elm precursors in nstx

10
1 ELM Precursors in NSTX F. Kelly * E. Fredrickson a , S.Gerhardt a , R. Maingi b , J. Menard a , S. Sabbagh c , H. Takahashi a * Unaffiliated a Princeton Plasma Physics Laboratory, Princeton, NJ USA b Oak Ridge National Laboratory, Oak Ridge, TN USA c Columbia U., New York, NY USA 2009 NSTX Results and Theory Review PPPL Room B318 September 15, 2009

Upload: judah

Post on 14-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

ELM Precursors in NSTX. F. Kelly * E. Fredrickson a , S.Gerhardt a , R. Maingi b , J. Menard a , S. Sabbagh c , H. Takahashi a * Unaffiliated a Princeton Plasma Physics Laboratory, Princeton, NJ USA b Oak Ridge National Laboratory, Oak Ridge, TN USA c Columbia U., New York, NY USA. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ELM Precursors in NSTX

1

ELM Precursors in NSTX

F. Kelly*

E. Fredricksona, S.Gerhardta, R. Maingib, J. Menarda, S.

Sabbaghc, H. Takahashia *Unaffiliated

aPrinceton Plasma Physics Laboratory, Princeton, NJ USAbOak Ridge National Laboratory, Oak Ridge, TN USA

cColumbia U., New York, NY USA

2009 NSTX Results and Theory Review

PPPL Room B318

September 15, 2009

Page 2: ELM Precursors in NSTX

2

661.415 ms 661.502 ms 661.589 ms

Time domain

1(a)

NSTX 129015 - without lithium

Page 3: ELM Precursors in NSTX

3

NSTX 129015 - without lithium

Spectrogram

Page 4: ELM Precursors in NSTX

4

NSTX 129015 - ELMs at 0.3400 and 0.3410 s

Page 5: ELM Precursors in NSTX

5

NSTX 129030 w / lithium - ELM precursors for 0.4292 s

n =1~ 50 kHz

n = 2~ 75 kHz

Page 6: ELM Precursors in NSTX

6

NSTX 129030 w / lithium - ELM at 0.4292 s

Page 7: ELM Precursors in NSTX

7

NSTX 130670 w / nRMP – ELM at 0.6036 s

Page 8: ELM Precursors in NSTX

8

J. Menard ELM-FIT code

Page 9: ELM Precursors in NSTX

9

SOLC correlated with ELMs in DIII-D by Takahashi et al

Takahashi et al,NF 44 (2004) 1075.

Page 10: ELM Precursors in NSTX

10

Discussion of Results

n = 2,3,4,5,6 modes -> slowly growing ELM that are smallern= 1 modes appear to be necessary for fast growing, large amplitude ELMSSOL currents are likely candidates for n= 1/ n= 2 modes

ELM sequence outlined by T. Evans et al. JNM 390-391 (2009) 789.1) Transient event initiated by peeling-ballooning mode as pedestal

pressure gradient limit > marginal stability limit. Initial pulse of heat and particles propagates into preexisting homoclinic separatrix tangle.

2) Onset of thermoelectric current driven between outer and inner target plates due to Te difference between plates from initial heat pulse.

3) Original helical filament grows explosively as thermoelectric currents amplify the lobes of the homoclinic tangle and induce strong pedestal stochasticity. Results in self-amplification ob lobes due to positive feedback loop between lobe size, stochastic layer width and increase heat flux to target plates driving the current.

4) ELM crash- temperature in pedestal drops enough for plasma to become more collisional and resistive. A) Shuts down energy source for thermoelectric currents collapsing lobes to pre-ELM configuration. B) Decrease electron collisional mfp compared to connection length of filamentary lobes which reduces parallel thermal conductivity and shuts down heat flux to target plates.