elec599

Upload: reggie-gustilo

Post on 09-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 elec599

    1/31

    Multilevel Coding andIterative Multistage Decoding

    ELEC 599 Project Presentation

    Mohammad Jaber Borran

    Rice University

    April 21, 2000

  • 8/8/2019 elec599

    2/31

    Multilevel Coding

    A number of parallel encoders

    The outputs at each instant select one symbol

    lbits/symbo1

    11

    !!

    !!M

    i

    i

    M

    i

    i KN

    RR

    M-way

    Partitioning

    of data

    data bitsfrom the

    information

    source

    E1 (rateR1)

    EM (rateRM)

    E2 (rateR2)

    q1 K1 N x1

    Mapping

    (to 2M-point

    constellation)

    Signal

    Point

    q2 K2

    qM KM

    N x2

    N xM

  • 8/8/2019 elec599

    3/31

    Minimum Hamming distance for encoderi: dHi ,

    Minimum Hamming distance for symbol

    sequences

    a_)(min

    ,,1Hi

    MiH

    dd-

    !

    For TCM (because of the parallel transitions)

    dH= 1

    MLC is a better candidate for coded modulation

    on fast fading channels

    Distance Properties

  • 8/8/2019 elec599

    4/31

    Probability of error forFading Channels

    Rayleigh fading with independent fading coefficients

    Chernoff bound

    {

    !

    d

    e

    L

    d

    k

    jik

    L

    s

    jie

    k

    dEP

    0

    1

    2

    0

    2

    4

    )(11)(

    c,cc,c

    L: effective length of the error event (Hamming distance)

    dk(ci,cj): distance between the kth symbols of the two

    sequences

  • 8/8/2019 elec599

    5/31

    For a fast fading channel, or a slowly fading channel with

    interleaving/deinterleaving

    Design criterion (Divsalar)

    Design Criterion forFading Channels

    ),(minmax,},,,{ 2

    jiji

    dn

    ccccc1 -

    {

    !

    !L

    d

    k

    jikji

    k

    dd

    0

    1

    2

    2

    )()( c,cc,c),(minmax ,},,,{ 2

    jiHji dn ccccc1 -

    For a slowly fading channel withoutinterleaving/deinterleaving

    Design criterion ),(minmax,},,,{ 2

    jiEji

    dn

    ccccc1 -

  • 8/8/2019 elec599

    6/31

    For a fast fading channel, or a slowly fading channel with

    interleaving/deinterleaving

    Decoding Criterion

    kkk

    L

    k

    ikki

    yyd EE !!

    ~where)~(||min1

    22c,y

    Ekis the fading coefficient forkth symbol)

    Maximizes the likelihood function

  • 8/8/2019 elec599

    7/31

    Optimum decoder: Maximum-Likelihood decoder

    If the encoder memories are R1, R

    2, ,R

    M,

    the total number of states is 2R,

    where R=R1 + R2 + + RM.

    Complexity Need to look for suboptimum

    decoders

    Decoding

  • 8/8/2019 elec599

    8/31

    IfA

    andY

    denote the transmitted and receivedsymbol sequences respectively, using the chain

    rule for mutual information:

    ),,,|;(

    )|;();(

    ),,,X;();(

    121

    121

    21

    !!

    MM

    M

    XXXXYI

    XXYIXYI

    XXYIAYI

    -

    -

    -

    Suggests a rule for a low-complexity staged

    decoding procedure

  • 8/8/2019 elec599

    9/31

    Multistage Decoding

    At stage i, decoder Diprocesses not only thesequence of received signal points, but also

    decisions of decoders Dj, forj = 1, 2, , i-1.

    Decoder D1

    Decoder D2

    Decoder DM

    Y

    1X

    2X

    MX

    a

  • 8/8/2019 elec599

    10/31

    The decoding (in stage i) is usually

    done in two steps

    Point in subset decoding

    Subset decoding

    This method is not optimal in maximum

    likelihood sense, but it is asymptotically optimal

    for high SNR.

    Decoder DiY

    1X

    2X

    ...

    1

    iX

    iX

  • 8/8/2019 elec599

    11/31

    Optimal Decoding

    !

    iii

    ii

    xxxa

    AY

    xxb

    iii ayfb

    axxxM

    -

    -

    -

    A

    A

    Ai(x1,,xi) is the subset determined byx1,,xi

    fY|A(y|a) is the transition probability (determined by

    the channel)

    ix

  • 8/8/2019 elec599

    12/31

    Rate Design Criterion

    ),,,;(

    );(

    );(

    121

    122

    11

    !

    !

    !

