ene 623 optical networks

18
Lecture 7

Upload: reeves

Post on 13-Jan-2016

25 views

Category:

Documents


1 download

DESCRIPTION

ENE 623 Optical Networks. Lecture 7. Tunable Semiconductor Lasers. What determines lasing frequency: Gain spectrum A function of temperature. Optical length of cavity Mirror reflectance spectrum Any perturbation which affects refractive index and/or lasing frequency. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ENE 623 Optical Networks

Lecture 7

Page 2: ENE 623 Optical Networks

Tunable Semiconductor LasersWhat determines lasing frequency:

Gain spectrum A function of temperature.

Optical length of cavityMirror reflectance spectrumAny perturbation which affects refractive index

and/or lasing frequency.

Page 3: ENE 623 Optical Networks

Single frequency laserDFB and DBG lasers

Tuning achieved by changing heat sink temperature.

Tuning by changing bias current which affects the number of carriers in tuning region.

M

442 ; integer

2

M

M

nLnLM M

c

cM

nL

Page 4: ENE 623 Optical Networks

ModulatorsMach-Zehnder modulators (electro-optic

modulators)Electro-absorption modulators

Page 5: ENE 623 Optical Networks

Phase Modulators

333e

ln r V

g

Page 6: ENE 623 Optical Networks

Electrooptic Modulator

(A) Directional coupler geometry

(B) Mach-Zehnder configuration

Page 7: ENE 623 Optical Networks

Mach-Zehnder modulatorSolve wave equation for mode field

distribution & propagation constant.

where k = constant

( , , ) ( , )

2

0

i z

eff

eff eff

u x y z u x y e

n

n n V kV

Page 8: ENE 623 Optical Networks

Mach-Zehnder modulator

Thus, by applying V will cause a phase shift for propagating mode.

v

Pi Po

Page 9: ENE 623 Optical Networks

Mach-Zehnder modulatorBy symmetry, equal amplitudes in 2 arms

after passing through the first branch.

Page 10: ENE 623 Optical Networks

Mach-Zehnder modulatorFor the second branch, output depends on

relative phases of combining waves:2 waves in phase.

2 waves rad out of phase

Page 11: ENE 623 Optical Networks

Mach-Zehnder modulatorWave amplitudes

1 2

222

4i iin

out out

AP A e e

Page 12: ENE 623 Optical Networks

Mach-Zehnder modulator

1 22 2 2

1 2 1 2

2 21 2 1 2

2 21 2 1 2

1 2

cos cos sin sin

cos cos 2cos cos

sin sin 2sin sin

1 cos2

i i

inout

e e

PP

Page 13: ENE 623 Optical Networks

Mach-Zehnder modulator

1 2

1 2

1 0

2 0

1 2 1 2

2 ; integer

0

22 eff eff

M M

cV

cV

LcV n n

Pout = Pin

Pout = 0

Page 14: ENE 623 Optical Networks

Mach-Zehnder modulatorV is a swiching voltage which give Pout -rad

phase difference.V is determined by material and electrode

configuration.V is different for dissimilar polarizations.

1 cos2in

out

P VP

V

Page 15: ENE 623 Optical Networks

Diffused optical waveguidesDiffused optical waveguides: Ti:LiNbO3 indiffused

waveguides.

Waveguide modes (linearly polarized or ‘LP’):TE mode – light polarized in plane of substrate

surfaceTM mode – light polarized normal to plane of

substrate surface.

Page 16: ENE 623 Optical Networks

Diffused optical waveguides

Ti indiffused waveguides: Ti metal atoms cause refractive index increase for both TE and TM waves.

Proton exchanged waveguides: H atoms exchange with Li atoms in lattice. Refractive index increases for only one polarization; e.g, TE mode.

/ / . . /

/ / . . /

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

TE sub TE wg TE e o TE

TM sub TM wg TM e o TM

n x y z n n x y z n x y z

n x y z n n x y z n x y z

Page 17: ENE 623 Optical Networks

Diffused optical waveguidesFor digital transmission, different V could

degrade ‘on-off radio’ or OOR. Ideally, we want OOR to be close to infinity.

Solutions for that are:Use polarized optical input.Use proton exchanged waveguides to eliminate TM modes

(get Pout only for TE mode).

Page 18: ENE 623 Optical Networks

ExampleConsider a Mach-Zehnder modulator with an electrode

length of 2 cm and electrode gap width g of 12 mm, such that

with E the applied electric field, assumed to be constant between the electrodes, and KTE = 5.8 x 10-10 m/V and KTM = 2.0 x 10-10 m/V. What is VTE and VTM ?

Note: neff = n0 + Δn in one arm and neff = n0 - Δn in the other arm.

/

/

eff TE TE

eff TM TM

n K E

n K E