electricity magnetism lecture 9: conductors and capacitance lecture 10 - conductors … · two...

30
Electricity & Magnetism Lecture 9: Conductors and Capacitance Today’s Concept: A) Conductors B) Capacitance ( Electricity & Magne7sm Lecture 7, Slide 1

Upload: others

Post on 17-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Electricity & MagnetismLecture 9: Conductors and Capacitance

    Today’sConcept:

    A)Conductors B)Capacitance

    (

    Electricity&Magne7smLecture7,Slide1

  • Some of your comments

    Thischaptermakesabsolute0sense.

    Iwouldreallyloveanexplana7ononhowcapacitorsareusedastemporarybaHeriesforstoringenergyinthem.

  • Capacitors vs. Batteries

    ‣ AbaHeryusesanelectrochemicalreac7ontoseparatecharges.ΔVbetweenterminalsiscalled“EMF”,symbol:,E orE.

    ‣ Capacitorsstorechargeonitsplates.

    Capacitance and Capacitors (30.5)

    We have been using capacitors a lot without defining capacitanceor describing how to charge-up these devices.

    A battery will create a potential difference across a capacitorwhich is equal to the potential difference in the battery.

    Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 4 / 14

    E

  • Some capacitors

    ! 0

  • WE BELIEVE THERE ARE ONLY THREE THINGS YOU NEED TO KNOW TO DO ALL OF HOMEWORK!

    1. E = 0 withinthematerialofaconductor:(atsta7cequilibrium)

    Chargesmoveinsideaconductorinordertocanceloutthefieldsthatwouldbethereintheabsenceoftheconductor.Thisprincipledeterminestheinducedchargedensi7esonthesurfacesofconductors.

    CONCEPTSDETERMINETHECALCULATION!

    Our Comments

    2.Gauss’Law:Ifchargedistribu7onshavesufficientsymmetry(spherical,

    cylindrical,planar),thenGauss’lawcanbeusedtodeterminetheelectricfieldeverywhere.

    Electricity&Magne7smLecture7,Slide3

    I

    surface

    ~E · d ~A = Qenclosed✏

    0

    �Va⇤b ⇥�Ua⇤b

    q= �Z b

    a~E · d~l

  • Conductors

    " Chargesfreetomove" E=0inaconductor" Surface=Equipoten7al" Eatsurfaceperpendiculartosurface

    TheMainPoints

    Electricity&Magne7smLecture7,Slide4

  • CheckPoint: Two Spherical Conductors 1

    Electricity&Magne7smLecture7,Slide5

    Twosphericalconductorsareseparatedbyalargedistance.Theyeachcarrythesameposi7vechargeQ.ConductorAhasalargerradiusthanconductorB.

    Comparethepoten7alatthesurfaceofconductorAwiththepoten7alatthesurfaceofconductorB.

    A.VA>VBB.VA=VBC.VA<VB

    “Thepoten7alisthesameasfromapointchargeatthecenterofAorB.So,followingV=kQ/r,Awouldhaveasmallerpoten7al“

  • CheckPoint: Two Spherical Conductors 2

    Electricity&Magne7smLecture7,Slide6

    Twosphericalconductorsareseparatedbyalargedistance.Theyeachcarrythesameposi7vechargeQ.ConductorAhasalargerradiusthanconductorB.

    Thetwoconductorsarenowconnectedbyawire.Howdothepoten7alsattheconductorsurfacescomparenow?

    A.VA>VBB.VA=VBC.VA<VB

    “Thepoten7alswillbecomeequalsincethechargeswillwanttogotoplacesoflowerpoten7al,un7litbalancesout.“

  • CheckPoint: Two Spherical Conductors 3

    Electricity&Magne7smLecture7,Slide7

    Twosphericalconductorsareseparatedbyalargedistance.Theyeachcarrythesameposi7vechargeQ.ConductorAhasalargerradiusthanconductorB.

