electronictransportinadeformed graphene...

10
1 Electronic transport in a deformed graphene kirigami Dario. A. Bahamon , Zenan Qi, Harold S. Park, Vitor M. Pereira and David K. Campbell

Upload: duongcong

Post on 25-Mar-2018

235 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

1  

Electronic  transport  in  a  deformed  graphene  kirigami  

Dario.  A.  Bahamon,  Zenan  Qi,  Harold  S.  Park,  Vitor  M.  Pereira  and  David  K.  Campbell  

Page 2: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

2  

Graphene  kirigami  

Kirigami   (kiru   “to   cut”,   kami   “paper”)   the  Japanese   art   of   papercuJng   is   inspiring   the  design   of   new   materials   with   configurable    mechanical  properNes.  

hOps://sundayeveningartgallery.com/2016/01/13/kirigami/  

Phys.  Rev.  LeO.  118,  084301  (2017)    Nature  524,  204–207  (2015)    

At  the  nanoscale  High  stretchability.  High  bendability    Good  Self-­‐Recoverability  

Page 3: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

3  

Graphene  kirigami  

How  are  the  electronic  states  and  the  flow  of  current  within  the  kirigami  modified  under  deforma@on?  

Molecular  Dynamics   Tight  binding  

Page 4: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

4  

Mechanical  proper<es  

The  graphene  kirigami  presents  four  deformaNon  stages:    (i)  ElongaNon  with  very  liOle  in-­‐plane  stress.  (ii)  ElongaNon  with  stress.  (iii)  Yielding.  (iv)  Fracture.  

Phys.  Rev.  B  90,  245437  (2014)  

Phys.  Rev.  B  93,  235408  (2016)  

Horizontal  and  verNcal  segments  twist  and  rotate  and,  as   a   result   the   kirigami   elongates   without   significant  modificaNon  of  the  average  C-­‐C  bond  length  

The  kirigami   is  not  capable  of  accommodaNng  higher  elongaNons   only   by   twisNng,   further   deformaNon  occurs  through  stretching  of  the  carbon  bonds.  

0  %  

15.5  %  

34.7  %  

Page 5: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

5  

0 0.1 0.2E/t

0

0

0.5

1

1.5

2

G (

2e2

/h)

Transport  proper<es  

Localized   states   overlap   creaNng   in   the  conductance   groups   of   11   resonances   for   low  energy  and  mini-­‐bands  for  higher  energies.    From   the   electron   transport   viewpoint   the  unstrained  kirigami  behaves  as  a  superlaJce  of  coupled  quantum  dots            

Phys.  Rev.  B  93,  235408  (2016)  

Assuming  a  1D  Nght  binding  model  the  inter-­‐dot  coupling  is  esNmated  

γ ≈ 0.01t0

Page 6: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

6  

Transport  proper<es  Under  tensile  load  in  stage  1  (5.3  and  15.5%):    •  the   kirigami   elongates   and   becomes   distorted,  

which   significantly   perturbs   the   overlap   between  the  localized  states.    

•  The  conductance  is    progressively  reduced.  

Unexpectedly,   resonant   transmission   is   revived   when  the   kirigami   enters   stage   2   of   deformaNon   (25.1   and  34.7%).      

0 0.05 0.1 0.15 0.2 0.25E/t

0

0

1

0

1

0

1

0

1

0

1

G (

2e2

/h)

0.04 0.06 0.08E/t

0

0

0.2

0.4

0.6

0.8

1

G (

2e2

/h)

0.04 0.06 0.08E/t

0

0.04 0.06 0.08E/t

0

a

b c d

0 %

5.3 %

15.5 %

25.1 %

34.7 %

Phys.  Rev.  B  93,  235408  (2016)  

15.5  %    E=0.074t0   34.7  %  E  =  0.073t0  

Page 7: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

7  

Transport  proper<es  Nearly  periodic  strain  barriers  created  during  deformaNon  stage  2  reinforce  electron  confinement.    

Phys.  Rev.  B  93,  235408  (2016)  

Normalized  C-­‐C  bond  length   Normalized  nn  hopping  

15.5  %  

34.7  %  

Page 8: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

8  

Transport  proper<es  To  address  the  robustness  of  the  strain  modulaNon  of  the  conductance  in  a  more  realisNc  scenario,  we  added  dephasing  processes  through  the  BüJker-­‐probe  model.      •  We  are  not  interested  in  the  parNcular  physical  mechanism  (impuriNes,  phonons  or  electrons)  

behind  the  destrucNon  of  quantum  coherence,  we  fix  the  self-­‐energy  of  each  BüJker-­‐probe  to:    

Phys.  Rev.  B  93,  235408  (2016)  

= iηφ

∑ τφ =!2Γφ

=!4η lφ = Dτφ

Dephas ing   des t roys   resonant  t ransmiss ion   and   min i -­‐bands  structure.      η = 0.01t0 ⇒ lφ ≈ 42 nm > L

η = 0.5t0 ⇒ lφ ≈ 6 nm ≈ w

Page 9: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

9  

Take-­‐home  message  

•  The   undeformed   kirigami   behaves   as   a   system   of  coupled  quantum  dots.  

•  Mechanical   deformaNons   during   stage   1   disturb   the  overlap   between   localized   states     reducing  conductance.  

•  During   stage   2,   strain   barriers   along   the   links   between  kirigami   segments   restore   electronic   confinement   and  resonant  tunnelling.  

•  The   Effect   of   mechanical   deformaNon   on   the  conductance   is  washed   out  when   the   phase-­‐relaxaNon  length  is  smaller  than  the  typical  lengths  of  the  kirigami    

Phys.  Rev.  B  93,  235408  (2016)  

0 0.05 0.1 0.15 0.2 0.25E/t

0

0

1

0

1

0

1

0

1

0

1

G (

2e2 /h

)

0.04 0.06 0.08E/t

0

0

0.2

0.4

0.6

0.8

1

G (

2e2 /h

)

0.04 0.06 0.08E/t

0

0.04 0.06 0.08E/t

0

a

b c d

0 %

5.3 %

15.5 %

25.1 %

34.7 %

Page 10: Electronictransportinadeformed graphene kirigamiphantomsfoundation.com/GRAPHENECONF/2017/Presentations/Graphe… · 3 Graphene kirigami" How’are’the’electronic’statesand’the’flow’of’current’within’the’

10  

Appendix  

Phys.  Rev.  B  93,  235408  (2016)