electromagnetic brain mapping physiology of source signals

98
Sylvain Baillet McConnell Brain Imaging Centre Montreal Neurological Institute McGill University [[email protected]] Google it! ’MEG MNI ’ Electromagnetic Brain Mapping Physiology of source signals

Upload: others

Post on 01-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electromagnetic Brain Mapping Physiology of source signals

Sylvain Baillet

McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill University

[[email protected]]

Google it! ’MEG MNI ’

Electromagnetic Brain MappingPhysiology of source signals

Page 2: Electromagnetic Brain Mapping Physiology of source signals

Ongoing background brain activity (MEG)

[1.5-40] Hz

Amplitude scale

Page 3: Electromagnetic Brain Mapping Physiology of source signals

Ongoing background brain activity (MEG)

Amplitude scale

[40-350] Hz

Page 4: Electromagnetic Brain Mapping Physiology of source signals

Withsubject

Withoutsubject

Hamalainen et al., Rev. Mod. Phys., 1993

Power line contamination

The resting and active brain: frequency power spectrum

Page 5: Electromagnetic Brain Mapping Physiology of source signals

Withsubject

Withoutsubject

Hamalainen et al., Rev. Mod. Phys., 1993

Power line contamination

The resting and active brain: frequency power spectrum

Page 6: Electromagnetic Brain Mapping Physiology of source signals

delta

theta alpha

beta terra

incognita

gamma

The resting and active brain: frequency power spectrum

Page 7: Electromagnetic Brain Mapping Physiology of source signals

State-­‐dependent  expressions  of  neural  oscilla3ons      

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 8: Electromagnetic Brain Mapping Physiology of source signals

State-­‐dependent  expressions  of  neural  oscilla3ons      

Raichle M. Brain Connectivity (2011)

?

fMRI - BOLD

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 9: Electromagnetic Brain Mapping Physiology of source signals

State-­‐dependent  expressions  of  neural  oscilla3ons      

“Resting-state networks”Buckner RL et al. Ann NY Acad. Sci. (2008)Carhart-Harris R L , Friston K J Brain (2010)

Resting-state networks

Raichle M. Brain Connectivity (2011)

?

fMRI - BOLD

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 10: Electromagnetic Brain Mapping Physiology of source signals

State-­‐dependent  expressions  of  neural  oscilla3ons      

“Resting-state networks”Buckner RL et al. Ann NY Acad. Sci. (2008)Carhart-Harris R L , Friston K J Brain (2010)

Resting-state networks

Raichle M. Brain Connectivity (2011)

?

fMRI - BOLD

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 11: Electromagnetic Brain Mapping Physiology of source signals

