electronic devices and circuits 2 mark questions solved...

31
ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions – Solved UNIT 1 1. What is an ideal diode? An ideal diode is one which offers zero resistance when forward biased and infinite resistance when reverse biased. 2. Compare ideal diode as a switch. An ideal diode when forward biased is equivalent a closed (ON) switch and when reverse biased, it is equivalent to an open (OFF) switch. 3. State the mathematical equation which relates voltage applied across the PN junction diode and current flowing through it. I = ( - 1) 4. Define knee/cut-in/threshold voltage of a PN diode. It is the forward voltage applied across the PN diode below which practically no current flows. 5. What is the effect of junction temperature on cut-in voltage of a PN diode? Cut-in voltage of a PN diode decreases as junction temperature increases. 6. What is the effect of junction temperature on forward current and reverse current of a PN diode? For the same forward voltage, the forward current of a PN diode increases and reverse saturation current increases with increase in junction temperature. 7. Differentiate between breakdown voltage and PIV of a PN diode. The breakdown voltage of a PN diode is the reverse voltage applied to it at which the PN junction breaks down with sudden rise in reverse current. Whereas, the peak inverse voltage (PIV) is the maximum reverse voltage that can be applied to the PN junction without damage to the junction.

Upload: lynhu

Post on 19-Apr-2018

241 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

ELECTRONIC DEVICES AND CIRCUITS

2 Mark Questions –

Solved

UNIT 1

1. What is an ideal diode?

An ideal diode is one which offers zero resistance when forward

biased and infinite resistance when reverse

biased.

2. Compare ideal diode as a switch.

An ideal diode when forward biased is equivalent a closed (ON)

switch and when reverse biased, it is equivalent to an open (OFF) switch.

3. State the mathematical equation which relates voltage applied across the

PN junction diode and current flowing through it.

I = ( ⁄

-

1)

4. Define knee/cut-in/threshold voltage of a PN diode.

It is the forward voltage applied across the PN diode below which

practically no current flows.

5. What is the effect of junction temperature on cut-in voltage of a PN

diode?

Cut-in voltage of a PN

diode decreases as junction temperature

increases.

6. What is the effect

of junction temperature on forward current and

reverse current of a PN diode?

For the same forward voltage, the forward current of a PN diode

increases and reverse saturation current increases with increase in junction

temperature.

7. Differentiate between breakdown voltage and PIV of a PN diode.

The breakdown voltage of a PN diode is the reverse voltage applied

to it at which the PN junction breaks down with sudden rise in reverse

current. Whereas, the peak inverse voltage (PIV) is the maximum reverse

voltage that can be applied to the PN junction without damage to the

junction.

Page 2: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

I characteristics of an ideal diode.

8.

Differentiate avalanche and zener breakdowns.

Zener Breakdown

Avalanche Breakdown

1. Breakdown occurs due to heavily doped junction and applied strong electric field.

1. Breakdown occurs due to avalanche multiplication between thermally generated ions.

2. Doping level is high.

2. Doping level is low.

3. Breakdown occurs at lower voltage compared to avalanche breakdown.

3. Breakdown occurs at higher voltage.

9. Draw the V-

10. Differentiate between drift and diffusion currents.

Drift Current Diffusion Current

1. It is developed due to potential gradient.

1. It is developed to charge concentration gradient.

2. This phenomenon is found both in metals and semiconductors.

2. It is found only in semiconductors.

11. Draw the V-I characteristics of a practical PN diode.

Page 3: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

12. List the PN diode parameters.

1.

Bulk Resistance. ( )

2.

Static Resistance/Junction Resistance (or)

DC Forward Resistance (

or )

3.

Dynamic Resistance (or) AC Forward Resistance (

or or

)

4.

Reverse Resistance ( )

5.

Knee Voltage ( )

6.

Breakdown Voltage ( )

7.

Reverse Current (or) Leakage Current

unction is reverse

13. State the PN diode ratings.

Even PN-Junction has limiting values of maximum forward current, peak inverse voltage and maximum power rating.

