiONishellcorestructureisthekeyfactorintheactivity

    oflno9Ni01Ta04[57]whilstGa0R8No88zno120012doesnotshowanyactivityforwatersplittingintheabsenceof

    Rh2_xCL01Currentlytheexactmechanismsofenhance

    mentofactivityarenotknownformostcocatalystswhich

    complicatesthechoiceoftheappropriatematerialThewa

    tersplittingperformanceofZn2Ge04wasfoundtoincrease

    bymountingthesystemwithPtandRu02Thephotocata-

    lyticactivityofPt-Ru02Zn2GeOtmarkedlyincreasedfrom

    4Oto534pmolhforhydrogenproductionand20to260

    pmolhforoxygenproduction[105]Liueta167reportedY2Ta205N2photoactivitywaspro-

    motedbythedepositionofmetalPtandRuandthemaxi

    mumhydrogenevolutionrate(833pmol(hg)wasfoundwith015wtPtand025wtRucoatedonY21a20sN2

    whichwas22timesmorethanthatfor015 wt

    PtY2Ta205N2Recently,Maedaeta1[106]reportedforthe

    firsttimethepossibilityofenhancingoverallwatersplitting

    bytheadditionofbothcoreshell-structuredRhCr201and

    Mn304nanoparticlesasH2and02evolutionpromotersontothesamephotocatalyst

    ForCOconversiontherearealsoafewexamplesthat

    showedtheadditionofa cocatalystledtoanincreasein

    catalyticperformanceandcanchangetheendproductofthe

    reactionThephotocatalyticperformanceofTi0wasim

    provedbytheadditionofaCucocatalyst[107]Cookand

    coworkers108reportedthereductionofC02bySiCto

    differenthydrocarbons(CH4C2H4andC2H6)asafunction

    ofelectrolytepHSiCperformancewasenhancedbyload

    ingaCucocatalystshowingthatCuparticlesenhancedthe

    reductionofC02Inanotherexperimentagaseouswater

    andC02mixturewasreducedbyTi02-Si02acetylacetone

    (ACAClunderUVAradiationMethanewasobtainedfrom

    pureTi02-Si02-ACACwhereasinthepresenceof05wt

    Cuand05wtFecocatalystsbothmethaneandethylene

    weredetected84]

    33 Otherfactors

    Thecrystalstructureandmorphologyofthephotocatalyst

    alsoplayanimportantroleininfluencingthephotocatalytic

    performanceYeeta1[44_46]foundthatSrSn03preparedbytwodifierentmethodsshowedsignificantlydifferent

    activitySrSn01consistsofsphere1ikeparticleswhensyn

    thesizedbyasolidstatereactionwhiletheothersamplewas

    a nanorodstructurewhenpreparedbyhydrothermalsyn

    thesisBothmaterialshadasimilaropticalabsorptionand

    surfaceareabutthephotocatalyticactivitywasfoundtobe

    10timeshigherwiththenanorodstructure

    AsimilarphenomenonwasalsoobservedonTiOanda

    correlationbetweenthesurfacephasesofTiOandits

    photocatalyticperformancewasinvestigatedbyZhangeta1

    l09]ThephotocatalyticactivityofTi02wasfoundtoin

    creasedramaticallywhenanataseTiOpanicleswerede

    positedonthesurfaceofaruffleTi0bulkThephenome

    nonwassuggestedtobecausedbyasurfacephasejunctiontofacilitatethechargeseparationwhichinturnincreased

    thephotogeneratedholeelectronlifetimeThisledtothe

    increaseinphotocatalyticactivity

    TheeffectofLadopingofNaTaOwasreviewedandthe

    presenceofthedopantledtoananostructuringeffectthat

    wasproposedtobeakeyfactorinalargeenhancementin

    photocatalyticactivity[36110LiTa03andKTa03consistofcorner-sharedTa06octahedraTheirabilityatsplitting

    waterwasinvestigatedanditwasfoundthecloserthebond

  • )ln)chxbcn KimfungLIeta1ConversionofSolarEnergytoFuelsbyInorganicHeterogeneousSystems

