electron and photon identi cation with p20 data -...

49
DØ Note 5761 Electron and Photon Identification with p20 data Oleksiy Atramentov 1 , Dmitry Bandurin 2 , Xuebing Bu 3 , Betty Calpas 4 , Edgar Carrera 1 , Daniel Duggan 1 , Alexey Ferapontov 2 , Maiko Takahashi 5 , Tonya Uzbyakova 6 , Hang Yin 3 1 Florida State University, FL, USA 2 Kansas State University, KS, USA 3 University of Science and Technology of China, Hefei 4 Centre de Physique des Particules, Marseille, France 5 University of Manchester, Manchester, United Kingdom 6 Moscow State University, Moscow, Russia (Dated: 16th September 2008) Abstract This note describes Electron and Photon certification for the data recorded with the DØ detector during Run IIb from August 2006 to February 2008 and reconstructed using p20 version of the DØ software. It also contains description of the new identification variables introduced during the data analysis.

Upload: doliem

Post on 06-Jul-2019

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

DØ Note 5761

Electron and Photon Identification with p20 data

Oleksiy Atramentov1, Dmitry Bandurin2, Xuebing Bu3, Betty Calpas4, Edgar Carrera1,

Daniel Duggan1, Alexey Ferapontov2, Maiko Takahashi5, Tonya Uzbyakova6, Hang Yin3

1Florida State University, FL, USA2Kansas State University, KS, USA

3University of Science and Technology of China, Hefei4Centre de Physique des Particules, Marseille, France

5University of Manchester,

Manchester, United Kingdom6Moscow State University, Moscow, Russia

(Dated: 16th September 2008)

Abstract

This note describes Electron and Photon certification for the data recorded with the DØ detectorduring Run IIb from August 2006 to February 2008 and reconstructed using p20 version of the DØsoftware. It also contains description of the new identification variables introduced during the data

analysis.

Page 2: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

2

Contents

1. Introduction. 3

1.1. Data Samples. 3

1.2. Monte Carlo Samples. 4

2. Object Identification. 4

2.1. Choice of selection variables. 5

2.2. Photon Identification. 17

2.2.1. Definitions. 17

2.2.2. Efficiencies. 17

2.2.3. Scale factors and systematics. 20

2.2.4. Anti-track matching cut. 20

2.3. Electron Identification. 25

2.3.1. Definitions. 25

2.3.2. Efficiencies. 25

2.3.3. Scale factors and systematics. 26

3. Conclusion. 40

4. Acknowledgments. 40

References 41

5. Appendix. 42

5.1. Dependence of photon selection efficiencies on Linst, R(e, jet) and njets. 42

5.2. Dependence of electron selection efficiencies on Linst, R(e, jet) and njets. 44

Page 3: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

3

1. INTRODUCTION.

This note describes the work done to measure electron and photon identification efficiencies as well asdata/Monte Carlo scale factors for the p20 data and Monte Carlo samples. Here we follow identificationtechniques applied earlier during p17 electron [2] and photon [1] certifications.

Main challenge in the analyzed Run IIb data is caused by increased Tevatron instantaneous luminosity bya factor of two, on the average, as compared with Run IIa data sample. This fact resulted in degradingelectron/photon efficiencies for similar definitions. Another challenge is caused by the new physics goals,primarily directed on the searches (and setting limits) for Higgs boson and new particles.

It necessitates some re-optimization of EM ID tools existed earlier in the p17 era in order to introduce IDvariables and definitions less sensitive to the effects related with the luminosity increase and which, at thesame time, would allow to preserve high signal efficiencies and low fake rates. For this reason some EM IDvariables have been re-defined (like calorimeter isolation, spatial track matching, electron likelihood), somehave been introduced for the first time (like electron and photon neural networks). Some new electron IDvariables have been borrowed from the previous p17 photon ID certification [1].

Another problem that we tried to solve is low tracking efficiency in the forward detector region thatdegraded in Run IIb even more due a higher fraction of fake hits and track segments. Trying to keepelectron efficiencies in this region as high as possible five new trackless electron definitions have beenintroduced that differ from each other by signal and fake efficiencies. A possible solution in near future isdirect hit analysis using hits-on-the-road (likelihood based) method like it was done for the central region[13] with a possible account of forward per-shower (FPS) clusters in the shower layers.

A new part of p20 electron ID is certification of the inter-cryostat (ICR) detector region. It allows toincrease electron acceptance in various searches by 20-25%. The ICR certification is beyond the scope ofcurrent note and can be found here [3].

1.1. Data Samples.

For both electron and photon ID we use Z → ee events found in 2EMhighpt skim provided by CommonSample Group. Following skim have been used:Pass2 (preshutdown 2007) dataCSG−CAF−2EMhighpt−PASS2−p21.10.00Pass4 (postshutdown 2007)

CSG−CAF−2EMhighpt−PASS4−p21.10.00−p20.12.00

CSG−CAF−2EMhighpt−PASS4−p21.10.00−p20.12.01

CSG−CAF−2EMhighpt−PASS4−p21.10.00−p20.12.02

Data in this skim require at least two EM objects with |ID|=10 or 11 and having pT > 7 GeV. In analysisof signal events we have also required at least one of calorimeter single or double EM trigger to be fired.

For the fakes study, we have used these QCD skims:

CSG−CAF−QCD−PASS4−p21.10.00−p20.12.00

CSG−CAF−QCD−PASS4−p21.10.00−p20.12.01

CSG−CAF−QCD−PASS4−p21.10.00−p20.12.02

Page 4: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

4

Data in QCD skim require to have fired at least one of single or di-jet triggers with pT threshold from 8GeV and higher.

All the used data are in the CAF format and obtained with the new track matching constants [5] andelectron likelihood provided by EM ID group based on analysis of p20 data.

1.2. Monte Carlo Samples.

For electron ID we have used Z → ee events simulated with Pythia Monte Carlo event generator [6] inthe invariant mass range of 60 − 130 GeV using these datasets:

CSG−CAF−MCv4-55052−p21.11.00

CSG−CAF−MCv4-55052−p21.11.00

For photon IDs we have used photon+jet and di-photon samples from following datasets:CSG−CAF−MCv4-66353−p21.11.00

CSG−CAF−MCv4-66354−p21.11.00

CSG−CAF−MCv4-66355−p21.11.00

CSG−CAF−MCv4-66356−p21.11.00

CSG−CAF−MCv4-66357−p21.11.00

for photon+jet events (which correspond to simulations with p min⊥

from 10 to 320 GeV) and

CSG−CAF−MCv4-80052−p21.11.00

CSG−CAF−MCv4-80053−p21.11.00

for di-photon events.

2. OBJECT IDENTIFICATION.

To derive photon and electron efficiencies in p20 data we used MC and data samples listed in sections 1.1and 1.2.

