embedding technologies for planar power electronic modules embedding... ·...

19
[email protected] Rolf Aschenbrenner Fraunhofer IZM Gustav-Meyer-Allee 25, 13355 Berlin, Germany email: [email protected] Embedding Technologies for Planar Power Electronic Modules [email protected] The Fraunhofer-Gesellschaft n 66 institutes and research units n Nearly 24,000 staff n More than €2 billion annual research budget totaling. Of this sum, around 1.7 billion euros is generated through contract research

Upload: others

Post on 04-Nov-2019

37 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Rolf Aschenbrenner

Fraunhofer IZM Gustav-Meyer-Allee 25, 13355 Berlin, Germanyemail: [email protected]

Embedding Technologies for Planar Power Electronic Modules

[email protected]

The Fraunhofer-Gesellschaft

n 66 institutes and research units

n Nearly 24,000 staff

n More than €2 billion annual research budget totaling. Of this sum, around 1.7 billion euros is generated through contract research

Page 2: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Fraunhofer IZM’s Mission: From Microelectronics and Microsystems towards Smart Systems

System Integration Technologies

Nanodimensions

[nm], [µm] [m]

Final Product Sizeto

2.4 GHz Sensor Node (15 x 10 x 2)

[email protected]

Motivation: EmbeddingEmbedding for PowerHow to make a "perfect" moduleExamplesConcept 3D Packaging

Summary

© Fraunhofer IZM Rolf Aschenbrenner

OOuuttlliinnee

Page 3: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Chip Embedding: New Package Platform

[email protected]

EEmmbbeeddddeedd PPaacckkaaggiinngg TTeecchhnnoollooggiieess ((EEPPTT))

Fan-In Type FFaann--OOuutt TTyyppee

CChhiipp--FFiirrsstt Chip-Last

DDiiee EEmmbbeeddddiinngg iinn OOrrggaanniicc LLaammiinnaattee„„EEmmbbeeddddeedd DDiiee““

DDiiee EEmmbbeeddddiinngg iinn EEppooxxyy MMoollddccoommppoouunndd„„FFaann--OOuutt WWLLPP//PPLLPP““

Fan-In Type FFaann--OOuutt TTyyppee

CChhiipp--FFiirrsstt Chip-Last

• EMAP (GT PRC)• 2.5D CL (AT&S)• ECP (AT&S)

• SESUB (TDK)• ET Solder, Microvia,

Flip-Chip (Wuerth)• i²Board, p²Pack,

µ²Pack (Schweizer)• WFOP (Amkor/J-

Devices)• BLADE (Infineon)• aEASI (ASE)• BossB2it, B2itPWB

(Dai Nippon)• ChipsetT/ ChipletT 3)• EOMIN (Taiyo

Yuden)• Clover embedded

device (Unimicron)

• MCeP (Shinko)• EWLP (Imbera)• FoWLP LSI (Semco)

• NA TThhoossee ssoolluuttiioonnss ccaann bbee ccaatteeggoorriizzeedd aass AAddvvaanncceedd FFlliippCChhiipp TTeecchhnnoollooggiieess::

• FOCLP (ASE)• LCCSP (Amkor)• SWIFT (Amkor)• SLIM (Amkor)• RDL-First (IME)• InFO PoP

(TSMC)• SLIT (Xilinx,

SPIL)• HDL (QPL)• FC-MISBGA

(SPIL)• CLIP (PTI)

FFaaccee--DDoowwnn AAsssseemmbbllyy• eWLB 1) • aWLP (ASE) • WLFO

(Amkor/NANIUM)• RCP 2)• nPLP (Nepes)• FOWLP (SPIL)• CHIEFS (PTI)

FFaaccee--UUpp AAsssseemmbbllyy• M-Series (DECA)• InFO (TSMC)

• ADL (SinoChip, Nantong Fujitsu)

• NTI (SPIL)• FOWFP (Samsung)• PIE Chip Middle

ePLP (PTI)

• WLCSP+ (Amkor/NANIUM)

• eWLCSP (JCET STATS ChipPAC)

MMaaiinnssttrreeaamm –– bbllaacckkExceptions – brownExamples – blue

Chip-FirstChip-First

1) Infineon, JCET STATS ChipPAC, ST Micro2) Motorola/Freescale/NXP/Qualcomm, Nepes3) FlipChip International/ TSHT, Fujikura

Die Embedding in Inorganic Materials „Enlarged Die“

Fan-Out Type

Chip-First

IInn SSiilliiccoonn• Mold-free

FOWLP (MAXIM)• eSiFO (TSHT)

IInn GGllaassss• GFO (GT PRC)

TTeecchhnnoollooggyy FFuussiioonn• EMIB Si-Bridge (Intel)• HIST/ CMI (GT Int3DSystems)