    angleofTaoThwastol800thebeRerthechargesepara-

    tionandthesmallerthebandgapUponchangingthealkali

    metalLiTaOjNaTaOjKO{have

  • 888 ChinJCatal20I132879890

    -4)2s ataneutralpHTheobservedrateofdecayofthe

    holesonncTi02consistedofseveralcomponentsaswater

    oxidationisamultistepreactionIthasbeensuggestedthat

    fourholesarerequiredtooxidizewatertoproduceone

    oxygenmoleculeinartificialwatersplittingsystemsLater,

    theyexperimentallyobservedandprovedthe4-holechem

    istryinartificialwatersplittingsystems[116]InFig4anneTi02watersplittingprocessissummarizedtoillustrate

    thekeyreactiontimescaleswhichwasbasedonarangeof

    TASstudies116117i191

    Fig4TimescalesofprocessesoccurringonncTi02followingUV

    excitationFigurereproducedfromRef11 6

    TASmeasurementshavealsobeenstudiedonTi02

    co-dopedwithbothSbandCrandseveralothermaterials

    closelyrelatedtoneTiOThesephotocatalystsshowoxy

    genproductionundervisiblelightinthepresenceofAg+as

    ascavengerThemaximumoxygenyieldhasbeenfoundto

    occurwhenTi02wasdopedwithCrandSbina12ratio

    duetoallincreasedchargecarrierslifetime[120]TheelectronholedynamicsonarangeofmaterialsincludingTi02

    hybridsanddopedTi02sampleshasalsobeenexaminedby

    thetwogroupsofMajimasandTangsThepreviouslymentionedalkalimetaltantalateshavebeenexaminedby

    Tachikawaet a1 f1211Besidesrestructuringthe

    nanomorphologyofNaTa03Ladopingleadstogreatly

    reducedrecombinationinTASmeasurementsl221Tanget

    a1[123recentlyreportedthelowefficiencyofthenitrogen

    dopedTi02wasmainlyduetothenewlygeneratedtrapped

    sitesofelectrons

    AsdiscussedaboveC02photoreductionhasreceived

    muchlessattentionthansolarhydrogenproductionAI

    thoughtheknowledgeisknowntobeimportantforen-

    hancingmaterialefficiencytherearefewstudiesonthemechanismofC02photoreductionNeverthelesstheproc

    essofC02reductionsharesanapproximatelysimilar

    mechanismwithsolarwatersplittingExperiencesgained

    fromwatersplittingmayalsobeappliedtoC02photoreduction

    5 C0nCIuSionS

    Directlyutilizingsolarenergywillprovidefuturegenera-

    tionswithasustainablepowersourceandacleanenviron

    mentHowever,thestorageofsolarenergyhasbeenamajor

    probleminthefieldTheidealsolutionistoconvertsolar

    energyintoreadilytransportableandhighlyenergetic

    chemicalseghydrogenorhydrocarbonfuelsThebenefits

    ofphotocatalyticwatersplittingorC02conversionwill

    trulyberealizedwhenaccompaniedbyaneffectivehydro-

    genmethanolfuelcellenginetoutilizethefuelsandoxygen

    producedfromaphotocatalyticsystemtogeneratepower

    andwateLgivingusacarbonfreeorcarbonneutralcycle

    Duringthepast30yearsmanyeffortshavebeenmade

    towardsthedevelopmentofmaterialsandsystemstocon

    vertwaterto02andH2togetherinawatersplittingprocess

    ortoconvertCOtohydrocarbonfuelsUnfortunately,to

    datethereisnomaterialordevicethathastherequired

    conversionefficiencytomakethistechnologyeconomically

    andcommerciallyviableThekeyfactorswhichhavebeen

    reportedincludingbandpositionsoftheconductionand

    valencebandsthechoiceofcocatalystthemorphologyand

    particlesizeareaspectsofthefieldwhichmustbepursued

    Fundamentalresearchonexploringhowelectronsandholes

    moveandreactineachphotocatalystwilIgiveabetteran

    derstandingofthefactorsthatcontrolphotocatalyticactiv

    ityThishasnotbeenclearlyidentifiedandshouldbead

    dressedsystematicallyforanefficientphotochemicalproceSS

    Acknowledgments

    FundingfromEPSRConSolutionsis gratefullyac

    knowledged

    References

    1 HoffertM1CaldeiraKJainAKHaitesEFHarveyLDD

    PotterSDSchlesingerMESchneiderSHWattsRGWig

    IcyTMLWuebblesDJNature1998395881

    2LewisNSNoceraDGProcNatlAcadSeiUSA2006103

    15729

    4

    5

    6

    7

    EnergyInformationAdministrationAnnualEnergyReview

    2008WashingtonDCUSDepartmentofEnergy2009BarberJemSocRev200938l85HansenJEEnvironmentalResearchLetters20072024002