    WhathappenstothechargeonconductorAaberitisconnectedtoconductorBbythewire?

    A.QAincreasesB.QAdecreasesC.QAdoesnotchange

    “Since B initially has a higher potential, charges move from B to A. “

  • 786 | C H A P T E R 2 3 Electric Potential

    Example 23-15 Two Charged Spherical Conductors

    Two uncharged spherical conductors of radius and(Figure 23-26) and separated by a distance much greater than

    are connected by a long, very thin conducting wire. A total chargeis placed on one of the spheres and the system is allowed to

    reach electrostatic equilibrium. (a) What is the charge on each sphere?(b) What is the electric field strength at the surface of each sphere?(c) What is the electric potential of each sphere? (Assume that the chargeon the connecting wire is negligible.)

    PICTURE The total charge will be distributed with on sphere 1 and on sphere 2 so that the spheres will be at the same potential. We can use

    for the potential of each sphere.

    SOLVE

    V ! kQ>R Q2Q1

    Q ! "80 nC6.0 cmR2 ! 2.0 cm

    R1 ! 6.0 cm

    (a) 1. Conservation of charge gives us one relation between thecharges and Q2:Q1

    Q1 " Q2 ! Q

    2. Equating the potential of the spheres gives us a secondrelation for the charges and Q2:Q1

    kQ1R1

    !kQ2R2

    ⇒ Q2 !R2R1Q1

    3. Combine the results from steps 1 and 2 and solve for andQ2:

    Q1 so

    20 nCQ2 ! Q # Q1 !

    60 nCQ1 !R1

    R1 " R2Q !

    6.0 cm8.0 cm

    (80 nC) !

    Q1 "R1R2Q1 ! Q

    (b) Use these results to calculate the electric field strengths at thesurface of the spheres:

    450 kN>C!E2 !

    kQ2R22

    !(8.99 $ 109 N # m2>C2)(20 $ 10#9 C)

    (0.020 m)2

    150 kN>C!E1 !

    kQ1R21

    !(8.99 $ 109 N # m2>C2)(60 $ 10#9 C)

    (0.060 m)2

    (c) Calculate the common potential from for either sphere:kQ>R9.0 kV!

    V1 !kQ1R1

    !(8.99 $ 109 N # m2>C2)(60 $ 10#9 C)

    0.060 m

    CHECK If we use sphere 2 to calculate we obtain An additional check is available, be-

    cause the electric field strength at the surface of each sphere is proportional to its chargedensity. The radius of sphere 1 is three times the radius of sphere 2, so its surface area isnine times the surface area of sphere 2. And because sphere 1 has three times the charge,its charge density is one-third the charge density of sphere 2. Therefore, the electric fieldstrength at the surface of sphere 1 should be one-third of the electric field strength at thesurface of sphere 2, which is what we found in Part (b).

    TAKING IT FURTHER The presence of the long, very thin wire connecting the spheresmakes the result of this example only approximate because the potential function is valid for the region outside an isolated conducting sphere. With the wire in place thespheres cannot accurately be modeled as isolated spheres.

    V ! kQ>r

    109 N # m2>C2)(20 $ 10#9 C)>0.020 m ! 9.0 $ 103 V. V2 ! kQ2 >R2 ! (8.99 $V,

    R1R2

    F I G U R E 2 3 - 2 6

  • CheckPoint: Charged Parallel Plates 1

    Electricity&Magne7smLecture7,Slide8

    TwoparallelplatesofequalareacarryequalandoppositechargeQ0.Thepoten7aldifferencebetweenthetwoplatesismeasuredtobeV0.Anunchargedconduc7ngplate(thegreenthinginthepicturebelow)isslippedintothespacebetweentheplateswithouttouchingeitherone.ThechargeontheplatesisadjustedtoanewvalueQ1suchthatthepoten7aldifferencebetweentheplatesremainsthesame.