Any event we consider should contain at a primary vertex with |z| < 60 cm with at least three matchedtracks. Tag and probe method has been used for analysis of Z → ee events described, for example, in [1, 2].For probe electron we have used following basic requirements:

1. EM cluster with pT >10 GeV

2. |ID| = 10 or 11

3. Iso < 0.15

4. EMfrac > 0.90

5. IsoHC4 < 6 GeV

6. SigPhi < 20.

Page 5: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

5

The meaning and notations for the variables are described in section 2.1. Probe electron can be locatedin either CC (|η| < 1.1) or EC (1.5 < |η| < 3.2) region. Definition of the probe coincides with those usedearlier in [1, 2] and differs by two new last lines. Those cuts are almost 100% efficient (see section 2.1) andhave been introduced for additional background suppression. Efficiencies of all the cuts under study arecalculated with respect to those definitions which are also called preselection criteria. The preselectionefficiencies for p20 data are measured separately [7] and not described in this note. They are pretty closeto those found earlier in p17 electron certification [2].

For the tag electron we require

1. EM cluster with pT >25 GeV

2. |ID| = 10 or 11

3. Iso < 0.07

4. EMfrac > 0.97

5. HMx7 < 20

6. IsoHC4 < 2 GeV

7. Lhood8 > 0.8

8. ANN-7 output > 0.7.

Both the tag and the probe electron are required to give invariant mass 80 < Minv(e, e) < 100 GeV andto be located in the η fiducial region.

Also, fake sample in data should

• contain at least one probe EM object,

• which is separated from any good jet by dR(η, phi) > 0.7

• have at least one good jet with the jetcorr corrected pT > 15 GeV that have ∆φ(e, jet) > 2.8

• have missing ET < 10 GeV

• have invariant mass of the probe EM object with any other EM object (if it exists) minv < 60 orminv < 130 GeV.

2.1. Choice of selection variables.

Electrons and photons in most of final states of the hard interactions are produced as single well-isolatedobjects. For this reason, electron/photon ID variables and criteria should reflect this nature for all sub-detectors.

Most of the criteria have been used in the previous electron/photon IDs [1, 2] and some of them are newones or obtained by re-optimization/re-training using p20 data [3–5, 8, 10].

For electron and photon ID we use following variables:

• Calorimeter isolation Iso. It is obtained from a regular calorimeter isolation after subtraction of theenergy coming to the EM cluster isolation cone (R = 0.4) due to additional minimum bias interactionsand parametrized versus instantaneous luminosity [10]. Figure 1 shows electron efficiencies in data andMC events for the relative isolation cut Iso < 0.07 after the energy corrections in CC and EC regions. The

Page 6: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

6

plots also show the fake rates 1. We see that MC and data efficiencies are in a very good agreement andshow stable behavior versus instantaneous luminosity.

The new isolation is available by calling method Isolation() in both, Electron and Photon selectors.

• Fraction of the EM cluster energy deposited in the electromagnetic calorimeter EMfr. It is available inthe standard EMreco via method emfrac().

• Track isolation of the EM cluster which is calculated in Electron and Photon selectors in method trk−iso().It returns total track pT (for tracks with ptrack

T > 0.5 GeV) in the hollow cone 0.05 < R < 0.4 around theEM cluster and denoted by IsoHC4. Similar variable IsoHC7 is calculated for a cone of 0.05 < R < 0.7 2.

• HMx7 and HMx8 that characterize lateral and longitudinal shower shapes of EM cluster, which areavailable via HMx7() and HMx8() methods.

• Energy (squared) weighted CPS strips width cps−rms (and cps−sq−rms), that was studied in detail in thisnote [11] and used in p17 photon ID [1]. It is available now through E−RMS−CPS() (and E2−RMS−CPS())methods of TMBEMCluster.

• Shower widths of the EM cluster at 3rd layer of the EM calorimeter in r−φ and r−z planes, respectively,SigPhi and SigZ (called by flrS1(3) and flrS2(3) methods).

• Probability of spatial track matching, implemented in track−match−spatialchi2prob() method. Thisprobability has been recalculated for p20 data by using new values of σφ and ση and average shifts betweenthe track extrapolated to EM3 layer of EM cluster and gravity center of EM cluster at this layer. Thosevalues are calculated separately positive and negative signs of the product qtrack · Bz (i.e. for differenttrack curvatures). Due this splitting we can reject more jet fakes without loosing a signal efficiency. Newdependences on pT and η of EM object has been found and implemented as well. Figures 2 and 3 showefficiencies to pass cut track−match−spatialchi2prob() > 0.001 for Z → ee and di-jet events in data. Onecan see that additional factor of about 1.25 − 1.5 per electron candidate is achieved with the new trackmatching constants. More details can be found in this D0 Note [5].

• “Hits on the road” discriminant [13] HoR.

• Electron likelihood trained using p20 data [4]. Here we use the 8-variable likelihood Lhood8().

• Artificial neural networks, trained using p20 data for electron and photon ID [8]. Here we use electronANN with 7 input variables for CC and ANN with 3 input variables for EC regions. We have alsointroduced photon ANN with 6 input variables (same as used in ANN-7 for electron ID). Certification ofthose neural nets is described in [8] and [9]. Figs. 4 and 5 show efficiency of signal (electrons in MC anddata) and background events versus cuts on the ANN output for ANN-7 in the CC and ANN-3 in the ECregions. All the neural networks are available in both Electron and Photon selectors.

Efficiency versus cuts on those variables in CC and EC regions are presented in Figs.6–10. These plots tellus which cuts would be optimal for a given variable and explain our choices made for electron and photonID definitions in sections 2.2 and 2.3. The only exclusions are SigPhi and SigZ variables, choice of thecuts for which in EC region is motivated by their |ηdet| dependence, found during photon ID certificationusing p17 data [1] 3 Those dependencies turned out to be still useful for p20 data. We used followingparameterizations for these variables in the EC region

SigPhi < 7.3 ∗ ηdet ∗ ηdet − 35.9 ∗ |ηdet| + 45.7 (1)

1 All the efficiencies are calculated with respect to the preselection cuts.2 Not used for ID due to a smaller signal efficiency. Nut it was used for JES purposes to select tight photon candidates [12].3 Due to decreasing SigPhi and SigZ and narrowing their distributions with growing |ηdet| we have to apply tighter cuts

for bigger |ηdet|.

Page 7: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

7

SigZ < 7.5 ∗ ηdet ∗ ηdet − 36.0 ∗ |ηdet| + 44.8 (2)

While for CC region a straight cut should be applied for SigPhi (and no useful cut for SigZ).

Page 8: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

8

instlum0 50 100 150 200 250 300

instlum_effEntries 13Mean 149.7RMS 74.92

instlum0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

instlum_effEntries 13Mean 149.7RMS 74.92

Z->ee, MCZ->ee, Dataqcd fake, Data

Efficiency of Isolation Energy vs. Inst. Lumi (CC)

instlum0 50 100 150 200 250 300

instlum_effEntries 13Mean 149.5RMS 74.79

instlum0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

instlum_effEntries 13Mean 149.5RMS 74.79

Z->ee, MCZ->ee, Dataqcd fake, Data

Efficiency of Isolation Energy vs. Inst. Lumi (EC)

Figure 1: Electron efficiencies to pass the cut Iso < 0.07 in data and MC in CC (top) and EC (bottom) regions.