    HansenJESatoMKharechaPBeetlingDBemerRMas

    son-DelmoReVPaganiMRaymoMRoyerDLZachosJ

    CeOpenAtmosphericScienceJournal200822l7

    Httpfossilenergygovsequestrationgeologicindexhtml

    USDepartmentofEnergy20l0

    HalbwachsMSabrouxJCScience200l292438

    ChistiYBiotechnolAdv200725294

    SharmaYCSinghBUpadhyaySNFuel,2008872355

    TangJWCowanAInGriesbeckAOelgemoellerMGhetti

    FedsCRCHandbookofOrganicPhotochemistry&Photo

    8

    9

    O

  • wMchxbcn KjmfungLIetaIConVersionofS01arEnergytoFuelsbyInorganicHeterogeneousSystcms

    biology3rdEdLondonCRCPress2012

    12KudoAMisekiYChPmsDcRPv200938253

    I3 RoySCVagheseOKPauIoseMGrimesCAlS^D

    20lO41259

    14UsubharatanaPMcManinDVeawabATontiwachvuthikul

    PdlR200645255815CentiGPerathonerSCPsC^P2010319516FuiishimaAHondaKmP197223837

    17YamagutiKSatoSJcmys'19858l1237

    l8SelliEChiarelloGLQuanaroneEMustarcliiPRossettiI

    FomiLCPCb20075022

    19DuonghongDBorgareuoEGratzelM4mc^c19811034685

    20SatoSWhiteJM@1980728321FuNWuYJinZLuGLngf20lO26447

    22LiYxMeYZPengSQLuGXLiSBC8D^P

    2006631312

    23DomenKKudoAOnishiTC198610292

    24DomenKKudoAOnishiTKosugiNKurodaHJJP^CP198690292

    25DomenKKudoAShibataMTanakaAMamyaKonishi

    TCPCD19861706

    26DomenKNaitoSOnishiTTamaruKSamoMCPP198292433

    27DomenKNaitoSOnishiTTamaruKSamoMJP

    C198286365728DomenKNaitoSSomaMonishiTTamaruKCP

    (m1980543

    29KimJHwangDWKimHGBaeSWLeeJSLiWOhS

    HC0200535295

    30ChangsMDoongRAJPcPB2004108180983lSavamaKArakawaHP^(P19939753l

    32JiangLWangQZLiCLYuanJAShangguanWFf

    EhP20l035704333sayamaKAmkawaHDomenKc7byl99628l7534KatoHKudoAC^PP199829548735KatoHKudoAJp^"CbP200l1054285

    36KatoHAsakuraKKudoAJChSDc2003125308237MitsuiCNishiguchiHFukamachiKIshiharaTTakitaY

    CP1999132738IkedaSFubukiMTakaharaYKMatsumuraM(m2006300186

    39KudoAKatoHNakagawaSPChPB2000104571

    40KatoHKudoAC*P19992074lYoshinoMKakihanaMChoWSKatoHKudoA(MM2002143369

    42SatoJKobayashiHInoueYP^C20031077970

    43SatoJKobayashiHSaitoNNishiyamaHInoueY1

    JPDfDc^JD^DfD6200315813944ZhangWFTangJWYeJHCPPt"P2006418174

    45ZhangWFTangJWYeJH200722185946ChenDYeJHCba^2007194585

    47SatoJSaitoNNishiyamaHInoueYJPDfD^DfD6fD200214885

    48YanadaSAzumaTSakuraiHCPI982I06949ReberJFMejerKP^"C^e1984885903

    50WuMGuWZLiWZZhuXWWangFDZhaoSTf

    70c^oC199592257

    5l KobayakawaKTeranishiATsurumakiTSatoYFujishimaAZcfDc^cm199237465

    52TangJWYeJHfC200515424653TangJWZouZGYeJHJPiC20031071426554KudoA0moriKKatoHJCPSbc199912l11459