Chip-Last

Fan-In Type

• NA

Chip-First

• NA

Source: Steffen KroehnertNANIUM, June 2017

Diversity of Embedded Packaging Technologies (Driver: Fan Out)

Page 4: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

è power chips soldered to DCB substrateè top side connection by heavy Al wire bonds

Issues§ limits in miniaturization of packages§ only two wiring layers in modules (DCB + Bond wires)§ lifetime limitation by bond wire reliability§ high inductance of wires è too high for fast switching SiC and GaN chipsèè There is a need for improvement

Power Packaging – Established Technology

[email protected]

Page 5: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Al wire bonded IGBT on DCB embedded MOSFET

replacement of bond wires

by plated Cu connections

è Integration of components into organic substrate structures

top connections

bottom connections

isolation

Power Chip Embedding - Concept

[email protected]

§ Completely planar conductors§ multiple wiring layers possible § SMD assembly on top allows driver integration§ top side cooling possible§ very low parasitic effects

§ Direct connection by Cu conductors / no bond wires§ high reliability by direct Cu to chip interconnects § shielding capability

§ Embedding of power chips into Printed Circuit Board structures§ cost saving by large area process èè Panel Level Packaging

Power Embedding - Features

Page 6: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Power Chip Embedding – Manufacturing Process

• backside contact by conductive die bond• conductive adhesive• soldering• sintering

• very good thermal conductivity• die attach on thick Cu possible• compatible to standard Ag backside

conductive chip attach

embedding by lamination

via drilling top, through-via

Cu plating and structuring

Ag sintered die bond

current challenges• availability of Cu bumps on thin power chips• precise die bonding of large chips

[email protected]

Semicon Taiwan 2017

IZM Panel Level Embedding Linefrom Wafer Scale to Panel Scale 610 x 456 mm²/24”x18”

Datacon evo2200/ASM Siplace CA3

Mahr OMS 600/IMPEX proX3

WL: Towa up to 8”PL: APIC up to 18”x24”

incl. 12” WL

Lauffer/Bürkle

Siemens Microbeam/Schmoll Picodrill with

HYPER RAPID 50

Ramgraber automatic plating line

Schmoll MX1 Orbotech Paragon Ultra 200

SchmidCREAMET 600 CI 2 S3

Page 7: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Application – Infineon Blade Technology

SMD power package è embedded Si MOSFET / Driverè manufacturing on PCB format

[email protected]

Products - Today's Embedded Power Packages and Modules

The production of embedded packages is ramping up fast

Smart Phone Market• DC/DC converters• Power management units • Connectivity module

Computer market• MOSFET packages• Driver MOS SiPs

PCB Embedding Technology is implemented or will come soon at• PCB manufacturers• Semiconductor manufacturers• OSATS

Schweizer,SEMCO, Thai Nippon, Unimicron/Subtron, …

Page 8: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Challenge Material: Material Selection – Embedded Die Technology

Last 10 years: all package materials changedNext 10 years: package material change will continue

[email protected]

Power Chip Embedding – Product Types

MOSFET

MOSFET driver

IGBT IGBT

logic ICR C

Power Package• single chip package• low thermal & electrical resistanceè first products available

Power System-in-Package (SiP)• more chips in one package• low thermal & electrical resistanceè first products available

Power Module• electrical isolation to cooler• multiple wiring layers • integration of driver / controllerè R&D activities

Page 9: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Power Embedding – Project Very Fast Switching

Parasitic effects in power packagingLd

Lg

Ls

ChipLs generates negative source feedback• reduced switching speed• increased switching losses

Lg increases gate impedance• risk of oscillations• risk of parasitic switching

How to make a "perfect" module with strongly reduced parasitics?

[email protected]

Power Embedding – Project Very Fast Switching

Spring contact DC+

Spring contact DC -

Spring contact O ut

Driver contacts

DCB

Driver booster

Primary DC link capacitor

How to make a "perfect" module with strongly reduced parasitics?

embedded SiC MOSFETS

Page 10: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Power Embedding – Project Very Fast Switching

How to make a "perfect" module with strongly reduced parasitics?

One SiC MOSFET of the half-bride is flippedè out potential on upper Cu layerè strong reduction of ground coupling

DC+ DC-

flipped chip

normally attachedchip

Out

[email protected]

Power Embedding – Project Very Fast Switching

How to make a "perfect" module with strongly reduced parasitics?