14. Define reverse recovery time.

It is maximum time taken by the device to switch from ON to OFF stage.

15. List the PN diode switching times.

1. Recovery Time

2. Forward Recovery Time

3. Reverse Recovery Time

4. Reverse recovery time, ( )

5. Storage and Transition Times

16. Define transition capacitance of a diode.

Transition Capacitance (CT) or Space-charge Capacitance: When a PN-

j -biased, the depletion region acts like an insulator or as a

dielectric.The P- and N-regions on either side have low resistance and act as

the plates. Hence it is similar to a parallel-plate capacitor. This junction

capacitance is called transition or space-charge capacitance (CT).

It is given by =

Where, A = Cross-sectional area of depletion region.D = Width (or) thickness of depletion region.

Page 4: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Its typical value is 40 pF.

Since the thickness of depletion layer depends on the amount of reverse

bias, CT can be controlled with the help of applied bias.

This property of variable capacitance is used in varicap or varactor diode.

This capacitance is is voltage dependent and is given by

Where, = Knee voltage,

= Applied reverse voltage,

K = Constant depending on semiconductor material,

n =

for alloy junction,

=

for diffused junction.

17. Define diffusion capacitance of a diode.

Diffusion or Storage Capacitance (CD): This capacitive effect is present

when the junction is forward-biased.

It is called diffusion capacitance due to the time delay in minority

charges across the junction by diffusion process. Due to this fact, this

capacitance cannot be identified in terms of a dielectric and plates. It varies

directly with forward current. When a forward-biased PN-junction is

suddenly reverse biased, a reverse current flows which is large initially, but

gradually decreases to the level of saturation current, I0.

This effect can be likened to the discharging, of a capacitor and is,

therefore called diffusion capacitance, CD. Its typical value is 0.02 F

It is given by:

Page 5: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Where, = Mean life time of carrier

= Constant =2 for Si and 1 forGe

I = Forward current

I0 = Reverse saturation current

VT = Volt equivalent of temperature

18. Draw the V -I characteristics of a zener diode.

19. List some applications of zener diode.

Zener diode find wide commercial and industrial applications. Some

of their common applications are:

As voltage regulators.

Page 6: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

As peak clippers or voltage limiters.

For wave shaping.

For meter protection against damage from accidental application of

excessive voltage.

As a fixed reference voltage in a network for biasing and comparison

purposes and for calibrating voltmeters.

20. State the ratings of zener diode.

Zener voltage (Vz): The voltage at which a zener diode breaks in the reverse

bias condition is called zener voltage. In fact, it is the voltage at which a

zener diode is to operate. The value of zener voltage depends upon doping-

more the doping, lesser the breakdown voltage.

Tolerance: The range of voltages about the breakdown voltage in which a

zener diode conducts in reverse direction is called tolerance.

Power Rating (PZM): The maximum power which a zener diode can dissipate (or handle) without damage is called its power rating.

PZM = IZM x VZ

Maximum Current Rating (IZM): The maximum value of current which a

zener diode can handle at its rated voltage without damage is called

maximum current rating (IZM).

Zener resistance (RZ): The opposition offered to the current flowing

through the zener diode in the operating region is called zener resistance

(RZ) or zener impedance (ZZ).

21. State the principle of operation of an LED.

When a free electron from the higher energy level gets recombined with

the hole , it gives out the light output. Here, in case of LEDs, the supply of

higher level electrons is provided by the battery connection.

22. State any four advantages of LED.

Page 7: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

They are small in size.

Light in weight.

Mechanically rugged.

Low operating temperature.

Switch on time is very small.

Available in different colours.

They have longer life compared to lamps.

Linearity is better.

Compatible with ICs.

Low cost.

23. State some disadvantages of LED.

Output power gets affected by the temperature radiation.

Quantum efficiency is low.

Gets damaged due to over –voltage and over-current.

24. List the applications of LED.

They are used in various types of displays.

They are used as source in opto-couplers.