    55KudoAUedaKKatoHMikamiIo19985322956YuJQKudoAdvlncfMfer2006162163

    57ZouZGYeJHSayamaKArakawaHm200l414625

    58MillsAPorterGPmcym1982783659

    59Dan^entJRCPSbcFamdhy7s'198l771703

    60Dan^entJRPonerGCPCfDz198l145

    6lYanHJYangJHMaGJWuGPZongXLeiZBShiJ

    YLiCChm2009266165

    62KalyanasundaramKBorgareIloEDuonghongDGratzelM

    Cf198l2098763HaraMHitokiGTakataTKondoJNKobayashiHDomen

    KC07'Dd200378555

    64HaraMNunoshigeJTakataTKondoJNDomenKCCD20033000

    65TakataTHitokiGKondoJNHaraMKobayashiHDomen

    K(PP20073313

    66YamasiDTal(ataTHaraMKondoJNDomenK&)

    sCnCeionics20Q411259

    67LiuMYYouWSLeiZBZhouGHYangJJWuGP

    MaGJLuanGYTakataTHaraMDomenKLiCCCDm20042192

    68HitoGTakataTKondoJNHaraMKobayashiHDomen

    KfrDc^Pfn200270463

    69MaedaKTakataTHaraMSaitoNInoueYKobayashiH

    DomenKCP)c20051278286

    70MaedaKTeramuraKDomenKLChfn2008254l98

    7lMaedaKTeramuraKLuDLTakataTSaitONInoueY

    DomenKf2006440295

    720sterlohFE(PMfP20082035

    73HalmannMm197827511574Can6eldDFreseKWc1983130177275YamashitaHMshiguchiHKamadaNAnp0MTeraokaY

    HatanoHEharaSKikuiKPalmisanoLSclafaniASchi

    velloMFoxMACPmrP199420815

    76InoueTFujishimaAKonishiSHondaKf1979277429

    77YahayaAHGondalMAHameedACP^P2004400206

    78AnpoMChibaKoC199274207

    79IchikawaSDoiRGmdayl9962727l80SasirekhaNBashaSJSShanthiKCm200662169

  • 890 ChinCatal201132879890

    81MatthewsRWJCatal1988113549

    82XiaXHJiaZHYuYLiangYWangZMaLLCarbon

    200745717

    83Varghese0KPauloseMLaTempaTJGrimesCANano

    Lett2009973l

    84WuJCSCatalSurveysAsia20091330

    85WangZYChouHCWuJCSTsaiDPMulGApplCatal

    A2010380172

    86LOCCHungCHYuanCSWuJFSolEnergyMaterSol

    Cels2007911765

    87MatsumotoYObataMHomboJJPhysChem1994982950

    88YahSCOuyangSXGaoJYangMFengJYFanXX

    WanLJLiZSYeJHZhouYZouZGAngewChemInt

    Ed,2010496400

    89LiuQZhouYKouJHChenXYTiZPGaoJYanS

    CZouZGJAmChemSoc201013214385

    90AnpoMYamashitaHIchihashiYFujiiYHondaMJPhysChemB19971012632

    91 lkeueKNozakiSOgawaMAnpoMCatalLett200280

    l ll

    92UlagappanNFreiHJPhysChemA20001047834

    93LinWYHanHXFreiHJPhysChemB200410818269

    94LinWYFreiHJAmChemSoc2005127161095TakedaHKoikeKInoueHIshitaniOJAmChemSOc20081302023

    96LehnJMZiesselRProcNatlAcadScfU19827970l97CraigCASpreerLOOtvosJWCalvinMJPhysChem

    1990947957

    98FujitaECoordChemRev1999185-18637399LiGQKakoTWangDFZouZGYeJHJPhysChem

    Solids2008692487

    lOOBrusLEJChemPhys19848003101LippensPELarmooMPhysRevB9893910935

    102WangYSunaAMahlerWKasowskiRJChemPhys1987

    877315

    103HengleinAChemRev,198989186l

    104YoneyamaHCatalToday199739169

    105MaBJWenFYJiangHFYangJHYingPLLiCCatal

    Lett201013478

    106MaedaKXiongAl(YoshinagaTlkedaTSakamotoN

    HisatomiTTakashimaMLuDLKaneharaMSetoyamaT

    TeranishiTDomenKAngewChemIntEd,2010494096

    l07AdachiKOhtaKMizunoTSolarEnergy199453187l08CookRLMacduffRCSammellsAFdElectrochemSoc