Page 9: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

9

pT(GeV)20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

new

official

electron track match comparison between new and official

EC pT(GeV)20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

official

new

electron track match efficiency comparison between new and official

Figure 2: Efficiencies to pass cut track−match−spatialchi2prob() > 0.001 for Z → ee events in data in CC (top)and EC (bottom) regions.

Page 10: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

10

Figure 3: Same as in Fig. 2 but for QCD jet events in data.

Page 11: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

11

cut value0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cut

effi

cien

cy

0

0.2

0.4

0.6

0.8

1

2EMhighpt_all_fixed2007

Zee MCQCD_all_fixed2007dijet MC

MCγγQCD

cut efficiency vs. cut value

Figure 4: Efficiency vs. cut value for ANN-7 for signal and background events in the CC region.

cut value0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cut

effi

cien

cy

0

0.2

0.4

0.6

0.8

1

p20 Zee datap20 Zee MCp20 QCD datap17 emjet MC

cut efficiency vs. cut value

Figure 5: Efficiency vs. cut value for ANN-3 for signal and background events in the EC region.

Page 12: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

12

IsoE0_e0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

IsoE0_e0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

IsoE0_e

emfr0.9 0.92 0.94 0.96 0.98 1

emfr0.9 0.92 0.94 0.96 0.98 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

emfr

IsoHC41 2 3 4 5 6 7

IsoHC41 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

IsoHC4

IsoHC71 2 3 4 5 6 7

IsoHC71 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

IsoHC7

hmx70 5 10 15 20 25 30 35 40 45 50

hmx70 5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

hmx7

hmx80 5 10 15 20 25 30 35 40 45 50

hmx80 5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

hmx8

Figure 6: Efficiency vs. cut on fractional isolation (IsoE/E), EM fraction (emfr), track isolation (IsoHC4 andIsoHC7), and H-matrix (hmx7 and hmx8) in the CC region.

Page 13: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

13

cps_rms0 0.001 0.002 0.003 0.004 0.005 0.006

cps_rms0 0.001 0.002 0.003 0.004 0.005 0.0060

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

cps_rms

cps_sq_rms0 0.001 0.002 0.003 0.004 0.005 0.006

cps_sq_rms0 0.001 0.002 0.003 0.004 0.005 0.0060

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

cps_sq_rms

hasCPSmatch0 0.5 1 1.5 2 2.5 3 3.5 4

hasCPSmatch0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

hasCPSmatch

sigphi0 2 4 6 8 10 12 14 16 18 20

sigphi0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

sigphi

sigz0 5 10 15 20 25 30

sigz0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

sigz

emhits_e_f_discriminant0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

emhits_e_f_discriminant0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

emhits_e_f_discriminant

Figure 7: Efficiency vs. cut on energy weighted and energy squared weighted RMS of the re-mapped CPS clus-ter (cpsrms and cpssqrms), existence of the CPS match (hasCPSmatch), squared EM cluster width in r × φ

and r × z space in the third layer of the EM calorimeter (SigPhi and SigZ), and the EM/fakes discriminant(emhits e f discriminant) in the CC region.

Page 14: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

14

lhood80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lhood80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

lhood8

prbtrk0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

prbtrk0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

prbtrk

NNout3_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NNout3_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

NNout3_cc

NNout4_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NNout4_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

NNout4_cc

NNout5_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NNout5_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

NNout5_cc

NNout7_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NNout7_cc0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 CC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

NNout7_cc

Figure 8: Efficiency vs. cut on EM likelihood (LHood8), spatial match χ2 probability of a track (prbtrk), 3-, 4-, 5-and 7-parametric Neural Net variables (NNout3 cc, NNout4 cc, NNout5 cc and NNout7 cc) in the CC region,

Page 15: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

15

IsoE0_e0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

IsoE0_e0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

IsoE0_e

emfr0.9 0.92 0.94 0.96 0.98 1

emfr0.9 0.92 0.94 0.96 0.98 10

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

emfr

IsoHC41 2 3 4 5 6 7

IsoHC41 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

IsoHC4

IsoHC71 2 3 4 5 6 7

IsoHC71 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

IsoHC7

hmx70 5 10 15 20 25 30 35 40 45 50

hmx70 5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

hmx7

hmx80 5 10 15 20 25 30 35 40 45 50

hmx80 5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

hmx8

Figure 9: Efficiency vs. cut on fractional isolation (IsoE/E), EM fraction (EMfr), track isolation (IsoHC4 andIsoHC7), and H-matrix (HMx7 and HMx8) in the EC region.

Page 16: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

16

sigphi0 2 4 6 8 10 12 14 16 18 20

sigphi0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

sigphi

sigz0 5 10 15 20 25 30

sigz0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

sigz

emhits_e_f_discriminant0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

emhits_e_f_discriminant0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

emhits_e_f_discriminant

lhood80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lhood80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

lhood8

prbtrk0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

prbtrk0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

prbtrk

NNout3_ec0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NNout3_ec0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1 EC

Z->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

NNout3_ec

Figure 10: Efficiency vs. cut on squared EM cluster width in r × φ and r × z space in the third layer of the EMcalorimeter (sigphi and sigz), EM/fakes discriminant (emhits e f discriminant), EM likelihood (lhood8), spatial

match χ2 probability of a track (prbtrk), and 3-parametric Neural Net in the EC region.

Page 17: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

17

2.2. Photon Identification.

2.2.1. Definitions.

To detect photons with p20 data the two sets of base (core) definitions in the CC and EC regions aresuggested. In the both, CC and EC regions we call them Core1 and Core2. The sets of selection criteriafor them are comprised in Table I.

Table I: Photon definitions for CC and EC regions.

Variables Core1(CC) Core2(CC) Core1(EC) Core2(EC)

Iso < 0.10 0.07 0.10 0.07

EMfr > 0.95 0.95 0.95 0.95

IsoHC4 < 2.5 2.0 2.0 1.5

HMx8 < — — — 10

SigPhi< 18 16 eq.(1) eq.(1)

SigZ < — — eq.(2) eq.(2)

The choice of the variables and selection cuts has been optimized using “γ+jet” MC and Z → ee eventsin MC, data and QCD jet data. In the suggested definitions we tried to keep high selection efficiencieswith small corrections on data/MC difference and low background.

Basically, these p20 definitions are very close to those chosen for p17 Photon ID [1] with some variationsof the cuts on the used variables (plus added HMx8 for Core2 in EC).

Efficiencies for those definitions are presented in section 2.2.2.

2.2.2. Efficiencies.

Figures 11 and 12 show efficiencies for for Core1 and Core2 definitions for electrons in data and MC,QCD fakes and MC photons as functions of pT , ηdet and φdet in the CC and EC regions, respectively.Note that the QCD fake rates being preselected with cuts eq.(8) should contain real direct photons whichtend to increase efficiency of the mixture. As we see, the electron efficiencies between Core1 and Core2definitions in CC differ by 3% (7%) at pT =40 (25) GeV while fake rates differ by approximately factorof two. Analogous difference in EC region is 7% (10%) at pT =40 (25) GeV with fake rates differing byapproximately factor of 1.5.