Used in infrared remote controls.

Used as indicator lamps.

Used as indicators in measuring devices.

25. State the principle of operation of an LCD.

Basically this type of display consists of liquid crystal molecules.

These molecules have a special property. The change their

orientation when an electrical signal is applied to them.

The display consists of two glass plates and liquid crystal molecules

are placed in between the glass plates.

When no electrical signal is applied to the liquid crystal cell, then all

the liquid crystal molecules have random orientation with respect

to their axis. The incoming light passes through the gap of

molecules. So, the light also gets twisted.

Page 8: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Now, when an electrical signal is applied to this structure, then all the

liquid crystal molecules gets oriented by 90° to the glass plate. In this

case, this light passes in straight way along the molecular arrangement.

26. State any four advantages of LCD.

Less amount of power per digit is required.

LCDs have best contrast ratio.

No external interfacing circuitry is required.

They have low threshold voltage.

They can be driven directly.

LCDs and MOS compatible.

Small size and low cost.

27. State any four application of LCD.

LCDs are generally applicable in the field of medical, domestic and

industrial electronics. Some of the applications of LCD are:

Wrist watches.

Telephones and cellular phones.

Digital panel meters.

PCO monitors.

Calculators.

For space applications.

Page 9: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

In digital clocks.

Televisions.

Automobiles, etc.

29. Compare LEDs and LCDs.

LEDs LCDs

1. More power is required. 1. Less power is required. 2. Fastest displays. 2. Slowest displays.

3. More life. 3. Less life. 4. LED is light source. 4. LCD is not light source. It is a

light reflector. 5. More temperature range. 5. Less temperature range.

6. Mounting is easy. 6. Mounting is difficult.

30. Define rectifier. Mention the types.

Rectifier: A rectifier is a circuit that converts AC into pulsing DC. It

uses unidirectional conducting devices like PN diodes.

Rectifiers are classified into two types based on the conduction of AC

input.

They are:

Half wave rectifier (HWR).

Full wave rectifier (FWR).

Half Wave Rectifier (HWR): The HWR uses the property of diode that

conducts current in one direction only. It uses only one diode as in

Fig.1.12.

During the positive half-cycles of the input AC voltage, the diode D is

forward biased (ON) and conducts. While conducting, the diode acts as a

short-circuit so that the circuit current flows and hence the positive half

cycles of input AC voltage are dropped across the load RL.

Page 10: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

During the negative input half cycles, the diode D is reverse biased (OFF)

and so, does not conduct, i.e., there is no current flow. Hence there is no

voltage drop across RL. Thus, the negative half cycles are suppressed,

i.e., they are not utilized for delivering power to the load.

Hence, the HWR uses only positive half-cycles of the input AC supply.

However the output is not steady DC, but only a pulsating DC with ripple

frequency equal to that of the input voltage frequency.

i.e., fr = fin

Also, PIV = Vm, where Vm is the maximum secondary voltage.

Full Wave Rectifier (FWR): In a FWR, both the half-cycles of the input AC

supply are utilized. Alternate half-cycles are inverted to give a

unidirectional load current.

There are two types of FWRs.

Centre-tapped FWR.

Bridge rectifier.

31. Define rectifier efficiency.

Page 11: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

It is defined as the ratio of DC power output to the applied AC power

in put

Rectifier efficiency,.

32. Define ripple factor of a rectifier.

The purpose of a rectifier is to convert AC into DC. But the pulsating

output of a rectifier contains a DC component and an AC component, called

ripple.

The ratio of RMS value of AC components to the DC component in

the rectifier output is called ‘ripple factor’.

The ripple factor is very important in deciding the effectiveness of a

rectifier. It indicates the purity of the DC power output. The smaller the

ripple factor, the lesser the effective AC component and hence more

effective is the rectifier.

33. Define TUF of a rectifier.

Most of the rectifier circuits make use of transformer whose

secondary feeds the AC power. The transformer rating is necessary to

design a power supply.