    19881353069

    109ZhangJXuQFengZLiMLiCAngewChemIntEd,

    2008471766

    110KudoAKatoHChemPhysLett,2000331373

    lll lnoueHNakamuraRYoneyamaHChemLettl9941227

    112BardAJFoxMAAccChemRes19952814l

    ll3TamakiYFurubeAMuraiMHaraKKatohRTachiyaM

    CemChemPhys2007914531l4YoshiharaTKatohRFumbeATamakiYMuraiMHara

    KMurataSArakawaHTachiyaMJPhysChemB20041083817

    ll5BahnemarmDHengleinALilieJSpanhelLJChem198488709

    116TangJWDurrantJRKlugDRJAmChemSoc2008130

    13885

    1l7SerponeNLawlessDKhaimtdinovRJCheml9959916646

    118MuraiMTamakiYFurubeAHaraKKatohRCamlTo

    day2007120214

    119YamakataAIshibashiTOnishiHJPhysChemB2001

    1057258

    120IkedaTNomotoTEdakMizutaniYKatoHKudoAOn

    ishiHJPhysChemC20081121167

    121TachikawaTFujitsukaMM@maTJPChemC2007lll5259

    122YamakataAlshibashiTKatoHKudoAOnishiHJPhys

    ChemB200310714383

    123Tang3WCowanADurrantJRKlugDRJPhysChemC

    20111153143

  • Conversion of Solar Energy to Fuels by InorganicHeterogeneous Systems Kimfung LI David MARTIN Junwang TANG Department of Chemical Engineering, University College London, Torrington Place,

    London, WCIE 7JE, UK CHINESE JOURNAL OF CATALYSIS() 2011,32(6)

    (123)

    1.Hoffert M I;Caldeira K;Jain A K;Haites E F Harvey L D D Potter S D Schlesinger M E Schneider S H

    Watts R G Wigley T M L Wuebbles D J [] 1998

    2.Lewis N S;Nocera D G Powering the planet: Chemical challenges in solar energy utilization[

    ] 2006(43)

    3.Energy Information Administration Annual Energy Review 2008 2009

    4.Barber J Photosynthetic energy conversion: natural and artificial[] 2009(1)

    5.Hansen J E [] 2007

    6.Hansen J E;Sato M;Kharecha P;Beerling D Berner R Masson-Delmotte V Pagani M Raymo M Royer D L

    Zachos J C [] 2008

    7. 2010

    8.Halbwachs M;Sabroux J C 2001

    9.Chisti Y [] 2007

    10.Sharma Y C;Singh B;Upadhyay S N Advancements in development and characterization of biodiesel: A

    review[] 2008(12)

    11.Tang J W;Cowan A;Griesbeck A;Oelgemoeller M,Ghetti F CRC Handbook of Organic Photochemistry &

    Photobiology 2012

    12.Kudo A;Miseki Y 2009

    13.Roy S C;Varghese O K;Paulose M;Grimes C A 2010

    14.Usubharatana P;McMartin D;Veawab A;Tontiwachwuthikul P Photocatalytic Process for CO_2 Emission

    Reduction from Industrial Flue Gas Streams[] 2006(8)

    15.Centi G;Perathoner S [] 2010

    16.Fujishima A;Honda K [] 1972

    17.Yamaguti K;Sato S [] 1985

    18.Selli E;Chiarello G L;Quartarone E;Mustarelli P,Rossetti I,Forni L A photocatalytic water

    splitting device for separate hydrogen and oxygen evolution[] 2007(47)