Figures 28 and 29 of Appendix 5.1 also show efficiencies versus instantaneous luminosity, distance to aclosest jet (dR) and the number of jets in the event for the both definitions. The luminosity dependence inCC is flat, while there is about 5% drop in efficiency between very low and very high luminosities for Core2definition in EC. All the definitions (maybe excepting Core1 in CC) show the dR dependence resultingin about 4-7% drop of efficiencies from dR = 3.5 − 4.0 to dR = 0.7 in both data and MC. And all thedefinitions show strong dependence on the number of jets. We may also see that these dependencies arevery well modeled in MC Z → ee events.

Page 18: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

18

, GeV/cT

p10 20 30 40 50 60 70 80 90 100

overall_effEntries 587992Mean 43.71RMS 17.95

, GeV/cT

p10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

overall_effEntries 587992Mean 43.71RMS 17.95

Core1 CCZ->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

Distribution of overall in CC

, GeV/cT

p10 20 30 40 50 60 70 80 90 100

overall_effEntries 574698Mean 43.88RMS 18.02

, GeV/cT

p10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

overall_effEntries 574698Mean 43.88RMS 18.02

Core2 CCZ->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

Distribution of overall in CC

η-3 -2 -1 0 1 2 3

overall_effEntries 20Mean 0.08326RMS 0.6645

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 20Mean 0.08326RMS 0.6645

Core1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 20Mean 0.08478RMS 0.6624

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 20Mean 0.08478RMS 0.6624

Core2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 16Mean 3.143RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 3.143RMS 1.811

Core1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 16Mean 3.138RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 3.138RMS 1.811

Core2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 11: Efficiency for Core1 (left column) and Core2 (right column) definitions for electrons in data and MC,QCD fakes and MC photons as functions of pT , ηdet and φdet in the CC region.

Page 19: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

19

, GeV/cT

p10 20 30 40 50 60 70 80 90 100

overall_effEntries 360258Mean 44.1RMS 18.05

, GeV/cT

p10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

overall_effEntries 360258Mean 44.1RMS 18.05

Core1 ECZ->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

Distribution of overall in EC

, GeV/cT

p10 20 30 40 50 60 70 80 90 100

overall_effEntries 314004Mean 44.63RMS 18.23

, GeV/cT

p10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

overall_effEntries 314004Mean 44.63RMS 18.23

Core2 ECZ->ee, MCZ->ee, Dataqcd fake, Datagamma+jet, MC

Distribution of overall in EC

η-3 -2 -1 0 1 2 3

overall_effEntries 29Mean -0.00253RMS 2.263

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 29Mean -0.00253RMS 2.263

Core1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 29Mean 0.002114RMS 2.231

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 29Mean 0.002114RMS 2.231

Core2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 16Mean 3.14RMS 1.808

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 3.14RMS 1.808

Core1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 16Mean 3.139RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 3.139RMS 1.811

Core2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 12: Efficiency for Core1 (left column) and Core2 (right column) definitions for electrons in data and MC,QCD fakes and MC photons as functions of pT , ηdet and φdet in the EC region.

Page 20: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

20

Table II: Fit parameters for electron efficiencies in data and MC for Core1 and Core2 definitions.

Core1 CC Core2 CC Core1 EC Core2 EC

pdata0 4.50811 9.41755 32.0539 52.9853

pdata1 -1.24265 -1.24425 -1.65435 -1.57038

pMC0 1.10466 2.47171 20.9924 39.9682

pMC1 -0.945545 -0.997348 -1.59897 -1.56245

2.2.3. Scale factors and systematics.

Here we present data/MC correction factors (also called “scale factors”) found as a function of pT for eachof the definition separately in CC and EC. To get them we are following method used in [1]. Specifically,for this aim first we are fitting efficiencies versus pT for data and MC electrons and then divide the fits toget the scale factor (SF) for a given definition in a given region.

Figures 13 and 14 show efficiency fits for Core1 and Core2 photon definitions (left column), and data/MCratios (right column) for electrons as functions of pT in the CC region.

To fit the pT efficiencies following functional forms have been used:

ε =1

1 + p0 · pp1

T

. (3)

Fit parameters for function (3) for the electron efficiencies in data and MC for all the definitions aresummarized in Table II. They can be used in the user codes to get correction factor for a chosen definitionusing this ratio:

SF =εdata

εMC=

1 + pMC0

· ppMC

1

T

1 + pdata0

· ppdata

1

T

. (4)

Main uncertainties for this SF come from the errors on the fits for electron in data and MC shown inFigures 13 and 14. We also add in quadrature uncertainties coming from the background subtractionprocedure which we took 1% for MC and 1.5% for data. The values of the final uncertainties for SFsfound using eq.(II) are shown in Table III. We see that the uncertainties drop fast from about 8− 10% atpT = 10 GeV to about 4% at pT = 20 GeV and become almost stable (2.3 − 2.5%) for pT ≥ 50 GeV.

2.2.4. Anti-track matching cut.

For photon ID users also apply requirement of absence of any spatially matched track to the photon EMcluster. This requirement is usually expressed as

track−match−spatialchi2prob() < 0.001 (5)

(section 2.1). Efficiency for this cut for MC photons is shown in Figure 15 for CC and EC regions.

As we see, the efficiency for this cut drops by 2− 3.5% at small pγT and practically stable at p

γT > 35 GeV

with εmcatrk = 0.94± 0.01.

To make a confirmation for this number in data, we have used photons from Zγ → eeγ and Zγ → µµγ

event samples selected by tight cuts described in [8]. We found following efficiencies:

Page 21: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

21

Table III: Relative uncertainties on the scale factors for the four photon definitions.

Core1 (CC) Core2 (CC) Core1 (EC) Core2 (EC)

〈pT 〉, GeV/c relative uncertainty d(SF)/SF

10 0.087 0.076 0.100 0.101

13 0.061 0.056 0.068 0.074

18 0.035 0.036 0.037 0.044

23 0.028 0.029 0.029 0.034

26 0.026 0.028 0.027 0.031

28 0.025 0.027 0.027 0.030

30 0.025 0.027 0.026 0.029

34 0.025 0.026 0.026 0.028

40 0.025 0.026 0.025 0.027

52 0.025 0.025 0.025 0.026

60 0.025 0.025 0.024 0.026

73 0.025 0.025 0.024 0.025

90 0.025 0.025 0.024 0.025

100 0.024 0.025 0.023 0.024

pγT > 10 (〈pγ

T 〉 = 18.7) GeV: εdataatrk = 0.951 ± 0.014,

pγT > 15 (〈pγ

T 〉 = 22.9) GeV: εdataatrk = 0.938 ± 0.019,

pγT > 25 (〈pγ

T 〉 = 30.5) GeV: εdataatrk = 0.923 ± 0.043.

The efficiencies in data and MC are same within statistical uncertainties but the average efficiency numbersof εdata

trkmatch and εmctrkmatch differ for same p

γT bins by 1 − 2.5%. The small difference can be caused by

admixture of remaining QCD jets [14] that have less efficiency [15]. To be conservative, we suggest to take2% as a systematic uncertainty for the antitrack matching cut (5).

Also, εdatatrkmatch obtained for p

γT > 10 GeV in p17 and p20 data using Zγ → µµγ sample do not differ

within uncertainties with 0.938± 0.018 in p17 and 0.935± 0.015 in p20 data.