Transformer utilization factor (TF) id defined as the ratio of DC power delivered to the load to the AC power rating of transformer secondary.

34. Give the advantages and disadvantages of HWR and FWR.

Half Wave Rectifier (HWR)

Advantages

Simple circuit.

Low cost.

Disadvantages.

Page 12: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Rectification efficiency is low (40.6%).

Very high amount of ripple (γ = 1.21)

Low TUF (0.287)

Saturation of transformer core occurs.

35. What is the need for a filter in rectifier?

The output of a rectifier is pulsating and contains a steady DC component

with undesirable ripples. If such pulsating DC is given to the electronic

circuits, it produces disturbances and other interferences. Hence ripples

have to be kept far from the load. This is achieved by use of a filter circuit

in between the rectifier and load as shown below.

36. What is a rectifier-filter? List the different types of filters.

A filter circuit is a device which removes the AC component but allows the

DC components of the rectifier to reach the load.

Ripples can be removed by one of the following filtering methods.

(i) A capacitor, in parallel to the load, provides a easier bypass for the

ripples due to low impedance to AC at ripple frequency and leave the DC

appear across the load.

(ii) An inductor, in series with the load, prevents the passage of ripples due

to high impedance at ripple frequency, while allowing the DC due to low

resistance to DC.

(iii) Various combinations of capacitor and inductor, such has L-section

filter, π-section filter, etc., which make use of both the properties depicted

above.

Page 13: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Types of filter circuits: Depending upon the components used in the filter

circuits and the way they are connected, the filter circuits are classified as:

(i) Shunt capacitor filter

(ii) Series inductor filter

(iii) Choke-input (LC) filter

(iv) Capacitor-input (π) filter.

37. List some advantages and disadvantages of CLC filters.

It can be used with both HWRs and FWRs.

More output voltage is obtained.

Output is almost pure DC.

38. What is the need for voltage regulators? What are the drawbacks of

unregulated power supply?

An ordinary (unregulated) power supply from the following drawbacks:

Poor regulation

The DC output voltage varies with the AC supply voltage which

fluctuates at different times of the day and is different at different

locations.

The DC output voltage varies with temperature, in case

semiconductors are used.

For certain applications the output of the filter even with small

amount of ripples is not acceptable.

39. What is voltage regulator? List some types.

A voltage regulator is a circuit which makes the rectifier-filter output

voltage constant regardless of the variations in the input voltage or load.

Types of regulators: There are three principal types of regulators, viz.,

Shunt regulator

Series regulators

Switch-mode regulators or switched mode power supply(SMPS)

Page 14: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

40. Define (i) Voltage regulation (ii) Minimum load resistance.

The variation of output voltage with respect to the amount of load current

drawn from the power supply is called voltage regulation.

The change in DC output voltage from no load to full load with respect to

full load voltage of a power supply is called its voltage regulatin.

% voltage regulation =

Where , VNL = DC output voltage at no load

VFL = DC output voltage at full load

Smaller the percentage regulation better is the power supply.

For a well-designed power supply, the percentage regulation

should be less than 1%.

UNIT 2

1. For normal operation, how is emitter-base junction biased? Forward.

2. For normal operation, how is collector-base junction biased? Reverse.

3. What is the relation between the currents of a transistor? IE =IB +IC

Page 15: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

4. What are the types of circuit connections known as

configurations, for operating a transistor? Common-Base (CB) Common-Emitter (CE) Common-Collector (CC)

5. What is the relation between α and β of a transistor ?

α =

6. What are the regions used when BJT is used as a switch ?

Saturation and cut-off regions.

7. What is the thermal resistance of power BJT ?

Thermal resistance is the resistance to the flow of heat. Heat flows from the junction to the surrounding air. Larger the transistor case, smaller the thermal resistance and vice-versa. Thermal resistance is reduced by providing heat sink with the transistor.

8. Why must the base be narrow for the transistor (BJT) action ?

Beta (β) is the ratio of IC to IB .IB becomes less if the base width is narrow. Higher value of β can be obtained with lower value of base current.