    19.Duonghong D;Borgarello E;Gratzel M [] 1981

    20.Sato S;White J M [] 1980

    21.Fu N;Wu Y;Jin Z;Lu G [] 2010

    22.Li Y X;Me Y Z;Peng S Q;Lu G X Li S B 2006

    23.Domen K;Kudo A;Onishi T 1986

  • 24.Domen K;Kudo A;Onishi T;Kosugi N Kuroda H 1986

    25.Domen K;Kudo A;Shibata M;Tanaka A,Maruya K,Onishi T 1986

    26.Domen K;Naito S;Onishi T;Tamaru K Samo M [] 1982

    27.Domen K;Naito S;Onishi T;Tamaru K Samo M [] 1982

    28.Domen K;Naito S;Soma M;Onishi T,Tamaru K 1980

    29.Kim J;Hwang D W;Kim H G;Bae S W Lee J S Li W Oh S H Magnetic Fluorescent Delivery Vehicle Using

    Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals

    [] 2005(3)

    30.Chang S M;Doong R A The Effect of Chemical States of Dopants on the Microstructures and Band Gaps

    of Metal-Doped ZrO_2 Thin Films at Different Temperatures[] 2004(46)

    31.Sayama K;Arakawa H 1993

    32.Jiang L;Wang Q Z;Li C L;Yuan J A Shangguan W F 2010

    33.Sayama K;Arakawa H;Domen K [] 1996

    34.Kato H;Kudo A [] 1998

    35.Kato H;Kudo A [] 2001

    36.Kato H;Asakura K;Kudo A 2003

    37.Mitsui C;Nishiguchi H;Fukamachi K;Ishihara T Takita Y Photocatalytic decomposition of pure water

    over NiO supported on KTa(M)O-3 (M=Ti4+,Hf4+,Zr4+) perovskite oxide[] 1999(12)

    38.Ikeda S;Fubuki M;Takahara Y K;Matsumura M Photocatalytic activity of hydrothermally synthesized

    tantalate pyrochlores for overall water splitting[] 2006(2)

    39.Kudo A;Kato H;Nakagawa S Photocatalytic H_2 evolution under visible light irradiation on Ni-doped

    ZnS photocatalyst[] 2000(15)

    40.Kato H;Kudo A Photocatalytic decomposition of pure water into H-2 and O-2 over SrTa2O6 prepared

    by a flux method[] 1999(11)

    41.Yoshino M;Kakihana M;Cho W S;Kato H Kudo A Polymerizable complex synthesis of pure Sr2NbxTa2-xO7

    solid solutions with high photocatalytic activities for water decomposition into H-2 and O-2[

    ] 2002(8)

    42.Sato J;Kobayashi H;Inoue Y Photocatalytic Activity for Water Decomposition of Indates with

    Octahedrally Coordinated d~(10) Configuration. II. Roles of Geometric and Electronic Structures[

    ] 2003(31)

    43.Sato J;Kobayashi H;Saito N;Nishiyama H Inoue Y Photocatalytic Activity for Water Decomposition of

    Indates with Octahedrally Coordinated d~(10) Configuration. II. Roles of Geometric and Electronic

    Structures[] 2003(31)

    44.Zhang W F;Tang J W;Ye J H Photoluminescence and photocatalytic properties of SrSnO3 perovskite[

    ] 2006(1-3)

    45.Zhang W F;Tang J W;Ye J H [] 2007

    46.Chen D;Ye J H 2007

    47.Sato J;Saito N;Nishiyama H;Inoue Y 2002

  • 48.Yanagida S;Azuma T;Sakurai H [] 1982

    49.Reber J F;Meier K [] 1984

    50.Wu M;Gu W Z;Li W Z;Zhu X W Wang F D Zhao S T 1995

    51.Kobayakawa K;Teranishi A;Tsurumaki T;Sato Y Fujishima A [] 1992

    52.Tang J W;Ye J H Photocatalytic and photophysical properties of visible-light-driven photocatalyst

    ZnBi12O20[] 2005(1-3)

    53.Tang J W;Zou Z G;Ye J H 2003

    54.Kudo A;Omori K;Kato H Photocatalytic H-2 evolution under visible light irradiation on Zn1-xCuxS

    solid solution[] 1999(4)

    55.Kudo A;Ueda K;Kato H;Mikami I 1998

    56.Yu J Q;Kudo A Effects of structural variation on the photocatalytic performance of hydrothermally

    synthesized BiVO4[] 2006(16)