Page 22: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

22

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.8

0.85

0.9

0.95

1

1.05

ee, MC→Z MC eff. fit

of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Data/MC scale factor

uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

ee, MC→Z MC eff. fit

of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.85

0.9

0.95

1

1.05

Data/MC scale factor

uncertainty σ 1 ±

Figure 13: Efficiency fits for Core1 and Core2 photon definitions, and data/MC ratios for electrons as functions ofpT in the CC region.

Page 23: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

23

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

ee, MC→Z MC eff. fit

of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.85

0.9

0.95

1

1.05

Data/MC scale factor

uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.5

0.6

0.7

0.8

0.9

1

1.1

ee, MC→Z MC eff. fit

of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.85

0.9

0.95

1

1.05

Data/MC scale factor

uncertainty σ 1 ±

Figure 14: Efficiency fits for Core1 and Core2 photon definitions, and data/MC ratios for electrons as functions ofpT in the EC region.

Page 24: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

24

h20Entries 437586Mean 67.24RMS 42.73

0 20 40 60 80 100 120 140 1600.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

h20Entries 437586Mean 67.24RMS 42.73

Efficiency spatial antitrack match CC

h20eEntries 382870Mean 67.7RMS 42.73

0 20 40 60 80 100 120 140 1600.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

h20eEntries 382870Mean 67.7RMS 42.73

Efficiency spatial antitrack match EC

Figure 15: Efficiencies to pass cut trackmatch−spatialchi2prob() < 0.001 for MC photons in CC (top) and EC(bottom) regions.

Page 25: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

25

2.3. Electron Identification.

2.3.1. Definitions.

Using selection variables described in section 2.1,. we have formulated a few new electron definitions forCC, EC and ICR regions. Electron ID for ICR region is not covered in this note and discussed separatelyin [3]. All the electron definitions for CC and EC regions are summarized in Tables IV and V.

In most cases the definitions are built by tightening cuts on the variables or adding new variables withcorresponding criteria for them. Very loose definition “VLoose” contains set of four basic cuts for both CCand EC regions: Iso < 0.10, EMfr > 0.96, IsoHC4 < 3.5 GeV and HMx7(8) < 35. “Loose” differs from“VLoose” definition in CC by adding requirements on track matching, ORed with hits-on-the-road cut forEM clusters that do not have matched track, adding cut on the electron neural net output (ANN-7) andtightening the track isolation IsoHC4. But there are exclusions when cuts one some variables are replacedby cuts on some other variables, for example, when we go from “MLoose2” to “Medium” (or “Tight”)the track matching requirement is replaced by the electron likelihood cut LHood8 > 0.2 for “Medium”(or > 0.8 for “Tight”). As one can see from Table V, five of six definitions in EC are trackless and differby a tightness of calorimeter based cuts and track isolations. Just “Tight” definition requires a spatiallymatched track with probability > 0.001.

The definitions built in such a way to keep have difference in electron efficiencies by 4 − 7% between anytwo adjacent definitions and keeping fake rate as low as possible for such a change in signal efficiency.Exclusions are differences between trackless and track definitions in EC (“Medium” and “Tight”), wheretotal efficiency dropped much more (15 − 30%) due to a low tracking efficiency in EC. That is the mainreason why, in a difference with the CC region, we used five trackless electron definitions in EC, trying tokeep the efficiency as high as possible.

Table IV: Electron definitions for CC region.

Variables VLoose Loose MLoose1 MLoose2 Medium Tight

Iso < 0.10 0.10 0.10 0.07 0.07 0.07

EMfr > 0.95 0.95 0.97 0.97 0.97 0.97

IsoHC4 < 3.5 3.0 2.5 2.5 2.5 2.5

HMx7 < 35 35 25 25 25 25

NNout7−cc > — 0.2 0.2 0.6 0.6 0.6

LHood8 > — — — — 0.2 0.8

TrkM > — 0.001 0.001 0.001 0.001 0.001

or HoR > — 0.4 0.4 0.5 0.5 0.5

2.3.2. Efficiencies.

Figures 16–21 show efficiencies for for six electron definitions, shown in Tables IV and V, for electronsin data and MC. as functions of pT , ηdet and φdet in the CC and EC regions. Similarly to the photoncase, all the pT dependences have been fitted using the functional form (3) and contain also the 1σ errorbands caused by the statistical uncertainties and the background subtraction procedure. One can see thatdifference between MC and data efficiencies for the first five definitions in CC (“Loose” – “Medium”) neverexceeds 10%, being smallest for “VLoose” and “Loose” definitions of just 1-3%. It becomes a bit higher

Page 26: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

26

Table V: Electron definitions for EC region.

Variables VLoose Loose MLoose1∗ MLoose2∗ Medium∗ Tight∗

Iso < 0.10 0.10 0.10 0.07 0.05 0.07

EMfr > 0.95 0.95 0.95 0.95 0.97 0.97

IsoHC4 < 3.5 2.0 2.0 2.0 1.0 2.0

HMx8 < 35 20 15 15 10 15

NNout3−ec > — 0.4 0.4 0.4 0.4 0.4

TrkM > — — — — — 0.0

∗ Electron definitions MLoose1, MLoose2, Medium and Tight additionally also have cuts on the shower shapesSigPhi and SigZ [eq.(1), and eq.(2)], which are not shown in this table.

for “Tight” criterion and reaches 15% for small pT ’s. The same is true for the five trackless definitions inEC. Just for “Tight” cuts the noticeable data/MC corrections are required.

Figures 30 – 35 of Appendix 5.2 also show efficiencies versus instantaneous luminosity L, distance toa closest jet (dR(e, jet)) and the number of jets for all the definitions in CC and EC. All the CC/ECdefinitions, excepting “VLoose” and “Loose”, show a luminosity dependence, the stronger the tighter cutsare used: the difference between lowest and highest lumi is just about 4 − 6% for “MLoose1” and about20% for the definitions containing electron likelihood cuts, “Medium” and “Tight” in CC and “Tight” inEC. But the luminosity dependencies observed in data is very well reproduced in MC modeling. For mostof the definitions we also observe dependence on dR(e, jet) and very strong dependence on njets A goodthing is that all the dependencies are very well reproduced in MC samples.

2.3.3. Scale factors and systematics.

In this section we present data/MC scale factors vs. pT , ηdet and φdet. As we mentioned in the previoussubsection, all the pT efficiencies we have been fitted using functional form (3). Fit parameters for thisfunction for the electron efficiencies in data and MC for all the definitions are summarized in Tables VIfor CC region and VII for EC region. The ratio of the efficiencies in data to that in MC gives correctionfactor for a chosen definition (see eq.(4)).

Table VI: Fit parameters for electron pT efficiencies in data and MC for the six definitions in CC.