9. What is the value of cut-in voltage for a BJT ?

For Silicon BJT - 0.7V

For Germanium - 0.3V

Page 16: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

10. Why an ordinary transistor is called bipolar ?

Because the transistor operation is carried out by two types charge carriers—majority and minority carriers.

11. Why transistor (BJT) is called current controlled device ?

The output voltage, current or power is controlled by the input current in a transistor. So , it is called the current controlled device.

12. What are “emitter injection efficiency” and “base transport factor” of a transistor?

The ratio of current of injected carriers at emitter junction to the total emitter current is called the emitter injection efficiency.

Transport factor, β =

13. Why silicon type transistors are more often used than Germanium type ?

Because silicon has smaller cut-off current ICBO , small variations in ICBO due to variations in temperature and high operating temperature as compared to those in case of Germanium.

14.Why collector is made larger than emitter and base?

Collector is made physically larger than emitter and base because collector is to dissipate much power.

Page 17: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

15. Why the width of the base region of a transistor is kept very small as compared to other regions?

Base region of a transistor is kept very small and lightly doped so as to pass most of the injected charge carriers to the collector.

16. Why emitter is always forward biased with respect to base?

To supply majority charge carrier to the base.

17. Why collector is always reverse biased with respect to base?

To remove the charge carriers away from the collector-base junction.

18. Why CE configuration is most popular in amplifier circuits?

Because its current, voltage and power gains are quite high and the ratio of output impedance and input impedance are quite moderate.

19. Why is CC configuration seldom used?

Because its voltage gain is always less than unity.

20. How many h-parameters are there for a transistor?

Four – hi, ho, hr hf or h11, h12, h21, h22.

21. What are the units for h11 and h22?

Page 18: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

h11 – ohm; h22 – mho (or) siemen.

22. What are the parameters hr and h0 called?

hr – reverse transfer voltage.

ho – output admittance.

23. Why h-parameters are called hybrid parameters?

Because they have different units are mixed with other parameters.

24. Which is the smallest of the four h-parameters of a transistor?

h0 or h12

25. What is the typical value of hie?

1 kΩ

26. A transistor connected in common base configuration has a -________ input resistance and a ________ output resistance.

Low input resistance.

Very high output resistance.

27. Which of the BJT configuration is suitable for impedance matching application and why?

Page 19: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

CC configuration is suitable for impedance matching applications because of very high input impedance and low output impedance.

28. Give the current gain expression for a common emitter transistor configuration?

γ = ∆IE/∆IB

29. What are the tools used for small signal analysis of BJT?

i. h – Parameter circuit model. ii. z – Parameter circuit model. iii. y – Parameter circuit model. iv. Transconductance parameter circuit model. v. Physical model. vi. T-model.

30. What is the significance of ICBO and ICO?

ICBO is the leakage current from the collector to base with emitter open. ICO is the leakage current from collector to emitter with base open (ICO = ICEO).

UNIT 3

1. Why field effect transistor are called unipolar transistors?

Because current conduction is by only one type of majority carriers.

2. Why FET’s are so called? (or) Why FETs are voltage controlled devices?

Page 20: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

The output characteristics of a FET can be controlled by the applied electric field (voltage) and hence the name FET and are voltage controlled devices.

3. How is drain current controlled in a JFET? By controlling the reverse bias given to its gate, i.e., VGS.

4. What is the pinch-off voltage in a JFET? The value of VDS at which the channel is pinched-off, i.e., all the free charges from the channel get removed, is called the pinch-off voltage in a JFET.

5. What are the parameters that control the pinch-off voltage of JFET? Electron charge, donor/acceptor concentration density, permittivity of channel material and half-width of channel bar.

6.How does the FET behave (i) for small values of |VDS| and (ii) for large values of |VDS| ?

(i) FET behaves as an ordinary resistor for small values of |VDS|, i.e., in ohmic region.

(ii) FET behaves as a constant current source for large values of |VDS| till breakdown occurs.

