electronic excitations and spectroscopy: theory and codes...

51
.. Electronic Excitations and Spectroscopy: Theory and Codes Introduction to the GW approximation Fabien Bruneval Service de Recherche de M´ etallurgie Physique, CEA Saclay, France December 12, 2007 GW approximation Fabien Bruneval

Upload: others

Post on 30-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .

Electronic Excitations and Spectroscopy:Theory and Codes

Introductionto the

GW approximation

Fabien Bruneval

Service de Recherche de Metallurgie Physique, CEA Saclay, France

December 12, 2007

GW approximation Fabien Bruneval

Page 2: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .

Outline

1 Band structure & calculations

2 Theory: from Hartree-Fock to GWFunctional approach to the MB problemHedin’s equations

3 Physical content of GWWhat does the screening account for?What does the self-energy contain?

4 GW for realistic materialsImplementationApplications

GW approximation Fabien Bruneval

Page 3: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Outline

1 Band structure & calculations

2 Theory: from Hartree-Fock to GWFunctional approach to the MB problemHedin’s equations

3 Physical content of GWWhat does the screening account for?What does the self-energy contain?

4 GW for realistic materialsImplementationApplications

GW approximation Fabien Bruneval

Page 4: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Band structure from one particle approximations

Any one-particle Hamiltonian: h(r)→ diagonalizationh(r)φi (r) = εiφi (r)and εi is called the band structure.

HOWEVER, in reality,

H(r1, ..., rN) =∑

i

−∇i

2

2

+∑

i

Vnuclei(ri ) +∑i<j

1

|ri − rj |

→ ionization or affinity energy

GW approximation Fabien Bruneval

Page 5: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Photoemission spectroscopy

E kin Energy conservation:

Before the experimenthν + EN,0

After the experimentEkin + EN−1,i

hν − Ekin = EN−1,i − EN,0=− εi→ ionization energy or binding energy or valence band structure

GW approximation Fabien Bruneval

Page 6: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Wavefunctions methods

Hartree-Fock method: variationally best Slater determinant

ΦN,0(r1, ..., rN) ∝

∣∣∣∣∣∣∣∣∣φ1(r1) . . . φN(r1)φ1(r2) . . . φN(r2)

......

φ1(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣made of N one-particle wavefunctions φi .

L = 〈Φ|H|Φ〉 −∑

i

εHFi

∫dr|φi (r)|2

⇒ hHFφi = εHFi φi

εHFi obtained as N Lagrange multipliers

GW approximation Fabien Bruneval

Page 7: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Hartree-Fock method

Valence Photoemission:

ΦN−1,i (r1, ..., rN−1) ∝∣∣∣∣∣∣∣∣∣φ1(r1) . . . φi−1(r1) φi+1(r1) . . . φN(r1)φ1(r2) . . . φi−1(r2) φi+1(r2) . . . φN(r2)

......

φ1(rN−1) . . . φi−1(rN−1) φi+1(rN−1) . . . φN(rN−1)

∣∣∣∣∣∣∣∣∣Koopmans theorem:

εi = 〈N, 0|H|N, 0〉 − 〈N − 1, i |H|N − 1, i〉

The eigenvalues εi do have a physical meaningApproximation: No relaxation of the other orbitals

GW approximation Fabien Bruneval

Page 8: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Hartree-Fock results

Atoms

Ionization energy

0 5 10 15 20 25experimental ionization energy (eV)

0

5

10

15

20

25

calc

ulat

ed io

niza

tion

ener

gy (e

V)

Li

Ne

B

F

N

Be

O

He

H

C

calculated as the energy of the HOMO with gaussian 03

GW approximation Fabien Bruneval

Page 9: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Hartree-Fock results

Homogeneous electron gas (=jellium) with constant density ρ0

2 3 4 5 6rs

0

2

4

6

8

10

12

14

16

Occ

upie

d ba

nd w

idth

(eV

)

Free electronHartree-Fock

0 0.5 1 1.5 2k / kF

E ( k

)

Aluminu

m

Sodium

EF

W

GW approximation Fabien Bruneval

Page 10: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Hartree-Fock results