Electrophysiological  origins    of  MEG/EEG  signals

Page 12: Electromagnetic Brain Mapping Physiology of source signals

The neural cell as elementary building block

Page 13: Electromagnetic Brain Mapping Physiology of source signals

The neural cell as elementary building block

Page 14: Electromagnetic Brain Mapping Physiology of source signals

The neural cell as elementary building block

Page 15: Electromagnetic Brain Mapping Physiology of source signals

The neural cell as elementary building block

pyramidal  cell  as  canonical  source

Page 16: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

Page 17: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

Page 18: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

Page 19: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

primary current

Page 20: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

return (volume) currents

primary current

Page 21: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

return (volume) currents

primary current

Page 22: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

return (volume) currents

primary current

Page 23: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

primary current

Page 24: Electromagnetic Brain Mapping Physiology of source signals

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

magnetic induction

primary current

Page 25: Electromagnetic Brain Mapping Physiology of source signals

magnetometer

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

magnetic induction

primary current

Page 26: Electromagnetic Brain Mapping Physiology of source signals

magnetometer

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

magnetic induction

primary current

measured  induced  currents

Page 27: Electromagnetic Brain Mapping Physiology of source signals

= +

The  equivalent  current  dipole    =    

current  source  model  of  PSP’s  and  AP’s  

current dipole model

Page 28: Electromagnetic Brain Mapping Physiology of source signals

= +

The  equivalent  current  dipole    =    

current  source  model  of  PSP’s  and  AP’s  

current dipole model

Page 29: Electromagnetic Brain Mapping Physiology of source signals

= +

The  equivalent  current  dipole    =    

current  source  model  of  PSP’s  and  AP’s  

current dipole model

Page 30: Electromagnetic Brain Mapping Physiology of source signals

influence  of  cell  morphology  on  signal  strength

radial cell morphology

Page 31: Electromagnetic Brain Mapping Physiology of source signals

influence  of  cell  morphology  on  signal  strength

radial cell morphology

net current dipole

Page 32: Electromagnetic Brain Mapping Physiology of source signals

influence  of  cell  morphology  on  signal  strength

radial cell morphology

net current dipole

weaker net currents than from elongated cell morphology

Page 33: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 34: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 35: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 36: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 37: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 38: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 39: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 40: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling

Page 41: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling

stronger individual currents but poorer temporal overlap of APs

Page 42: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling

stronger individual currents but poorer temporal overlap of APs

Page 43: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling.

~50,000 cells, at minimum

stronger individual currents but poorer temporal overlap of APs

Page 44: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 45: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

Page 46: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensemblesVoltage-­‐sensi3ve  ion  channels  (Llinás,  1988;  Hille,  2001)  

-­‐ Large,  detectable  PSP  sodium  spikes  

‣ from  10,000  synchronous  cells  

‣ a  possible  source  of  high-­‐frequency  bursts?

Page 47: Electromagnetic Brain Mapping Physiology of source signals

Mass  effect  of  neural  ensembles

experimental  data  (micro)MEG

Murakami  et  al.,  J.  Physiol  (2002)

Voltage-­‐sensi3ve  ion  channels  (Llinás,  1988;  Hille,  2001)  

-­‐ Large,  detectable  PSP  sodium  spikes  

‣ from  10,000  synchronous  cells  

‣ a  possible  source  of  high-­‐frequency  bursts?

Page 48: Electromagnetic Brain Mapping Physiology of source signals

mesoscopic  distribu3on  of  currents

cortex

Page 49: Electromagnetic Brain Mapping Physiology of source signals

mesoscopic  distribu3on  of  currents

cortex

Page 50: Electromagnetic Brain Mapping Physiology of source signals

mesoscopic  distribu3on  of  currents

cortex

nuclei

Page 51: Electromagnetic Brain Mapping Physiology of source signals

mesoscopic  distribu3on  of  currents

cortex

nuclei

Page 52: Electromagnetic Brain Mapping Physiology of source signals

dynamicsa  rapid  overview

Page 53: Electromagnetic Brain Mapping Physiology of source signals

dynamicsa  rapid  overview

Page 54: Electromagnetic Brain Mapping Physiology of source signals

Evidence  of  low-­‐to-­‐high  frequency  coupling   of  neural  oscilla3ons:  single  cells  &  assemblies

Contreras  &  Steriade,  J.  Neurosci.  (1995)

Page 55: Electromagnetic Brain Mapping Physiology of source signals

Temporal  ji_er  of  unitary  and  ensemble  responses

Thalamic stimulation Cortical responseContreras  &  Steriade,  J.  Neurophys.  (1996)

Page 56: Electromagnetic Brain Mapping Physiology of source signals

Ji_er  in  brain  responses  or  s3mulus  3ming  yields  slower  event-­‐related  components  and  lower  SNR

• Sloppy  s3mulus  3ming  (ji_er)  yields  smeared  MEG  responses  

• Physiological  ji_er  produces  similar  effects  

• The  longer  the  response  latency,  the  longer  and  smoother  the  response  