    CompareQ1andQ0.oQ1<Q0oQ1=Q0oQ1>Q0

    THECAPACITORQ

    UESTIONSWERE

    TOUGH!

    THEPLAN:

    We’llwo

    rkthroughtheexa

    mpleinthe

    PreLectureandth

    endothepreflig

    htques7ons.

  • Capacitanceisdefinedforanypairofspa7allyseparatedconductors.

    Howdoweunderstandthisdefini7on?

    +Q

    −Qd

    !Considertwoconductors,onewithexcesscharge=+Qandtheotherwithexcesscharge=−Q

    !Thesechargescreateanelectricfieldinthespacebetweenthem

    E

    !Thispoten7aldifferenceshouldbepropor7onaltoQ!•Thera7oofQtothepoten7aldifferenceisthecapacitanceandonlydependsonthegeometryoftheconductors

    V

    !Wecanintegratetheelectricfieldbetweenthemtofindthepoten7aldifferencebetweentheconductor

    Capacitance

    Electricity&Magne7smLecture7,Slide9

  • First determine E field produced by charged conductors:

    Second,integrateEtofindthepotenHaldifferenceV

    x

    y

    Aspromised,VisproporHonaltoQ!

    Cdeterminedbygeometry!

    Example (done in Prelecture 7)

    Whatisσ ?

    A=areaofplate

    +Q

    −Qd E

    Electricity&Magne7smLecture7,Slide10

    V = �Z d

    0~E · d~y

  • +Q0

    −Q0

    dIniHalchargeoncapacitor=Q0

    PlatesnotconnectedtoanythingA)Q1<Q0B)Q1=Q0C)Q1>Q0

    HowisQ1relatedtoQ0?

    Clicker Question Related to CheckPoint

    td

    +Q1

    −Q1

    Insertunchargedconductor

    Chargeoncapacitornow=Q1

    CHARGECANNOTCHANGE!

    Electricity&Magne7smLecture7,Slide11

  • td

    +Q1

    −Q1

    A)+Q1B)−Q1C) 0D)PosiHvebutthemagnitudeunknownE)NegaHvebutthemagnitudeunknown

    WhatisthetotalchargeinducedontheboHomsurfaceoftheconductor?

    Where to Start ?

    Electricity&Magne7smLecture7,Slide12

  • E

    +Q0

    −Q0

    E

    WHATDOWEKNOW?

    E = 0

    Emustbe= 0inconductor!

    Why ?

    +Q0

    −Q0

    ChargesinsideconductormovetocancelEfieldfromtop&bo8omplates.

    Electricity&Magne7smLecture7,Slide13

  • NowcalculateVasafuncHonofdistancefromtheboSomconductor.

    +Q0

    −Q0

    E = 0

    y

    V

    y

    d t

    WhatisΔV=V(d)?A)ΔV=E0dB)ΔV=E0(d−t)C)ΔV=E0(d+t)

    d

    tEy

    -E0

    Theintegral=areaunderthecurve

    Calculate V

    Electricity&Magne7smLecture7,Slide14

    V( y) = �Z y

    0~E · d~y

  • CheckPoint Results: Charged Parallel Plates 1

    Electricity&Magne7smLecture7,Slide15

    TwoparallelplatesofequalareacarryequalandoppositechargeQ0.Thepoten7aldifferencebetweenthetwoplatesismeasuredtobeV0.Anunchargedconduc7ngplate(thegreenthinginthepicturebelow)isslippedintothespacebetweentheplateswithouttouchingeitherone.ThechargeontheplatesisadjustedtoanewvalueQ1suchthatthepoten7aldifferencebetweentheplatesremainsthesame.