Band gap of semiconductors and insulators

courtesy of Brice Arnaud, Universite de Rennes, FranceGW approximation Fabien Bruneval

Page 11: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Density Functional Theory

DFT well assessed for the structure of solids

BUT

L = 〈Φ|HKS|Φ〉 −∑

i

εKSi

∫dr|φKS

i (r)|2

⇒ hKS(r)φKSi (r) = εKS

i φKSi (r)

εKSi obtained as N Lagrange multipliers

Kohn-Sham energies cannot be interpreted as removal/additionenergies

GW approximation Fabien Bruneval

Page 12: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

Kohn-Sham

Band gaps of semiconductors and insulators

experimental gap (eV)

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006)→ underestimated

GW approximation Fabien Bruneval

Page 13: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Band structure & calculations

The solution?

Need for a tool that gives the correct band structure εii.e. the correct differences EN,0 − EN±1,i

⇒ Green’s functions

GW approximation Fabien Bruneval

Page 14: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Outline

1 Band structure & calculations

2 Theory: from Hartree-Fock to GWFunctional approach to the MB problemHedin’s equations

3 Physical content of GWWhat does the screening account for?What does the self-energy contain?

4 GW for realistic materialsImplementationApplications

GW approximation Fabien Bruneval

Page 15: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Green’s functions: from HF to GW

Review the many-body equations with a functional approach(Hedin 1965)

Convince you that GW is a natural extension beyond HF

use of zero temperature Green’s function formalism:

iG (1, 2) = 〈N, 0|T[ΨH(1)Ψ†

H(2)]|N, 0〉

=

{〈N, 0|ΨH(1)Ψ†

H(2)|N, 0〉 if t1 > t2−〈N, 0|Ψ†

H(2)ΨH(1)|N, 0〉 if t1 < t2.

GW approximation Fabien Bruneval

Page 16: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Green’s functions: from HF to GW

t1 > t2

〈N, 0|ΨH(1)Ψ†H(2)|N, 0〉

Ψ†H(2)|N, 0〉

Ψ†H(1)|N, 0〉

( r , t )

( r , t )

2 2

1 1

t1 < t2

〈N, 0|Ψ†H(2)ΨH(1)|N, 0〉

ΨH(2)|N, 0〉ΨH(1)|N, 0〉

( r , t )

( r , t )

2 2

1 1

GW approximation Fabien Bruneval

Page 17: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Functional approach to the MB problem

To determine the 1-particle Green’s function

[i∂

∂t− h0]G + i

∫vG2 = 1

where h0 = −12∇

2 + vext is the independent particle Hamiltonian.

The 2-particle Green’s function describes the motion of 2 particles.Unfortunately, a whole hierarchy of equations:

G1(1, 2) ← G2(1, 2; 3, 4)G2(1, 2; 3, 4) ← G3(1, 2, 3; 4, 5, 6)

......

...

GW approximation Fabien Bruneval

Page 18: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Self-energy

Perturbation theory starts from what is known to evaluate what isnot known, hoping that the difference is small...Let’s say we know G0 that corresponds to the Hamiltonian h0

Everything that is unknown is put in

Σ = G−10 − G−1

This is the definition of the self-energyThus,

[i∂

∂t− h0]G −

∫ΣG = 1

to be compared with

[i∂

∂t− h0]G + i

∫vG2 = 1

GW approximation Fabien Bruneval

Page 19: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Functional derivation of the MB problem

Trick due to Schwinger (1951):introduce a small external potential U(3), that will be made equalto zero at the end, and calculate the variations of G1 with respectto USelf-energy

Σ(1, 2) = −i

∫d3d4v(1+, 3)G (1, 4)

δG−1(4, 2)

δU(3)

Vertex function

Γ(1, 2; 3) = −δG−1(1, 2)

δU(3)

Dyson equation

G−1(1, 2) = G−10 (1, 2)− U(1)δ(1, 2)− Σ(1, 2)

GW approximation Fabien Bruneval

Page 20: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Functional definition of the self-energy