7. What is meant by saturation region?

The region of drain characteristic of a FET in which drain current remains fairly constant is called the saturation or pinch-off region.

Page 21: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

8. What is meant by drain-source saturation current IDSS?

The drain current in pinch-off region with VDS = 0 is called IDSS.

9. Why is the input impedance of FET very high?

Because its input circuit (gate-to-source) is reverse biased and the input gate current is very small (nA).

10. Why MOSFET is called IGFET?

MOSFET is constructed with the gate terminal insulated from the channel. So it is called as insulated gate FET or IGFET.

11. Why E-MOSFET is called sometimes normally-off MOSFET? E-MOSFET operates with large positive gate voltages only and does not conduct when VGS = 0. So, it is called normally-off MOSFET.

12. What is meant by gate-to-source threshold voltage VGST in E-MOSFET?

It is the minimum value of VGS that is required to form the inversion layer.

13. Why MOSFETs are never connected or disconnected in the circuit when power is ON?

If a MOSFET is connected or disconnected in a circuit when power is ON, the transient voltages caused by inductive kickback and other effects may exceed VGS(max) and thus wipe out the MOSFET.

Page 22: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

14. Name the factors which make the JFET superior to BJT?

High input impedance, low output impedance and low noise level.

15. List the JFET parameters.

Transconductance (gm), drain resistance (rd) and amplification factor (µ)

µ = gm rd

16. Give the drain current equation of JFET?

ID = IDSS (

)2

17. List some applications of JFETs.

Used as buffers in measuring equipment, receivers and other general purpose devices.

Used in RF amplifiers of FM tuners and communication equipment.

Used in mixer circuits in FM and TV receivers and communication equipment.

Used in cascade amplifiers in measuring and test equipment. Used as voltage variable resistor (VVR) in OP-AMPs and tone

controls. Used in hearing aids and inductive transducers. Used in oscillator circuits. As the physical size is small, it finds use in digital circuits in

computers, large scale integration (LSI) and memory circuits. Used as current sources.

Page 23: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

18. List some advantages of MOSFETs.

MOSFETs combine the inherent advantages of solid-state devices such as:

Small size Low power consumption Simplicity of construction Mechanical ruggedness.

With the inherent advantages of electron tubes such as:

Very high input impedance Square law transfer characteristics.

19. In a JFET, gate-source junction is always …………… biased and source-drain is ……………….. biased.

Reverse, Forward

20. How does the transconductance vary with drain current in a JFET? In a JFET, the transconductance gm varies with the drain current ID by the following equations.

gm =

| |√

UNIT 4

1. What is a differential amplifier?

An amplifier, which is designed to give the difference between two

input signals, is called the differential amplifier.

2. What is the function of a differential amplifier ?

Page 24: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

The function of a differential amplifier is to amplify the difference of

two signal inputs,

i.e.,

3. When two signals V1 and V2 are connected to the two inputs of a

difference amplifier, define a difference signal Vd and common-mode

signal Vc

The difference signal Vd is defined as the difference of the two signal

inputs,

i.e., Vd = V1 – V2

The common-mode signal Vc is defined as the average of the two

signals,

I.e., Vc =

(V1 + V2)

4. What is the differential-mode voltage gain of a differential amplifier?

It is given by Ad =

5. What is the common-mode gain AC in terms of A1 and A2?

It is given by Ac = A1 + A2

6. Define CMRR.

The common-mode rejection ratio(CMRR) of a differential amplifier is

defined as the ratio of the differential-mode gain to common-mode gain.

CMRR = |Ad|Ac|

7. What are the ideal values of Ad and Ac with reference to the differential

amplifier?

Page 25: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Ideally, Ac should be zero and Ad should be large, ideally infinite.

8. Express CMRR in d B.

CMRR (dB) = 20 log Ad – 20log Ac.

9. What are advantages of differential amplifier?

It has high gain and high CMRR.

10. List some applications of differential amplifiers?

Used in IC applications, AGC circuits and phase inverters.