    57.Zou Z G;Ye J H;Sayama K;Arakawa H [] 2001

    58.Mills A;Porter G [] 1982

    59.Darwent J R 1981

    60.Darwent J R;Porter G 1981

    61.Yan H J;Yang J H;Ma G J;Wu G P Zong X Lei Z B Shi J Y Li C [] 2009

    62.Kalyanasundaram K;Borgarello E;Duonghong D;Gratzel M [] 1981

    63.Hara M;Hitoki G;Takata T;Kondo J N Kobayashi H Domen K Glycerol replacement corrects defective

    skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice.[] 2003(12)

    64.Hara M;Nunoshige J;Takata T;Kondo J N,Domen K Glycerol replacement corrects defective skin

    hydration, elasticity, and barrier function in aquaporin-3-deficient mice.[] 2003(12)

    65.Takata T;Hitoki G;Kondo J N;Hara M Kobayashi H Domen K [] 2007

    66.Yamasita D;Takata T;Hara M;Kondo J N Domen K Recent progress of visible-light-driven

    heterogeneous photocatalysts for overall water splitting[] 2004(1/4)

    67.Liu M Y;You W S;Lei Z B;Zhou G H,Yang J J,Wu G P,Ma G J,Luan G Y,Takata T,Hara M,Domen K,Li C

    Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation[]

    2004(19)

    68.Hitoki G;Takata T;Kondo J N;Hara M Kobayashi H Domen K 2002

    69.Maeda K;Takata T;Hara M;Saito N Inoue Y Kobayashi H Domen K Overall Water Splitting on (Ga_(1-

    x)Zn_x)(N_(1-x)-O_x) Solid Solution Photocatalyst:Relationship between Physical Properties and

    Photocatalytic Activity[] 2005(43)

    70.Maeda K;Teramura K;Domen K Preparation of mesostructured silica/anodic alumina composite

    membranes in mild conditions using acetic acid[] 2008(1/3)

    71.Maeda K;Teramura K;Lu D L;Takata T Saito N Inoue Y Domen K [] 2006

    72.Osterloh F E 2008

    73.Halmann M [] 1978

    74.Canfield D;Frese K W [] 1983

  • 75.Yamashita H;Nishiguchi H;Kamada N;Anpo M Teraoka Y Hatano H Ehara S Kikui K Palmisano L Sclafani

    A Schiavello M Fox M A [] 1994

    76.Inoue T;Fujishima A;Konishi S;Honda K 1979

    77.Yahaya A H;Gondal M A;Hameed A [] 2004

    78.Anpo M;Chiba K [] 1992

    79.Ichikawa S;DOI R [] 1996

    80.Sasirekha N;Basha S J S;Shanthi K 2006

    81.Matthews R W [] 1988

    82.Xia X H;Jia Z H;Yu Y;Liang Y Wang Z Ma L L 2007

    83.Varghese O K;Paulose M;LaTempa T J;Grimes C A Long vertically aligned titania nanotubes on

    transparent conducting oxide for highly efficient solar cells[] 2009(9)

    84.Wu J C S [] 2009

    85.Wang Z Y;Chou H C;Wu J C S;Tsai D P Mul G 2010

    86.Lo C C;Hung C H;Yuan C S;Wu J F Photoreduction of carbon dioxide with H-2 and H2O over TiO2 and

    ZrO2 in a circulated photocatalytic reactor[] 2007(19)

    87.Matsumoto Y;Obata M;Hombo J 1994

    88.Yan S C;Ouyang S X;Gao J;Yang M,Feng J Y,Fan X X,Wan L J,Li Z S,Ye J H,Zhou Y,Zou Z G

    2010

    89.Liu Q;Zhou Y;Kou J H;Chen X Y Tian Z P Gao J Yan S C Zou Z G 2010

    90.Anpo M;Yamashita H;Ichihashi Y;Fujii Y Honda M [] 1997

    91.Ikeue K;Nozaki S;Ogawa M;Anpo M [] 2002

    92.Ulagappan N;Frei H Mechanistic Study of CO_2 Photoreduction in Ti Silicalite Molecular Sieve by

    FT-IR Spectroscopy[] 2000(33)

    93.Lin W Y;Han H X;Frei H CO_2 Splitting by H_2O to CO and O_2 under UV Light in TiMCM-41 Silicate

    Sieve[] 2004(47)