Exact equations

G−1 = G−10 − Σ

Σ = iGvΓ

Γ = 1 +

[−iv +

δΣ

δG

]GGΓ

Γ(0) = 1

Σ(1) = iGv = Σx

→ Hartree Fock approximation

G

v

GW approximation Fabien Bruneval

Page 21: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Functional definition of the self-energy

Exact equations

G−1 = G−10 − Σ

Σ = iGvΓ

Γ = 1 +

[−iv +

δΣ

δG

]GGΓ

Σ(1) = iGv

Γ(1) = 1 + ivGGv + ivGvG

Σ(2) = Σx − GvGGv − GvGvG

→ 2nd order in vGW approximation Fabien Bruneval

Page 22: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

GW origins

GW approximation Fabien Bruneval

Page 23: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Need for screening

A[U] = G [U] or Γ[U] or Σ[U]

variations of some operator with respect to a local bareperturbation: δA

δU

δU(r) = e (r−r )δ 0

GW approximation Fabien Bruneval

Page 24: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Need for screening

Purely classical interaction

δU(r) = e (r−r )δ

V(r) = U(r) + classical screeningδ δ

0

δV (1) = δU(1) +

∫d2v(1, 2)δρ(2)

the variations of the charge density δρ tends to oppose to theperturbation.

GW approximation Fabien Bruneval

Page 25: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Need for screening

We’d better work with G [V ], Σ[V ], Γ[V ], etc.than with G [U], Σ[U], Γ[U], etc.

Γ(1, 2; 3) = −δG−1(1, 2)

δU(3)

= −∫

d4δG−1(1, 2)

δV (4)

δV (4)

δU(3)

= −∫

d4δG−1(1, 2)

δV (4)ε−1(4, 3)

where ε is the dielectric function of the medium.

GW approximation Fabien Bruneval

Page 26: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Towards Hedin’s equations

Σ = iGvε−1Γ

irreducible vertex

Γ = −δG−1

δV

= 1 +δΣ

δGGG Γ

screened Coulomb interaction

W = ε−1v

dielectric functionε = 1− v χ

irreducible polarizability

χ =δρ

δV= −iGG Γ

GW approximation Fabien Bruneval

Page 27: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Hedin’s equations

Σ = iGW Γ

Γ = 1 +δΣ

δGGG Γ

W = ε−1v

ε = 1− v χ

χ = −iGG Γ

G−1 = G−10 − Σ

Hedin’s wheel

Σ

Γ

W G

χ~ ~

Σ(0) = 0

Γ(1) = 1

χ(1) = −iGG = χRPA

Σ(1) = iGW

G

W

GW approximation Fabien Bruneval

Page 28: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

Hedin’s equations

Σ = iGW Γ

Γ = 1 +δΣ

δGGG Γ

W = ε−1v

ε = 1− v χ

χ = −iGG Γ

G−1 = G−10 − Σ

Hedin’s wheel

Σ

Γ

W G

χ~ ~

Σ(0) = 0

Γ(1) = 1

χ(1) = −iGG = χRPA

Σ(1) = iGW

G

W

GW approximation Fabien Bruneval

Page 29: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Theory: from Hartree-Fock to GW

GW for the jellium

Homogeneous electron gas with constant density ρ0

2 3 4 5 6rs

0

2

4

6

8

10

12

14

16

Occ

upie

d ba

nd w

idth

(eV

)

Free electronHartree-FockGW

0 0.5 1 1.5 2k / kF

E ( k

)

Aluminu

m

Sodium

EF

W

GW approximation Fabien Bruneval

Page 30: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

Outline

1 Band structure & calculations

2 Theory: from Hartree-Fock to GWFunctional approach to the MB problemHedin’s equations

3 Physical content of GWWhat does the screening account for?What does the self-energy contain?

4 GW for realistic materialsImplementationApplications

GW approximation Fabien Bruneval

Page 31: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

From the Coulomb interaction to the screened Coulombinteraction

Hartree-Fock self-energy

Σ(1, 2) = iG (1, 2)v(1+, 2)

GW self-energy

Σ(1, 2) = iG (1, 2)W (1+, 2)

The only difference is in the v or W

GW approximation Fabien Bruneval

Page 32: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

What is different in v and in W

W is shorter ranged than vwith a crude model for W in metal:

W (r1, r2) =e−λTF .|r1−r2|

|r1 − r2|

v is static, whereas W is dynamic

v(r1, r2, t1 − t2) = δ(t1 − t2)1

|r1 − r2|

W (r1, r2, t1 − t2)

GW approximation Fabien Bruneval

Page 33: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

How does W look like?