VLoose Loose MLoose1 MLoose2 Medium Tight

pdata0 2.55901 0.433514 2.57156 1.78059 2.3748 2.6072

pdata1 -1.24807 -0.470056 -0.83386 -0.58809 0.65164 -0.562246

pMC0 0.648609 0.320142 1.29136 0.978957 1.62978 1.30179

pMC1 -0.996734 -0.525554 -0.774526 -0.621237 -0.715462 -0.554375

The obtained correction factors are shown in Figs. 22–27. The uncertainties for the correction factorsare calculated from those for data and MC efficiencies added in quadrature. Similar to the photon IDefficiencies we also add in quadrature uncertainties coming from the background subtraction procedurewhich we took 1% for MC and 1.5% for data. The values of the final uncertainties for SFs are shownin Tables VIII and IX. From a comparison of pT bins in Table VIII we see that the uncertainties areespecially large at small pT (6 − 7% for 10-12 GeV), drop to 3 − 4% at 18-20 GeV and become frozen at

Page 27: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

27

Table VII: Fit parameters for electron pT efficiencies in data and MC for the six definitions in EC.

VLoose Loose MLoose1 MLoose2 Medium Tight

pdata0 19.9804 6.82224 17.0333 47.2372 44.289 55.4933

pdata1 -1.7997 -1.26424 -1.40745 -1.58234 -1.33177 -1.13561

pMC0 14.0309 3.98723 19.9417 65.2758 68.1618 32.1626

pMC1 -1.84555 -1.18972 -1.54188 -1.79109 -1.5686 -1.21516

pT > 28 GeV at about 2.5− 3%. About the same behavior for uncertainties in the EC region (Table IX),where uncertainties vary from 8 − 11% at pT ' 10 − 15 GeV to ∼ 2.5% at pT ≥ 30 GeV for “VLoose” –“Medium” definitions.

We have studied other possible sources of systematics uncertainty as well. We have looked at efficienciesin data and MC vs. the distance to a closest jet dR(jet, e). They are shown in Figs. 32 and 32 for CCand EC definitions. One can see that efficiencies drop by about 5% from dR(jet, e) = 3.5− 4 to dR = 0.7for “MLoose1” – “Tight” definitions in both MC and data and almost does not change for “VLoose” and“Loose” definitions.

Another effect we studied is a dependence on the total number of jets (njets) in the event. Here we seea clear linear dependence: the larger njets the smaller efficiency. Since this effect is very well reproducedin MC, the only uncertainty may come from different average number of jets in MC and data. Fromanalysis of Z → ee events we found, for example, that those numbers are pretty close to each with alargest difference of about 0.20 jets [17]. According to the parametrization of the njets dependencies, itmay give an additional just . 0.5% uncertainty 4 on the SFs presented in Tables VIII, IX.

Another systematics may be caused by a description of the material distribution in the MC simulations.For this aim, we have considered samples of single electrons generated by JES group [16] with variousamount of radiation lengths added in the solenoid region (+0.17 X0, +0.36 X0) in CC region and usingthe W mass group GEANT tunings 5. Using those samples we found that typical variations of the electronID efficiencies w.r.t. the default MC samples is about 0.3−1.2% and the efficiencies are consistent withingstatistical uncertainties.

4 For example, for Loose definition in EC we can parametrize the njets dependence as 0.924− 0.0272 · njets with 〈njets〉 indata and MC equal to 1.06 amd 0.86. It gives approximately 0.0272% · 0.2 = 0.54% difference in the data/MC efficiencies.

5 According to estimates of the W mass group about 0.28 X0 more are probably required to better describe the longitudinalbehavior of the electron shower in the EM calorimeter sections. See also [16].

Page 28: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

28

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Vloose CC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Loose CC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Mloose1 CC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Mloose2 CC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Medium CC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Tight CC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

Figure 16: Efficiency in data and MC vs. electron pT for all six definition in CC.

Page 29: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

29

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.8

0.85

0.9

0.95

1

1.05

Vloose EC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Loose EC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Mloose1 EC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Mloose2 EC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Medium EC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Eff

icie

ncy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tight EC ee, MC→Z

MC eff. fit of MC fitσ 1 ± ee, data→Z

Data eff. fit of data fitσ 1 ±

Figure 17: Efficiency in data and MC vs. electron pT for all six definition in EC.

Page 30: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

30

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -5.7e-05RMS 0.6314

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -5.7e-05RMS 0.6314

Vloose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -1.58e-05RMS 0.6305

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -1.58e-05RMS 0.6305

Loose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -0.0003411RMS 0.6284

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -0.0003411RMS 0.6284

Mloose1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -0.0003322RMS 0.6284

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -0.0003322RMS 0.6284

Mloose2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -6.663e-05RMS 0.6279

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -6.663e-05RMS 0.6279

Medium CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -0.0008819RMS 0.628

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -0.0008819RMS 0.628

Tight CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 18: Efficiency in data and MC vs. electron ηdet for all six definition in CC.

Page 31: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

31

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -0.003551RMS 2.271

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -0.003551RMS 2.271

Vloose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean 0.001229RMS 2.264

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean 0.001229RMS 2.264

Loose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean -0.002543RMS 2.26

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean -0.002543RMS 2.26

Mloose1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean 0.006928RMS 2.235

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean 0.006928RMS 2.235

Mloose2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean 0.008263RMS 2.176

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean 0.008263RMS 2.176

Medium ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

η-3 -2 -1 0 1 2 3

overall_effEntries 30Mean 9.117e-05RMS 2.187

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

overall_effEntries 30Mean 9.117e-05RMS 2.187

Tight ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 19: Efficiency in data and MC vs. electron ηdet for all six definition in EC.

Page 32: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

32

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.141RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.141RMS 1.811

Vloose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.142RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.142RMS 1.811

Loose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.144RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.144RMS 1.811

Mloose1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.144RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.144RMS 1.811

Mloose2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.148RMS 1.813

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.148RMS 1.813

Medium CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.148RMS 1.816

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.148RMS 1.816

Tight CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 20: Efficiency in data and MC vs. electron φdet for all six definition in CC.

Page 33: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

33

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.142RMS 1.81

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.142RMS 1.81

Vloose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.143RMS 1.809

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.143RMS 1.809

Loose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.141RMS 1.808

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.141RMS 1.808

Mloose1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.146RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.146RMS 1.811

Mloose2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.15RMS 1.81

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.15RMS 1.81

Medium ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

φ0 1 2 3 4 5 6

overall_effEntries 17Mean 3.153RMS 1.838

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

overall_effEntries 17Mean 3.153RMS 1.838

Tight ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 21: Efficiency in data and MC vs. electron φdet for all six definition in EC.

Page 34: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

34

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Vloose CC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Loose CC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.85

0.9

0.95

1

1.05

Mloose1 CC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Mloose2 CC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Medium CC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.7

0.75

0.8

0.85

0.9

0.95

1

Tight CC

Data/MC scale factor uncertainty σ 1 ±

Figure 22: Data/MC efficiency ratio vs. electron pT for all six definition in CC region. The shown error band istotal uncertainty for the ratio.

Page 35: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

35

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Vloose EC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Loose EC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Mloose1 EC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.85

0.9

0.95

1

1.05

Mloose2 EC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.8

0.85

0.9

0.95

1

1.05

Medium EC

Data/MC scale factor uncertainty σ 1 ±

, GeV/cT

p15 20 25 30 35 40 45 50 55 60 65 70

Dat

a/M

C s

cale

fac

tor

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Tight EC

Data/MC scale factor uncertainty σ 1 ±

Figure 23: Same as in Fig. 22 but for the EC region.