Out

DC+ DC-

damping resistors

gate booster for fast

switching

primary DC link

capacitors

Primary DC link capacitors on top of MOSFETs

è reduction of stray inductance

Gate booster close to MOSFETs

è fast switching without parasitic turn-on

Page 11: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Power Embedding – Project Very Fast Switching

• Double pulse test 50 A, 512 V

• 100.000 active power cycles, 20 – 120 C without defect

Results

[email protected]

Power Embedding – Features

Direct Cu inter-connects to chipè High reliability

Polymer laminatesè Manufacturing on large

panel formats

SMDs on topè low inductance contact to driver

or primary DC link capacitor

Multiple planar wiring layersè very low inductance

Cooling/heat spreading on topè reduced thermal resistance

Page 12: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Power Embedding – Potential Configurations

3 Phase Motor Inverter • 600V, 200A• laminate insulator

Solar Inverter• 900 V• ceramic insulator

Diode Package• double side plated

Cu connections

50 kW Motor Inverter• Ag sintered bus bars• double side cooling

[email protected]

Development of planar power modules for 50 kW motor inverter

Project HI-LEVEL – Targets

Features• Reduction of height by 10 mm• Cost efficient production without expensive packaging• Integration of control electronics• Capability for double-side (water) cooling

Page 13: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

IGBT IGBT

400 µm Cu high Tg (185 C)dielectric

high l dielectric(2 W/mK)

Project HI-LEVEL – Packaging Construction

Ag sintered die bond

laser-drilled and Cu-filled micro-via

Cu pad metallization

Topics of current investigations• pressure-less / low-pressure sintering on large panels• application of 5 µm Cu bumps on thin IGBT wafers• high voltage isolation of thermally conductive dielectric

[email protected]

Project HI-LEVEL – 50 kW Module§ three phases, 20 – 660 VAC§ 18 IGBTs 200 A

§ 18 freewheeling diodes§ DC link < 30 nH expected

press-fit connectors

control board

heat sink

frame

embedded module

Page 14: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Project HI-LEVEL – Embedding vs. Standard DCB

[email protected]

The European EmPower Project

Page 15: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

500 W Demonstrator – Concept

Power CoreAT&S

SMD-logic ModuleILFA

Embedded-logic ModuleILFA

IMS BottomILFA

IMS TopILFA

MOSFETsST

Cu InlaysAT&S

Adhesive ContinentalSMD-LayerContinental

Passives soldered on Power CoreContinental

Solder process à Conti

Demonstrator-Assembly à Conti

Cu Inlay & MOSFET-Embedding àAT&S

IMS-Sintering àTU Berlin

© Fraunhofer IZM

[email protected]

sinter connection die area sinter connection copper inlay area

Sinter/Lamination Interconnection – Cross Section

cross section of IMS/power core/IMS sinter interconnects

Powr CoreIMS

IMS

èè no large voids in Ag sinter interconnects

© Fraunhofer IZM

Page 16: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Sinter Interconnects – X-Ray Inspection

X-ray of sintered top IMS / PowerCore / bottom IMS

èè good alignment ( 50 µm) of all sintered layers

[email protected]

Concept 3D StackingWhat is a 3D Power Stack?• Stacking of Functional Layers by combined sinter/lamination technology

cooler

drivercontroller I/O

IGBT IGBT

cooler

IGBT IGBT

drivercontroller I(O

© Fraunhofer IZM

Page 17: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Concept 3D StackingStacking by combined sinter/lamination èè Process Flow• Stacking of Functional Layers by combined sinter/lamination technology

1. stencil printing of Ag sinter paste on Functional Layer, paste drying

2. lay-up of prepreg sheet with opening for paste locations

3. lay-up of 2. Functional Layer on top,vacuum lamination at 3 MPa,10 min./230 C, 60 min./200 C

Result: a monolithic stack, thermally and electrically interconnected by high-reliable Ag joints, all gaps are filled by an isolating dielectric

© Fraunhofer IZM

[email protected]

Cu Ag sinter layer CuAg sinter layer

Sinter/Lamination Interconnection– FIB Analysis

èè sufficiently low amount of micro voids in sinterde Ag (< 30 %)

© Fraunhofer IZM

Page 18: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Power Embedding – Production and R&D

0,1

1

10

100

1000

10000

1 10 100 1000 10000

Reihe1Reihe2Reihe3

ProductionR&D SiR&D SiC

R&D and Customer Projects

Voltage (V)

Cur

rent

(A)

1 MW

DC/DC converter SiPs

Blade Packages

Power PLPproducts today

[email protected]

first integrated circuits 1961

first transistor 1947

Future Perspective – First a Look Back ...

è introduction of planar semiconductor technology initiated „Moore‘s Law Era“

Semicondûctor EraEelectronics Era

single device manufacturing highly parallel manufacturing

first vacuum tube diode 1908

Si wafers up to 300 mm

Moore‘s Law Era

Page 19: Embedding Technologies for Planar Power Electronic Modules Embedding... · Rolf.aschenbrenner@izm.fraunhofer.de Al wire bondedIGBT on DCB embeddedMOSFET replacement of bond wires

[email protected]

Future Perspective – Power Electronics Packaging

IGBT IGBT

wire-bonded power chips on DCB planar module with embedded power chips

Traditional Power modules Planar Power Packaging

single module manufacturing large panel manufacturing

è low inductanceè high heat transferè high integration levelè high productivity

[email protected]

Thank You