    CompareQ1andQ0.A.Q1<Q0B.Q1=Q0C.Q1>Q0

    “ThedistanceforQ1issmallerthereforethechargemustdecreasetocompensateforthechangeindistance““Sincethepoten?alremainsthesame,thereisnochangeinthechargeofQ.““thefieldthroughtheconductoriszero,soithasconstantpoten?al.BecauseofthisitmusthavegreaterchargesothetotalVisthatsame.“

  • CheckPoint Results: Charged Parallel Plates 2

    Electricity&Magne7smLecture7,Slide16

    TwoparallelplatesofequalareacarryequalandoppositechargeQ0.Thepoten7aldifferencebetweenthetwoplatesismeasuredtobeV0.Anunchargedconduc7ngplate(thegreenthinginthepicturebelow)isslippedintothespacebetweentheplateswithouttouchingeitherone.ThechargeontheplatesisadjustedtoanewvalueQ1suchthatthepoten7aldifferencebetweentheplatesremainsthesame.

    Comparethecapacitanceofthetwoconfigura7onsintheaboveproblem.A.C1>C0B.C1=C0C.C1<C0

    “ThedistanceforQ1issmallerthereforethechargemustdecreasetocompensateforthechangeindistance““Sincethepoten?alremainsthesame,thereisnochangeinthechargeofQ.““thefieldthroughtheconductoriszero,soithasconstantpoten?al.BecauseofthisitmusthavegreaterchargesothetotalVisthatsame.“

  • CheckPoint Results: Charged Parallel Plates 2

    Electricity&Magne7smLecture7,Slide17

    TwoparallelplatesofequalareacarryequalandoppositechargeQ0.Thepoten7aldifferencebetweenthetwoplatesismeasuredtobeV0.Anunchargedconduc7ngplate(thegreenthinginthepicturebelow)isslippedintothespacebetweentheplateswithouttouchingeitherone.ThechargeontheplatesisadjustedtoanewvalueQ1suchthatthepoten7aldifferencebetweentheplatesremainsthesame.

    Comparethecapacitanceofthetwoconfigura7onsintheaboveproblem.A.C1>C0B.C1=C0C.C1<C0

    WecandetermineCfromeithercase sameV(preflight) sameQ(lecture)Cdependsonlyongeometry! E0 = Q0 /ε0A

    C0 = Q0 /E0d

    C1 = Q0 /[E0(d − t)]

    C0 = ε0A /d

    C1 = ε0A /(d − t)

  • BANG

    Energy in Capacitors

    Electricity&Magne7smLecture7,Slide18

  • !ConceptualAnalysis:

    ButwhatisQ andwhatisV ?Theyarenotgiven?

    !ImportantPoint:C isapropertyoftheobject!(concentriccylindershere)• AssumesomeQ (i.e.,+Q ononeconductorand−Q ontheother)• ThesechargescreateEfieldinregionbetweenconductors• This E fielddeterminesapoten7aldifferenceV betweentheconductors• V shouldbepropor7onaltoQ; thera7oQ/V isthecapacitance.

    Calculation

    metal

    metal

    a1a2

    a3a4 cross-sec7on Acapacitorisconstructedfromtwoconduc7ng

    cylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    Electricity&Magne7smLecture7,Slide19

  • !StrategicAnalysis:• Put+Qonoutershelland −Qoninnershell• Cylindricalsymmetry:UseGauss’LawtocalculateEeverywhere• IntegrateEtogetV• Takera7oQ/V:shouldgetexpressiononlyusinggeometricparameters(ai,L)

    Calculationcross-sec7on

    metal

    metal

    a1a2

    a3a4 Acapacitorisconstructedfromtwoconduc7ng

    cylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    Electricity&Magne7smLecture7,Slide20

  • Calculation

    metal

    metal

    +Q

    a1a2

    a3a4

    −Q

    Why?