Somatosensory evoked fields

Latency

Adapted  from  L.  Parkkonen

Page 57: Electromagnetic Brain Mapping Physiology of source signals

Oscilla3onsa  scaffold  of  neural  dynamics  

Page 58: Electromagnetic Brain Mapping Physiology of source signals

Oscilla3onsa  scaffold  of  neural  dynamics  

Page 59: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Page 60: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

Page 61: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

MEG, EEG, LFP

Page 62: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

Page 63: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

Page 64: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

𝜸

Page 65: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

𝜸 𝜸

Page 66: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

𝜸 𝜸 𝜸

Page 67: Electromagnetic Brain Mapping Physiology of source signals

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

STIM MEG, EEG, LFP

δ-α cycles

𝜸 𝜸 𝜸

Page 68: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

STIM MEG, EEG, LFP

Page 69: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

STIM MEG, EEG, LFP

Page 70: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

STIM MEG, EEG, LFP

Page 71: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relaySTIM MEG, E

EG, LFP

Page 72: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 73: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 74: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 75: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 76: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM STIM MEG, E

EG, LFP

Page 77: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM STIMSTIM MEG, E

EG, LFP

Page 78: Electromagnetic Brain Mapping Physiology of source signals

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

A  possible  mechanism  for  op3mal  sensory  processing  (efficacy  in  3ming,  metabolism,  downstream  processing,  etc.)  

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM STIMSTIM MEG, E

EG, LFP

Page 79: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

Page 80: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

Page 81: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

Page 82: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

Page 83: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

𝜸: bursts nested in slower rhythms, bottom-up signaling

Page 84: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

𝜸: bursts nested in slower rhythms, bottom-up signaling

E EE

I I

Page 85: Electromagnetic Brain Mapping Physiology of source signals

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

𝜸: bursts nested in slower rhythms, bottom-up signaling

E EE

I I

higher 𝜸: PSP spiking ?

Page 86: Electromagnetic Brain Mapping Physiology of source signals

Correla3on  between  low-­‐,  high-­‐frequency  ongoing  brain  rhythms  and  BOLD

Schölvinck et al., PNAS (2010)

Delta/Theta/Alpha

Beta

Gamma

High-Gamma

Page 87: Electromagnetic Brain Mapping Physiology of source signals

MEG  Res3ng-­‐State  Networks

Auditory+

VisualDMN

Dorsal, sensori-motor

fMRI

Florin  &  Baillet,  Neuroimage,  2015

Page 88: Electromagnetic Brain Mapping Physiology of source signals

delta

theta alpha

beta terra

incognita

gamma

Cross-­‐frequency  coupling  (CFC):  A  generic  mechanism  regula3ng  local  and  long-­‐range  brain  dynamics?  

Page 89: Electromagnetic Brain Mapping Physiology of source signals

delta

theta alpha

beta terra

incognita

gamma

Cross-­‐frequency  coupling  (CFC):  A  generic  mechanism  regula3ng  local  and  long-­‐range  brain  dynamics?  

Page 90: Electromagnetic Brain Mapping Physiology of source signals

delta

theta alpha

beta terra

incognita

gamma

Cross-­‐frequency  coupling  (CFC):  A  generic  mechanism  regula3ng  local  and  long-­‐range  brain  dynamics?  

E EEI I

Page 91: Electromagnetic Brain Mapping Physiology of source signals

Review

Page 92: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

Page 93: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

Page 94: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

Page 95: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

Page 96: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

๏ event-­‐related  responses  as  resejng  of  ongoing  ac3vity

Page 97: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

๏ event-­‐related  responses  as  resejng  of  ongoing  ac3vity

๏ dis3nct  roles  of  typical  frequency  bands:  net  excita3on,  bo_om-­‐up  vs  top-­‐down  signaling,  etc

Page 98: Electromagnetic Brain Mapping Physiology of source signals

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

๏ event-­‐related  responses  as  resejng  of  ongoing  ac3vity

๏ dis3nct  roles  of  typical  frequency  bands:  net  excita3on,  bo_om-­‐up  vs  top-­‐down  signaling,  etc

๏ a  field  of  intense  research