    94.Lin W Y;Frei H [] 2005

    95.Takeda H;Koike K;Inoue H;Ishitani O Development of an efficient photocatalytic system for CO2

    reduction using rhenium(l) complexes based on mechanistic studies[] 2008(6)

    96.Lehn J M;Ziessel R [] 1982

    97.Craig C A;Spreer L O;Otvos J W;Calvin M [] 1990

    98.Fujita E [] 1999

    99.Li G Q;Kako T;Wang D F;Zou Z G Ye J H [] 2008

    100.Brus L E [] 1984

    101.Lippens P E;Lannoo M [] 1989

    102.Wang Y;Suna A;Mahler W;Kasowski R [] 1987

    103.Henglein A [] 1989

    104.Yoneyama H [] 1997

    105.Ma B J;Wen F Y;Jiang H F;Yang J H Ying P L Li C [] 2010

  • 106.Maeda K;Xiong A K;Yoshinaga T;Ikeda T,Sakamoto N,Hisatomi T,Takashima M,Lu D L,Kanehara

    M,Setoyama T,Teranishi T,Domen K 2010

    107.Adachi K;Ohta K;Mizuno T 1994

    108.Cook R L;Macduff R C;Sammells A F [] 1988

    109.Zhang J;Xu Q;Feng Z;Li M,Li C 2008

    110.Kudo A;Kato H Photocatalytic H_2 evolution under visible light irradiation on Ni-doped ZnS

    photocatalyst[] 2000(15)

    111.Inoue H;Nakamura R;Yoneyama H [] 1994

    112.Bard A J;Fox M A [] 1995

    113.Tamaki Y;Furube A;Murai M;Hara K Katoh R Tachiya M Dynamics of efficient electron-hole

    separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the

    weak-excitation condition[] 2007(12)

    114.Yoshihara T;Katoh R;Furube A;Tamaki Y Murai M Hara K Murata S Arakawa H Tachiya M

    Identification of Reactive Species in Photoexcited Nanocrystalline TiO_2 Films by Wide-Wavelength-

    Range (400-2500 nm) Transient Absorption Spectroscopy[] 2004(12)

    115.Bahnemann D;Henglein A;Lilie J;Spanhel L [] 1984

    116.Tang J W;Durrant J R;Klug D R Emergence of adamantane-resistant influenza A(H3N2) viruses in

    Hong Kong between 1997 and 2006.[] 2008(5)

    117.Serpone N;Lawless D;Khairutdinov R [] 1995

    118.Murai M;Tamaki Y;Furube A;Hara K Katoh R [] 2007

    119.Yamakata A;Ishibashi T;Onishi H [] 2001

    120.Ikeda T;Nomoto T;Eda K;Mizutani Y Kato H Kudo A Onishi H Photoinduced dynamics of TiO2 doped

    with Cr and Sb[] 2008(4)

    121.Tachikawa T;Fujitsuka M;Majima T [] 2007

    122.Yamakata A;Ishibashi T;Kato H;Kudo A Onishi H [] 2003

    123.Tang J W;Cowan A;Durrant J R;Klug D R [] 2011

    (6)

    1. ......ZI Xuehong.WANG Rui.LIU Licheng.DAI Hongxing.ZHANG Guizhen.

    HE Hong Pd[]-

    2011,32(5)

    2. .. ()[]-2011(1)

    3. ...ZHAO Jiquan.Han Jianping.ZHANG Yuecheng -()

    []-2005,26(7)

    4. ZENG Ruo-lang.WANG Xin.ZHANG Yin-ping.DI Hong-fa.ZHANG Qun-li Numerical Study of Thermal

    Performance of Phase Change Material Energy Storage Floor in Solar Water Heating System[]-

    2009,36(z1)

    5. NALLUSAMY N.SAMPATH S.VELRAJ R Study on performance of a packed bed latent heat thermal energy

    storage unit integrated with solar water heating system[]-A2006,7(8)

  • 6. ......SHANG Yongchen.Zhang Wenxiang.JIA Mingjun.PAN Weicheng.

    Jiang Dazhen.WU Tonghao MCM-221-[]-

    2005,26(6)

    http://d.wanfangdata.com.cn/Periodical_cuihuaxb201106001.aspx