Page 36: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

36

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 41Mean -0.0001628RMS 0.6323

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 41Mean -0.0001628RMS 0.6323

Vloose CC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 41Mean 0.0008463RMS 0.6325

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 41Mean 0.0008463RMS 0.6325

Loose CC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 41Mean 0.0007974RMS 0.6318

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 41Mean 0.0007974RMS 0.6318

Mloose1 CC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 41Mean -2.551e-05RMS 0.6349

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 41Mean -2.551e-05RMS 0.6349

Mloose2 CC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 41Mean -0.001055RMS 0.6352

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 41Mean -0.001055RMS 0.6352

Medium CC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 41Mean 0.0001052RMS 0.6342

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 41Mean 0.0001052RMS 0.6342

Tight CC

Figure 24: Data/MC efficiency vs. electron ηdet for all six definition in CC.

Page 37: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

37

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 44Mean 0.0002356RMS 2.27

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 44Mean 0.0002356RMS 2.27

Vloose EC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 44Mean -0.005022RMS 2.268

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 44Mean -0.005022RMS 2.268

Loose EC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 44Mean -0.0009148RMS 2.268

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 44Mean -0.0009148RMS 2.268

Mloose1 EC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 44Mean -0.002153RMS 2.24

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 44Mean -0.002153RMS 2.24

Mloose2 EC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 44Mean -0.03334RMS 2.2

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 44Mean -0.03334RMS 2.2

Medium EC

η-3 -2 -1 0 1 2 3

Data/MC ratioEntries 44Mean 0.05656RMS 2.162

η-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 44Mean 0.05656RMS 2.162

Tight EC

Figure 25: Data/MC efficiency vs. electron ηdet for all six definition in EC.

Page 38: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

38

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.14RMS 1.809

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.14RMS 1.809

Vloose CC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.141RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.141RMS 1.811

Loose CC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.136RMS 1.809

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.136RMS 1.809

Mloose1 CC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.15RMS 1.812

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.15RMS 1.812

Mloose2 CC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.144RMS 1.814

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.144RMS 1.814

Medium CC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.142RMS 1.813

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.142RMS 1.813

Tight CC

Figure 26: Data/MC efficiency vs. electron φdet for all six definition in CC.

Page 39: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

39

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.14RMS 1.81

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.14RMS 1.81

Vloose EC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.141RMS 1.81

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.141RMS 1.81

Loose EC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.14RMS 1.811

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.14RMS 1.811

Mloose1 EC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.14RMS 1.808

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.14RMS 1.808

Mloose2 EC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.138RMS 1.809

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.138RMS 1.809

Medium EC

φ0 1 2 3 4 5 6

Data/MC ratioEntries 33Mean 3.126RMS 1.841

φ0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Data/MC ratioEntries 33Mean 3.126RMS 1.841

Tight EC

Figure 27: Data/MC efficiency vs. electron φdet for all six definition in EC.

Page 40: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

40

Table VIII: Relative uncertainties on the scale factors for the six electron definitions in CC.

VLoose Loose MLoose1 MLoose2 Medium Tight

〈pT 〉, GeV/c relative uncertainty d(SF)/SF

10 0.070 0.048 0.060 0.056 0.060 0.063

13 0.049 0.039 0.047 0.047 0.049 0.053

18 0.031 0.030 0.034 0.035 0.037 0.040

23 0.026 0.027 0.029 0.031 0.032 0.035

26 0.025 0.026 0.028 0.030 0.031 0.033

28 0.025 0.026 0.027 0.029 0.030 0.032

30 0.024 0.025 0.027 0.029 0.029 0.032

40 0.024 0.025 0.026 0.028 0.028 0.031

60 0.024 0.026 0.026 0.028 0.029 0.031

70 0.024 0.027 0.026 0.029 0.029 0.031

Table IX: Relative uncertainties on the scale factors for the six electron definitions in EC.

VLoose Loose MLoose1 MLoose2 Medium Tight

〈pT 〉, GeV/c relative uncertainty d(SF)/SF

10 0.110 0.079 0.092 0.104 0.114 0.159

13 0.068 0.056 0.064 0.074 0.087 0.122

18 0.033 0.034 0.037 0.042 0.055 0.083

23 0.026 0.028 0.030 0.033 0.042 0.069

26 0.025 0.026 0.028 0.030 0.038 0.060

28 0.025 0.026 0.027 0.029 0.036 0.056

30 0.025 0.026 0.027 0.028 0.035 0.052

40 0.024 0.025 0.026 0.027 0.032 0.045

60 0.023 0.025 0.025 0.025 0.030 0.044

70 0.023 0.024 0.025 0.025 0.029 0.044

3. CONCLUSION.

We have presented the certification results for photon and electron definitions for Run IIb data and MC,reconstructed within p20 reco version. All the presented electron definitions are new ones, not used inearlier certifications. Along with regular efficiencies for all definitions versus pT , ηdet and φdet, we alsopresent data/MC correction factors with total uncertainties. We also demonstrate dependencies of theefficiencies on instantaneous luminosity, distance to a closest hadron jet and the number of jets in theevent. The provided large variety of definitions should allow to choose a proper one for any particularphysics analysis.

4. ACKNOWLEDGMENTS.

We thank Common Sample Group, especially Herbert Greenlee and Slava Shary, for providing data andMC samples as well as permanent useful discussions. We are very also grateful to V+jets and Higgs

Page 41: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

41

groups, especially to Taka Yasuda, Bjorn Penning for permanent cross-checks and feedbacks. We are alsovery thankful to Aurelio Juste, Stephan Soldner-Rembold and Erich Varnes for support and many usefuldiscussions.

[1] Oleksiy Atramentov, Andrew Askew, Dmitri Bandurin, Dan Duggan, Alexey Ferapontov, Yuri Gershtein, YuriiMaravin, Greg Pawloski, “Photon Identification in P17 Data”, D0 Note 4976.

[2] J. Hays, J. Mitrevski, C. Schwanenberger, T. Toole, “Single Electron Efficiencies in p17 Data and Monte-CarloUsing p18.05.00 d0correct”, D0 Note 5105.

[3] James Kraus et al, “p20 ICR Electron Identification”, D0 Note 5691.[4] Masato Aoki et al, “Electron Likelihood for p20 data”, D0 Note 5675.[5] Dmitry Bandurin, Oleksiy Atramentov, Yanwen Liu, Hang Yin, “p20 electron track match parameters study”,

D0 Note 5635.

[6] T. Sjostrand, Comp.Phys.Comm. 82 (1995)74.[7] DØ note in preparation.[8] Xuebing Bu, Yanwen Liu, Dmitry Bandurin, Oleksiy Atramentov, “Artificial neural network using central

preshower detector information for electron and photon selection”, D0 Note 5650.[9] Xuebing Bu, Yanwen Liu, “Artificial neural network for Run IIb electron and photon identification”, D0 Note

5545.[10] Dmitry Bandurin, Daniel Duggan, “”, D0 Note xxxx.