11. Define (i) feedback (ii) positive feedback and (iii) negative feedback.

i. Feedback: The process of combining a fraction of the output (of a

Device-amplifier) back to its input is called feedback.

ii. Positive Feedback: If the feedback is in phase to the input, it is called

positive feedback. Here

iii. Negative Feedback: When the feedback is in opposition (out of

phase) to the input, it is called negative feedback. Here

12. What loop gain of a feedback amplifier.

In a feedback amplifier, when the signal passes through an amplifier

UNIT 5

1. Define pulse and pulse circuits.

Page 26: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

The word “pulse” is applied to waveforms that exist for a very short

period. The word “ pulse circuits” refer to the active and passive circuits

intended to handle, generate, shape and sotre pulse signals.

2. Define switching circuit.

A circuit which can turn ON or OFF the current in the electronic

circuits is called switching circuit

3. Define wave shaping and wave shaping circuits.

The process of generating new wave shapes from older wave forms

using some netword is called wave shaping. The circuits which perform

wave shaping are called wave shaping circuits.

Eg: Clippers, Clampers, Integrator, Multipliers, etc.

4. Give some examples of linear and non-linear wave shaping circuits.

Linear wave shaping circuits – use R,L,C.

Examples: RC, RL, RLC circuits, Integrator, Summer, etc.

Non-linear wave shaping circuits – uses R,L,C diodes,

Examples: Clippers, Clampers, etc.

5. Why the capacitor in a high pass RC circuit is called blocking capacitor?

Because of the blocking property of the capacitor for DC or low

frequency input signals, the capacitor acts like an open circuit and blocks

the signal. So the capacitor in high-pass RC circuits is called “blocking

capacitor”.

6. Why a high-pass RC circuit is called differentiator?

Because it gives the output voltage proportional to the differentiation of

input voltage.

Page 27: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

7. What are the conditions for a series RC circuit to act as a differentiator?

i. RC Time constant << Time period of input signal

RC T

ii. XC 10 R

8. List the applications of high-pass RC circuits.

To generate a step from ramp input.

To generate a square wave from a triangular wave.

To generate a series of narrow pulses called “pips” from rectangular

or square waves.

Used in R-C coupling of amplifiers where distortion and

differentiation of waveform is to be avoided.

9. Why a low-pass RC circuit is called an integrator?

Because it gives the output voltage proportional to the integral of input

voltage.

10. What are the conditions for a series RC circuit to act as an integrator?

i. RC T

ii. R 10 XC

11. List the applications of low-pass RC circuits.

Used as bypass capacitors.

To perform mathematical integration in analog computers.

To generate triangular and ramp waveforms.

Page 28: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

16. What is the function of a positive clamper?

Used to discriminate pulses of different lengths.

12. What are the characteristics of pulse waveforms?

Rise time, fall time and tilt.

13. Define Clamping.

Clamping is the process of

shifting the input signal above or below

the zero level. By clamping the input signal suitably, we can introduce

(insert) any required DC level into the signal. So clapmers are also called DC

level restorers.

14. What is a Clamper?

The circuit with which

the waveform can be shifted, such that, a

particular part of it (say positive or negative peak) is maintained at a

specified level, is called a “clamping circuit or simply, clamper”.

15. List the types of Clampers.

Positive Clamper

Negative Clamper

Biased

Clamper]

It shifts the signal towards the positive side such that the negative

side of the signal reduces to zero.

17. What is the function of a negative clamper?

It shifts the signal towards to negative

side such that the positive side

of the signal reduces to zero.

They are used in T.V. receivers to restore the original DC reference

signal (correspondiong to the brightness level of the picture) to the

video signal.

They are used to produce a DC voltage is a multiple of peak AC input

voltage i.e., they are used a as voltage multipliers.

They are used to supply power to high voltage/low current devices

like CRTs used in T.V receivers, CROs and computer displays.

19. List the applications of Clampers.

18. What is biased clamper?

A biased clamper means that clamping can be done at any voltage

level other than zero.