W in frequency domain can be calculated and alsomeasured!

Silicon

It can be measured by EELS, IXSS.GW approximation Fabien Bruneval

Page 34: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

How does W look like?

In real time:Macroscopic response to U(1) = eδ(r1)δ(t1)

-10 0 10τ (a.u.)

Re {

W -

v}

GW approximation Fabien Bruneval

Page 35: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

How does W look like?

In real time:Macroscopic response to U(1) = eδ(r1)δ(t1)

-10 0 10τ (a.u.)

Re {

W -

v}

GW approximation Fabien Bruneval

Page 36: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

From Hartree-Fock to GW

The only difference is in the v or W

Coulomb interaction

v(1, 2) =1

|r1 − r2|δ(t1−t2)

Screened Coulomb interaction

W (1, 2) =

∫dr3

1

|r1 − r3|ε−1(r3, r2, t1−t2)

Hartree-Fock self-energy

Σx(ω//) = iGv

non localhermitian, static

GW self-energy

ΣGW (ω) = iGW

= iGv + iG [W − v ]

= Σx + Σc(ω)

non localnon hermitian, dynamic

→ Deep consequences for the spectral function A(ω) = |Im {TrG (ω)}|GW approximation Fabien Bruneval

Page 37: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

Spectral function

The spectral functions can be calculated

〈i |A(ω)|i〉 = |Im〈i |G (ω)|i〉|

=

∣∣∣∣ 1

ω − hhartreeii − Σii (ω)

∣∣∣∣=

|ImΣii (ω)|[ω − hhartreeii − ReΣii (ω)]2 + [ImΣii (ω)]2

where G−1ii = G−1

0ii − Σii

Lorentizian shape:Centered on the GW QP energy.Width ImΣ

GW approximation Fabien Bruneval

Page 38: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

From Hartree-Fock to GW

A(ω) = |ImG (ω)|

ω

Aii

Non-interacting electronsInteracting electrons

Re Σii

Im Σii

Satellite

Zi

GW approximation Fabien Bruneval

Page 39: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

Solution of the quasiparticle equation

Silicon

-20

-16

-12

-8

-4

0

Re Σ

(eV

)

Re Σ ( ωii )ω − hii

-40 -20 0 20 40ω (eV)

0

0.02

0.04

0.06

0.08

0.1

| Im

G |

Aluminum

-60

-50

-40

-30

-20

-10

0

Re Σ

(eV

)

Re Σii ( ω )ω - hii

-40 -20 0 20 40ω (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

| Im

G |

GW approximation Fabien Bruneval

Page 40: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .Physical content of GW

Lifetime and GW self-energy

Hole self-energy:

Im{〈i |Σ(εi )|i〉} = −∑

jqGG′

Mij(q + G)M∗ij (q + G′)

× Im(W − v)GG′(q, εj − εi )

× θ(µ− εj)θ(εj − εi )

µ

εi

GW approximation Fabien Bruneval

Page 41: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

Outline

1 Band structure & calculations

2 Theory: from Hartree-Fock to GWFunctional approach to the MB problemHedin’s equations

3 Physical content of GWWhat does the screening account for?What does the self-energy contain?

4 GW for realistic materialsImplementationApplications

GW approximation Fabien Bruneval

Page 42: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

Schematic GW calculation

Recipe by Hybertsen and Louie, PRL 55 1418 (1985) called“G0W0” or “best G best W ”

φ , εLDA LDA

DFTLDA

φ , εLDA LDA

GLDA

W

Σ= iGW

RPA

εGW

GW approximation Fabien Bruneval

Page 43: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

GW for realistic materials

Assumption

φGWi ≈ φKS

i

Quasiparticle equations

h0(r1)φGWi (r1) +

∫dr2Σ(r1, r2, ε

GWi )φGW

i (r2) = εGWi φGW

i (r1)

