emerging topics in concussion...

23
Emerging Topics in Concussion Treatment: Lower Extremity Injury and Active Recovery 11 th Annual Sports Medicine Conference Saturday, June 17, 2017 Taeopae Wetterman, ATC & Laura Most, ATC

Upload: vulien

Post on 27-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Emerging Topics in Concussion Treatment:Lower Extremity Injury and Active Recovery

11th Annual Sports Medicine Conference

Saturday, June 17, 2017

Taeopae Wetterman, ATC & Laura Most, ATC

Objectives

• Describe the correlation between post-concussion athletes and lower extremity injuries.

• Explain active recovery and the application of protocol for concussed athletes.

2Footnote, Presentation or Section Title

Overview

• Estimated 1.6 to 3.8 million sport-related concussions in US yearly

• After sport-related concussion probability of 2nd increases 3-fold

• Most clinical symptoms resolving by 7 days

• Emerging evidence that brain and motor function persists well beyond resolution of clinical recovery / deficits in cerebral performance

Reaction time

Processing speed

Verbal and visual memory

Gait patterns

Movement patterns

• Correlation of deficits s/p concussion to increased risk of LE musculoskeletal injury

Concussion Increases Odds of Sustaining a LE Musculoskeletal Injury After RTP Among Collegiate Athletes

• Study: UW-Madison D1 soccer, football, hockey, basketball, wrestling, volleyball, softball

• 87 concussions (all compared with 1 – 3 controls)

• LE injuries

Acute fractures, muscle strains/tears, ligament sprains/ruptures

Hip, groin, thigh, knee, shin, ankle, feet

Odds of sustaining LE injury within 90 days s/p concussion

• Results: Odds of sustaining a LE injury are 2.48 times higher in concussed athletes than in controls

• Discussion:

Detraining due to missed time for recovery from concussion

Altered gait patterns

Decreased capacity for motor planning

Brooks et al, 2016

Acute LE Injury Rates Increase after Concussion in College Athletes

• Study: North Carolina XC, field hockey, football, lacrosse, soccer, swimming, rowing, softball, wrestling, basketball, tennis

• 44 concussion group (compared to 58 controls)

• LE injuries at 90 day / 180 day / 365 days s/p concussion

• Results: Significantly higher rate of acute LE injury s/p concussion at 180 days, 365 days. No significant difference at 90 day

• Discussion:

Time away from training due to recovery?

Athletes with concussion more injury prone?

Reduced cortical excitability associated with functional disability?• Disruption of cortical pathways increase interval time between reaction and movement time

• Difficult to measure. Static balance testing not sensitive enough to detect impairments

• More pronounce (difficult to measure) during athletic tasks

Lynall et al, 2015

Sports Related Concussion Increases the Risk of Subsequent Injury by about 50% in Elite Male Football Players

• Study: Union of European Football Associations

Long term prospective observational cohort study

46 professional European football teams form 10 countries

July 2001 – June 2012

All injuries preventing players from full participation recorded

Following 1 year s/p concussion

• Results: 66 players with concussion were more prone to injury than the rest of cohort (11.5 vs. 5.0 injuries)

66 players sustained 127 injuries prior to concussion, 153 injuries post• Increased risk for sudden onset injuries, not gradual onset injuries

• More prone to injury in general

• 2.2 times greater risk s/p concussion

• Discussion: current tests insufficiently sensitive to subtle changes in neuropsychological domains ( reaction time, decision making, perception)

Nordstrom et al, 2014

Concussion May Increase the Risk of Subsequent LE Musculoskeletal Injury in Collegiate Athletes

• Study: U of FL DI football, women’s basketball, soccer, lax

90 cases of concussion in 73 athletes (52 male, 21 female)

90 day follow up s/p concussion

Same period studied in 1 – 2 control athletes• Based on sport, starting status, position

• Results: 3.39 times higher odds of sustaining LE injury s/p concussion

45/90 concussed athletes vs. 30/148 non-concussed athletes

• First study to demonstrate increased odds of in-season LE injury after RTP s/p concussion in females greater than in males

• Athletes who have had ACL injuries previously been found to have worse performance in all components of pre-season neurocognitive testing

Poor testing is predictive of LE strains and sprain in college football players

• Discussion: Future research should include age, sport, sex as modifiers

Herman et al, 2016

LE Stiffness Changes after Concussion in Collegiate Football Players

• Study: DI Football players

13 concussed, 26 uninjured

Pre-season / post-season testing

LE stiffness changes during jump-landing tasks• Jumping on 1 limb onto force plate. Stiffness measured at hip, knee, ankle