[11] A. Askew, D. Duggan, “CPS Variables for Photon Identification”, D0 Note 4949.[12] “Jet Energy Scale Determination at DØ Run II”, DØ Note 5382.[13] Oleksiy Atramentov and Yurii Maravin, “Utilizing CFT and SMT hits count for photon and electron recon-

struction”, D0 Note 4444.

[14] A. Ferapontov, Y. Maravin, “Study of Z(γ) → ``γ events in DØRunII p17 Data”, DØ Note 5156. D0 Collab-oration, V.M. Abazov et al., Phys. Lett. B 653, 378 (2007).

[15] D. Bandurin, G. Golovanov, D. Korablev and N. Skachkov, D0 Note 5368, “Measurement of Triple Differential

Photon Plus Jet Cross Sections in pp Collisions At 1.96 TeV In D0”. Submitted to Phys.Lett. B.[16] “Jedett Energy Scale Determination at DØ Run II (final p17 version)”, DØ Note 5382.[17] See EMID meeting on May 15, 2008; slide 6 of A. Ferapontov and D. Bandurin’s report.

Page 42: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

42

5. APPENDIX.

5.1. Dependence of photon selection efficiencies on Linst, R(e, jet) and njets.

L, E300 50 100 150 200 250 300

overall_effEntries 15Mean 140.8RMS 80.68

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 15Mean 140.8RMS 80.68

Core1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 15Mean 139.8RMS 81.04

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 15Mean 139.8RMS 81.04

Core2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.302RMS 1.033

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.302RMS 1.033

Core1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.307RMS 1.033

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.307RMS 1.033

Core2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 1 2 3 4 5

overall_effEntries 7Mean 2.481RMS 1.708

Number of jets0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

overall_effEntries 7Mean 2.481RMS 1.708

Core1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 1 2 3 4 5

overall_effEntries 7Mean 2.453RMS 1.704

Number of jets0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

overall_effEntries 7Mean 2.453RMS 1.704

Core2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 28: Efficiency for photon definitions Core1 (left column) and Core2 (right column) definitions for electronsin data and MC, QCD fakes and MC photons as functions of instantaneous luminosity L, dR(e, jet) and the numberof jets njets in the CC region.

Page 43: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

43

L, E300 50 100 150 200 250 300

overall_effEntries 15Mean 140.5RMS 81.18

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 15Mean 140.5RMS 81.18

Core1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 15Mean 139.8RMS 81.74

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 15Mean 139.8RMS 81.74

Core2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.305RMS 1.034

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.305RMS 1.034

Core1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.312RMS 1.036

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.312RMS 1.036

Core2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 1 2 3 4 5

overall_effEntries 7Mean 2.457RMS 1.704

Number of jets0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

overall_effEntries 7Mean 2.457RMS 1.704

Core1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 1 2 3 4 5

overall_effEntries 7Mean 2.404RMS 1.703

Number of jets0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

overall_effEntries 7Mean 2.404RMS 1.703

Core2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 29: Efficiency for photon definitions Core1 (left column) and Core2 (right column) definitions for electronsin data and MC, QCD fakes and MC photons as functions of instantaneous luminosity L, dR(e, jet) and the number

of jets njets in the EC region.

Page 44: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

44

5.2. Dependence of electron selection efficiencies on Linst, R(e, jet) and njets.

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 139.9RMS 80.77

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 139.9RMS 80.77

Vloose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 139.5RMS 80.91

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 139.5RMS 80.91

Loose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 139.4RMS 81.21

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 139.4RMS 81.21

Mloose1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 138.2RMS 81.33

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 138.2RMS 81.33

Mloose2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 138.1RMS 81.52

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 138.1RMS 81.52

Medium CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 135.4RMS 80.4

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 135.4RMS 80.4

Tight CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 30: Efficiency in data and MC vs. instantaneous luminosity L for all six electron definition in CC.

Page 45: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

45

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 140.1RMS 80.82

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 140.1RMS 80.82

Vloose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 140.3RMS 81.09

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 140.3RMS 81.09

Loose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 140.7RMS 81.3

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 140.7RMS 81.3

Mloose1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 140.3RMS 81.52

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 140.3RMS 81.52

Mloose2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 140.7RMS 82.57

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 140.7RMS 82.57

Medium ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

L, E300 50 100 150 200 250 300

overall_effEntries 16Mean 140.8RMS 83.14

L, E300 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

overall_effEntries 16Mean 140.8RMS 83.14

Tight ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 31: Efficiency in data and MC vs. instantaneous luminosity L for all six electron definition in EC.

Page 46: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

46

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 21Mean 2.302RMS 1.037

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 21Mean 2.302RMS 1.037

Vloose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.305RMS 1.032

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.305RMS 1.032

Loose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.308RMS 1.034

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.308RMS 1.034

Mloose1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.312RMS 1.034

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.312RMS 1.034

Mloose2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.312RMS 1.034

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.312RMS 1.034

Medium CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.311RMS 1.035

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.311RMS 1.035

Tight CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 32: Efficiency in data and MC vs. distance to a closest jet R(e, jet) for all six electron definition in CC.

Page 47: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

47

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 21Mean 2.304RMS 1.039

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 21Mean 2.304RMS 1.039

Vloose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.305RMS 1.034

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.305RMS 1.034

Loose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.305RMS 1.034

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.305RMS 1.034

Mloose1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.31RMS 1.035

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.31RMS 1.035

Mloose2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.317RMS 1.036

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.317RMS 1.036

Medium ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

dR0.5 1 1.5 2 2.5 3 3.5 4

overall_effEntries 11Mean 2.346RMS 1.023

dR0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

overall_effEntries 11Mean 2.346RMS 1.023

Tight ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 33: Efficiency in data and MC vs. distance to a closest jet R(e, jet) for all six electron definition in EC.

Page 48: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

48

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.926RMS 3.148

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.926RMS 3.148

Vloose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.851RMS 3.152

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.851RMS 3.152

Loose CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.756RMS 3.144

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.756RMS 3.144

Mloose1 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.692RMS 3.156

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.692RMS 3.156

Mloose2 CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.679RMS 3.162

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.679RMS 3.162

Medium CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.595RMS 3.142

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.595RMS 3.142

Tight CCZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 34: Efficiency in data and MC vs. the number of jets in event njets for all six electron definition in CC.

Page 49: Electron and Photon Identi cation with p20 data - Fermilabhome.fnal.gov/~josta/ElectronID/5761.pdf · D˜ Note 5761 Electron and Photon Identi cation with p20 data Oleksiy Atramentov1,

49

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.925RMS 3.164

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.925RMS 3.164

Vloose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.873RMS 3.16

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.873RMS 3.16

Loose ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.9RMS 3.184

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.9RMS 3.184

Mloose1 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.695RMS 3.16

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.695RMS 3.16

Mloose2 ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.415RMS 3.124

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.415RMS 3.124

Medium ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Number of jets0 2 4 6 8 10

overall_effEntries 12Mean 4.373RMS 3.064

Number of jets0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

overall_effEntries 12Mean 4.373RMS 3.064

Tight ECZ->ee, MCZ->ee, Dataqcd fake, Data

Efficiency vs. overall

Figure 35: Efficiency in data and MC vs. the number of jets in event njets for all six electron definition in EC.