Kohn-Sham equations

h0(r1)φKSi (r1) + vxc(r1)φ

KSi (r1) = εKS

i φKSi (r1)

Differences

〈φKSi |Σ(εGW

i )− vxc |φKSi 〉 = εGW

i − εKSi

GW approximation Fabien Bruneval

Page 44: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

GW for realistic materials

Assumption

φGWi ≈ φKS

i

Quasiparticle equations

h0(r1)φKSi (r1) +

∫dr2Σ(r1, r2, ε

GWi )φKS

i (r2) = εGWi φKS

i (r1)

Kohn-Sham equations

h0(r1)φKSi (r1) + vxc(r1)φ

KSi (r1) = εKS

i φKSi (r1)

Differences

〈φKSi |Σ(εGW

i )− vxc |φKSi 〉 = εGW

i − εKSi

GW approximation Fabien Bruneval

Page 45: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

GW for realistic materials

Assumption

φGWi ≈ φKS

i

Quasiparticle equations

h0(r1)φKSi (r1) +

∫dr2Σ(r1, r2, ε

GWi )φKS

i (r2) = εGWi φKS

i (r1)

Kohn-Sham equations

h0(r1)φKSi (r1) + vxc(r1)φ

KSi (r1) = εKS

i φKSi (r1)

Differences

〈φKSi |Σ(εGW

i )− vxc |φKSi 〉 = εGW

i − εKSi

GW approximation Fabien Bruneval

Page 46: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

G0W0 calculation

To calculate the GW self-energy:

Σ(1, 2) = iG (1, 2)W (1+, 2)

which is Fourier transformed into frequencies

Σ(r1, r2, ω) = i

∫dω′G (r1, r2, ω + ω′)W (r1, r2, ω

′)

We need the following ingredients:

The KS Green’s function: G (r1, r2, ω) =∑

iφKS

i (r1)φKS∗i (r2)

ω−εKSi ±iη

The RPA dielectric matrix: εRPA −1GG′ (q, ω)

GW approximation Fabien Bruneval

Page 47: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

G0W0 calculation

To calculate the GW self-energy:

Σ(1, 2) = iG (1, 2)W (1+, 2)

which is Fourier transformed into frequencies

Σ(r1, r2, ω) = i

∫dω′G (r1, r2, ω + ω′)W (r1, r2, ω

′)

We need the following ingredients:

The KS Green’s function: G (r1, r2, ω) =∑

iφKS

i (r1)φKS∗i (r2)

ω−εKSi ±iη

The RPA dielectric matrix: εRPA −1GG′ (q, ω)

GW approximation Fabien Bruneval

Page 48: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

Band gaps of semiconductors

experimental gap (eV)

from M. van Schilfgaarde et al., PRL 96 226402 (2006).GW approximation Fabien Bruneval

Page 49: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

Result for a complex metal

Nickel

from F. Aryasetiawan, PRB 46 13051 (1992).GW approximation Fabien Bruneval

Page 50: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

Surfaces

Al(111): potential

from I.D. White et al, PRL 80, 4265 (1998).

GW approximation Fabien Bruneval

Page 51: Electronic Excitations and Spectroscopy: Theory and Codes ...molgw.org/bruneval/texts/bruneval_gw_lecture.pdf · Electronic Excitations and Spectroscopy: Theory and Codes Introduction

. .GW for realistic materials

References

L. Hedin, Phys. Rev. 139 A796 (1965).

L. Hedin and S. Lunqdvist, in Solid State Physics, Vol. 23(Academic, New York, 1969), p. 1.

F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61237 (1998).

W.G. Aulbur, L. Jonsson, and J.W. Wilkins, Sol. State Phys.54 1 (2000).

G. Strinati, Riv. Nuovo Cimento 11 1 (1988).

www.abinit.org

theory.polytechnique.fr/people/bruneval/

GW approximation Fabien Bruneval