• Results: Concussion group had increase in hip stiffness, decrease in knee stiffness, no change at ankle

• Discussion: LE stiffness changes could contribute to increased injury risk

Stiffness of LE is controlled by the neuromuscular system• Findings provide further evidence of changes in the neuromuscular function after return

to play from concussion

• Landing with decreased knee angular excursion reflects an attempt to increase knee stability / rely more on ligamentous tissue for stability

• Gait changes s/p concussion, athletes adopting more conservative movement patterns

Analysis of Central and Peripheral Vision Reaction Times in Patients with Postconcussion Visual Dysfunction

• Visual dysfunctions s/p concussion

Peripheral vision most concerning due to athlete safety• RTP considerations

Visual dysfunction associated with patient feeling slowed down,• slower reaction time

• “feeling one step behind themselves”

• Study: 23 concussion patients with post-concussive visual symptoms

Tested 3 days to 11 months s/p injury

Compared to 30 control individuals

• Results: CVRT and PVRT are both prolonged in patients with post-concussive visual dysfunction, PVRT being proportionately prolonged

• Discussion: Prolonged CVRT and PVRT may have RTP implications

Show improvement over time, indicating improvement in post-concussive symptoms

Clark et al, 2017

Sex Differences in Vestibular/Ocular and Neurocognitive Outcomes after Sport-Related Concussion

• Female athletes reporting greater symptoms and slower resolution of symptoms s/p SRC

Symptoms reported more cognitive symptoms, migraine, dizziness

Greater decline in neurocognitive scores compared to baseline scores

• 60-70% of children experience vestibular and/or oculomotor impairments s/p SRC

• Study:

Assessed with VOMS, VOR, PCSS, BESS, ImPACT <21 days s/p injury

64 athletes age 9 – 18 (36 male, 28 female)

• Results: Higher mean total concussion symptoms reported for females on VOR of VOMS

• Discussion: Clinicians should pay close attention to VOR in females after injury,

Sex differences may be specific to certain types of vestibular/oculomotor impairments and symptoms

Sufrinko, et al, 2017

Summary

• History of concussion shows correlation with increased risk for acute musculoskeletal LE injuries

• Research moving forward:

What specifically is causing increased risk

How long is the duration of increased risk

How does gender play a role

How will our practice for concussion care change as a result

• Considering the increased risk of LE injury after concussion, RTP guidelines may be improved by the inclusion of neuromuscular evaluations

References

• Brooks, M. A., Peterson, K., Biese, K., Sanfilippo, J., Heiderscheit, B. C., & Bell, D. R. (2016). Concussion increased odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. The American Journal of Sports Medicine, 44(3), 742-747.

• Clark, J. F., Ellis, J. K., Burns, T. M., Childress, J. M., & Divine, J. G. (2017). Analysis of central and peripheral vision reaction times in patients with postconcussion visual dysfunction. Clinical Journal of Sports Medicine, 0, 1-5.

• Dubose, D. e. (2016). Lower extremity stiffness changes after concussion in collegiate football players. Medicine & Science in Sports & Exercise, 49(1), 167-172.

• Herman, D. C. (2016). Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Medicine, 1-8. doi:10.1007/s40279-016-0607-9

• Lynall, R. C., Mauntel, T. C., Padua, D. A., & Mihalik, J. P. (2015). Acute lower extremity injury rates increase after concussion in college athletes. Medicine & Science in Sports & Exercise, 47(12), 2487-2492.

• Sufrinko, A. M., Mucha, A., Covassin, T., Marchetti, G., Elbin, R. J., Collins, M. W., & Kontos, A. P. (2017). Sex differences in vestibular/ocular and neurocognitive outcomes after sport-related concussion. Clinical Journal of Sports Medicine, 27(2), 133-138.

Current consensus

• Timing and amount of rest after a concussion is not established

Excessive cognitive and physical activity after injury may exacerbate symptoms and delay recovery

However, relying on exercise exacerbated symptoms and symptoms resolution may be counterproductive

• Initial period relative physical and cognitive rest in the acute symptomatic period following the injury (24-48 hours) is recommended

• Duration of rest after a SRC is generally interpreted as “until asymptomatic” and includes both physical and cognitive rest

• However, too much rest may contribute to prolonged symptoms and result in adverse physiological and psychological consequences

Physical deconditioning, metabolic disturbances, depression/anxiety, fatigue, stress

• (Leddy, J.J, Baker, J.G., & Willer, B, 2016; Kozlowski, 2014; McCroy et al. 2017)

13

5th International Consensus Statement, Berlin 2016

Graduated Return-to-Sport Strategy(McCrory et al. 2017)

Stage Aim Activity

1 Symptom-LimitedActivity

Daily activities that do not provoke symptoms

2 Light-aerobic activity Walking or cycling at slow to medium pace

3 Sport-specific activity Running or skating drills. No head impact drills

4 Non-contact training drills

Harder training drills. Start progressive resistance training

5 Full-contact practice Normal training activities

6 Return to sport Normal game play

What is active recovery?