    Whereis+Qonouterconductorlocated?A)atr=a4B)atr=a3C)bothsurfacesD)throughoutshell

    WeknowthatE = 0 inconductor(betweena3anda4)

    ++

    +

    +

    +++

    +

    +

    ++

    +

    +

    +++

    +

    +

    cross-sec7on Acapacitorisconstructedfromtwoconduc7ngcylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    +Q mustbeoninsidesurface(a3), sothat Qenclosed = + Q − Q = 0

    Electricity&Magne7smLecture7,Slide21

    Gauss’law:

    I

    surface

    ~E · d ~A = Qenclosed✏

    0

  • Calculation

    metal

    +Q

    a1a2

    a3a4

    −Q

    Why?

    + ++

    +

    +

    ++

    +

    +

    + ++

    +

    +

    +++

    +

    +

    We know that E = 0 in conductor (between a1 and a2)

    metal

    −−−−−

    −−− −

    −−−−

    −−−

    cross-sec7on Acapacitorisconstructedfromtwoconduc7ngcylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    Whereis−Qoninnerconductorlocated?A)atr=a2B)atr= a1C)bothsurfacesD)throughoutshell

    +Q mustbeonoutersurface(a2),sothatQenclosed = 0

    Electricity&Magne7smLecture7,Slide22

    Gauss’law:

    I

    surface

    ~E · d ~A = Qenclosed✏

    0

  • Calculation

    metal

    +Q

    a1a2

    a3a4

    −Q

    + ++

    +

    +

    ++

    +

    +

    + ++

    +

    +

    ++

    +

    +

    metal

    −−−−−

    −−− −

    −−−−

    −−−

    −Why?

    cross-sec7on Acapacitorisconstructedfromtwoconduc7ngcylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    a2<r<a3:WhatisE(r)?

    A) 0 B) C)D)E)

    E(2⇡rL) =Q✏0

    Direc7on:RadiallyIn

    Electricity&Magne7smLecture7,Slide23

    Gauss’law:

    I

    surface

    ~E · d ~A = Qenclosed✏

    0

  • Calculation

    r < a2: E(r) = 0

    since Qenclosed = 0

    a2<r<a3:

    WhatisV ?Thepoten7aldifferencebetweentheconductors.

    WhatisthesignofV=Vouter−Vinner?A)Vouter − Vinner<0B)Vouter − Vinner= 0C)Vouter−Vinner>0

    Q(2πε0a2L)

    metal

    +Q

    a1a2

    a3a4

    −Q

    + ++

    +

    +

    ++

    +

    +

    + ++

    +

    +

    ++

    +

    +

    metal

    −−−−−

    −−− −

    −−−

    −−−

    cross-sec7on Acapacitorisconstructedfromtwoconduc7ngcylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    Electricity&Magne7smLecture7,Slide24

  • Q(2πε0a2L)

    WhatisV≡Vouter−Vinner?

    (A)(B)(C)(D)

    Calculation

    V propor7onaltoQ,aspromised

    metal

    +Q

    a1a2

    a3a4

    −Q

    + ++

    +

    +

    ++

    +

    +

    + ++

    +

    +

    ++

    +

    +

    metal

    −−−−−

    −−− −

    −−−

    −−−

    cross-sec7on Acapacitorisconstructedfromtwoconduc7ngcylindricalshellsofradiia1,a2,a3,anda4andlength

    L(L>>ai).

    WhatisthecapacitanceCofthiscapacitor?

    a2<r<a3:

    Electricity&Magne7smLecture7,Slide25

    C ⌘ QV=

    2⇡✏0Lln(a3/a2)

  • The Potential of a Ring of Charge

    The Potential of a Ring of Charge (Example 29.11)

    A thin, uniformly charged ring of radius Rhas total charge Q . Find the potential atdistance z on the axis of the ring.

    The distance ri

    isr

    i

    =p

    R

    2 + z2

    The potential is then the sum:

    V =NX

    i=1

    14⇤�0

    �Q

    r

    i

    =1

    4⇤�01⌃

    R

    2 + z2

    NX

    i=1

    �Q =1

    4⇤�0Q⌃

    R

    2 + z2Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 5 / 19