Page 29: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

20. What is a clipper?

The circuit with which the waveform is shaped by removing (or

clipping)

a certain portion of the input signal voltage above or below a

present level is called clipping circuit or simply, clipper. They are used to

limit the amplitude of the input signal.

21. List the types of clipers.

Based on limiting action:

Positive Clipper

Negative Clipper

Biased Clipper

Combination Clipper

22. What is the difference between the output from a clipper and a

clamper?

The output of a clipper appears as if a portion of the input signal

were clipped off, but a clamper simply shifts the input to a different DC

level.

23. What is the difference between positive and negative clippers?

The positive clippers removes the positive half cycles, while the

negative clipper removes the negative half cycles, of the input waveform.

24. What is the difference between positive and negative clampers?

A positive clamper pushes the signal on the positive side or upward

while a negative clamper pushes the signal

on the negative side or

downward.

25. A clamper circuit sometimes uses a DC battery in addition to diode, a

capacitor and a resistor. Why?

To cause an additional shift.

26. How does a clamper affect the peak-to-peak and RMS values of a

waveform?No change.

Page 30: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

29. What is AMV? Why is it called a square wave generator?

An AMV is essentially a two-stage RC coupled amplifier with output

of one stag supplied back to the input of another stage.

An AMV generates square wave of known frequency (or period). So,

it is called a “square wave generator”.

30. How does a

MMV circuit be constructed from a AMV?

By replacing one R-C timing circuit by a DC voltage divider.

31. What is the function of commutating capacitors in multivibrator?

To improve the switching characteristics of the circuit.

There are three basic types of multivibrators depending on the type

of coupling network used. They are:

Astable multivibrators (AMV) or free running generator.

Monostable multivibrator (MMV) or one-shot multivibrator or

univibration.

Bistable multivibrator (BMV) or flip-flop.

An AMV uses capacitive coupling.

An MMV uses RC coupling.

An BMV uses resitive coupling.

28. What is a multivibrator? List the different types of multivibrators.

A Multivibrator is basically a two stage amplifier with 100% feedback

between the two stages such that output of one is fed back to the other.

The feedback from one stage to the other is so arranged that when

one transistor is drive to cut-off, the other is driven to saturation. Thus at

any particular instant of time, one transistor is ON and the other is OFF.

Types

27. List the applications of clippers.

They are used to remove unwanted portions like noise accumulated

on peaks of waveforms.

They are used in T.V receivers to separate since pulses from the

composite video signal.

Two level clippers are used as square wave generators.

They are used in PPM modulators.

Page 31: ELECTRONIC DEVICES AND CIRCUITS 2 Mark Questions Solved …files.teceee-in.webnode.in/200000106-cff2ed0ed4/EDC 2 Marks All... · ELECTRONIC DEVICES AND CIRCUITS. 2 Mark Questions

Pulse synchronization circuits.

Clock for binary logic signls.

35. What are the applications of MMVs?

MMVs are used for

Generation of well defined pulses

Logic design of pulse delay

Variable pulse width

36. What are the applications of BMVs?

BMVs are used as

Memory elements in shift registers, counters, etc.,

37. What are the applications of Schmitt trigger?

Amplitude comparator

Squaring circuit

Flip flop

38. Why an AMV is called free running relaxation oscillator?

Because it runs and relaxes alternately.

39. Which portion of the UJT characteristic is used to make UJT to generate

sawtooth waves?

Negative resistance region.

40. Give the formula for pulse repetition frequency of UJT based sawtooth

generator?

(

)

34. What are the applications of AMVs?

AMVs are used as Square wave generators.

Voltage to frequency converters.

32. Why are mnostable Multivibrators called one-short Multivibrators?

They generate one output pulse for every trigger pulse and hence the

name “one shot Multivibrators or univibrators”.

33. Whey the BMV is called a flip-flop?

In a BMV, one trigger pulse causes the Multivibrator to flip from one

state to the other state and the next pulse causes it to flop back to its

original state. So, it is called the flip – flop.