• Active

adjective

1. engaged in action; characterized by energetic work, participation,

etc.; busy

2. being in a state of existence, progress, or motion

• Ex. Partial or full school attendance, normal daily and social activities, attending/watching sport practices and games, etc.

• (Dictionary.com, n.d.)

15

Current Support in Research

• Benefits of exercise include:

Upregulation of brain-derived neurotropic factor

Improved cognitive performance

Increased cardiovascular fitness

Improved control of brain perfusion

Reduced fatigue, stress, anxiety

Improved mood

Increased self-esteem

• Brain injury is shown to alter autonomic nervous system

Blood pressure, heart rate variability, etc.

• (Kozlowski, 2014)

16

Current Support in Research

• Patients ages 11-22 within 24 hours of injury

• 5 days of strict rest vs. 1-2 days of strict rest

• No clinically significant difference in neurocognitive or balance outcomes

• 5 day group reported more daily post-concussive symptoms and slower symptoms resolution

• (Thomas et al. referenced in Leddy et al. 2016)

17

Current Support in Research

• Berlin et al. (2006) found an increase in negative mood states following a 2-week removal from habitual endurance exercise

Participants with the highest level of baseline fitness had the greatest increased in depressive mood and fatigue

• Retraining ANS to maintain homeostasis during exercise to improve tolerance to activity and stress

Buffalo Concussion Treadmill Test

• Assist with differential diagnoses, physiological dysfunction, and quantify clinical severity

Exercise intolerance is a sign of ongoing physiological dysfunction

• (Kozlowski, 2014; Leddy et al. 2016)

18

RTL and RTP Considerations for Now and the Future

• Advocate for setting up RTL plans/guidelines for concussed athletes

• Encourage athlete to return to daily activities as tolerated

• Include active treatments in protocols

• Sub threshold exercise

• Cervical, vestibular, cognitive, behavioral, and/or vision therapy

• Utilize exercise tolerance as a way to determine differential diagnoses for prolonged recovery

• Administer and follow Buffalo protocol

• SCAT 5

• (Leddy et al. 2016)

19

Future Research

• Appropriate timing, mode, and duration of rest

• Timeline, intensity, and frequency of exercise

20

References

21

Collins, M. W., Kontos, A. P., Okonkwo, D. O., Almquist, J., Bailes, J., Barisa, M., . . . Zafonte, R. (2016).Statements of agreement from the targeted evaluation and active management (TEAM) approaches to treating concussion meeting held in Pittsburgh, October 15-16, 2015. Neurosurgery, 79(6), 912-929.

Dictionary.com. (n.d.). Active. Retrieved 05 31, 2017, from Dictionary.com:http://www.dictionary.com/browse/active

Imhoff, S., Fait, P., Carrier-Toutant, F., & Boulard, G. (2016). Efficiency of an active rehabilitationintervention in a slow-to-recover paediatric population following mild traumatic brain injury: A pilot study . Journal of Sports Medicine, 1-11.

Kurowski, B. G., Hugentobler, J., Quatman-Yates, C., Taylor, J., Gubanich, P. J., Altaye, M., & Wade, S. L.(2016). Aerobic exercise for adolescents with prolonged symptoms after mild traumatic brain injury: An exploratory randomized clinical trail. Journal of Head Trauma Rehabilitation, 1-11.

Leddy, J. J., Baker, J. G., & Willer, B. (2016). Active rehabilitation of concussion and post-concussionsyndrome. Physical Medicine and Rehabilitation Clinics of North America, 27(2), 437-454.

McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvořák, J., Echemendia, R. J., ... & Sills, A. (2013).Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. British Journal of Sports Medicine, 47(5), 250-258.

McCrory, P., Meeuwisse, W., Dvořák, J., Aubry, M., Bailes, J., Broglio, S., ... & Davis, G. A. (2017).Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine, bjsports-2017.

Questions?

Thank You