    MMM XXXXYIC

    XXYIC

    XYIC

    -

    /

    then the rate of the code atlevel i, i, should satisfy

    ii Ce

    Decoder D1

    Decoder D2

    Decoder DM

    Y

    1X

    2X

    MX

    a

  • 8/8/2019 elec599

    13/31

    -5 0 5 10 15 200

    0. 5

    1

    1. 5

    2

    2. 5

    3

    SNR (dB)

    Capacity(b

    its/sym

    bol)

    C

    C1

    C2

    Two-level, 8-ASK, AWGN channel

  • 8/8/2019 elec599

    14/31

  • 8/8/2019 elec599

    15/31

    -5 0 5 10 15 200

    0. 5

    1

    1. 5

    2

    2. 5

    3

    SNR (dB)

    Capacity(b

    its/sym

    bol)

    C

    C1

    C2

    I(Y;X1|X2)

    Two-level, 8-ASK, AWGN channel

  • 8/8/2019 elec599

    16/31

    Iterative Multistage Decoding

    Assuming

    !

    !

    r

    rr

    rrr

    xb

    bxx

    xxxx

    A

    AA

    This expression, then, can be used as a priori

    probability of point a for the second decoder.

    }|Pr

    Two level Code

    R e I(Y;X1|X2)

    Decoder D1:

    then the a posterioriprobabilities are

  • 8/8/2019 elec599

    17/31

    Probability Mass Functions

    Error free decoding Non-zero symbolerror probability

  • 8/8/2019 elec599

    18/31

    -5 0 5 10 15 200

    0. 5

    1

    1. 5

    2

    2. 5

    3

    SNR (dB)

    Capacity(bits/sym

    bol)

    CC1

    C2

    I(Y;X1|X2)

    I(Y;X2|partial X1)

    Two-level, 8-ASK, AWGN channel

  • 8/8/2019 elec599

    19/31

  • 8/8/2019 elec599

    20/31

    8-PSK, 2-level, 4-state, uncoded, AWGN channel

    0 1 2 3 4 5 6 71 0

    -5

    1 0-4

    1 0-3

    1 0-2

    1 0-1

    1 00

    S N R e it

    E

    P

    ilit

    O ve

    ll

    E n

    e

    Un

    e

  • 8/8/2019 elec599

    21/31

    8-PSK, 2-level, 4-state, uncoded , fast Rayleigh fading channel

    6 8 1 0 1 2 1 4 1 6 1 8 2 01 0

    -5

    1 0-4

    1 0-3

    1 0-2

    1 0-1

    S N R e it

    E

    !

    P

    !

    "

    #

    "

    ilit

    $

    O ve %

    ll

    E n& ' (

    e (

    Un& ' (

    e (

  • 8/8/2019 elec599

    22/31

    6 8 1 0 1 2 1 4 1 6 1 8 2 01 0

    -5

    1 0-4

    1 0-3

    1 0-2

    1 0-1

    1 00

    S N R ) e 0 1 it

    E

    2

    2

    3

    2P

    2

    3

    4

    5

    4

    ilit

    6

    O ve 0 7 llF i

    0 8t Level

    S e9 @

    n A Level

    8-PSK, 2-level, 4-state, zero-sum, fast Rayleigh fading channel

  • 8/8/2019 elec599

    23/31

    6 8 1 0 1 2 1 4 16 1 81 0

    -5

    1 0-4

    1 0-3

    1 0-2

    1 0-1

    1 00

    S N R B e C D it

    E

    E

    E

    F

    EP

    E

    F

    G

    H

    G

    ilit

    I

    O ve C P llF i

    C Qt Level

    S eR S

    n T Level

    8-PSK, 2-level, 4-state, 2-state , fast Rayleigh fading channel

  • 8/8/2019 elec599

    24/31

    6 8 1 0 1 2 1 4 1 6 1 8 2 010

    -4

    10-3

    10-2

    10-1

    100

    S NRU V W

    B it

    X

    Y

    Y

    `

    Y

    a

    Y

    `

    b

    c

    b

    ilit

    d

    4- s t e t V , z V W f -s um4- s t e t V , 2- s t e t V , 1- it

    V W et i

    f g

    4- s t e t V , 2- s t e t V , 2- it V W e t i f g

    8-PSK, 2-level, fast Rayleigh fading

  • 8/8/2019 elec599

    25/31

    Higher Constellation Expansion Ratios

    For AWGN, CER is usually 2

    Further expanding Smaller MSED

    Reduced coding gain

    For fading channels,

    Further expanding Smaller product distance

    Reduced coding gain

    Further expanding Larger Hamming distance

    Increased diversity gain

  • 8/8/2019 elec599

    26/31

    0 2 4 6 8 1 0 1 2 1 41 0

    -5

    1 0-4

    1 0-3

    1 0-2

    1 0-1

    1 00

    S N R h e i p it

    E

    q

    q

    r

    q

    P

    q

    r

    s

    t

    s

    ilit

    u

    T v M , 8 -P S K

    2 -level, 1 -it e i w t i x n, 16 -P S K

  • 8/8/2019 elec599

    27/31

    14 1 5 1 6 1 7 1 8 19 2 01 0

    -5

    1 0-4

    1 0-3

    1 0-2

    S N R y e it

    E

    P

    ilit

    T M , 8 -P S K

    2 -level, 1 -it e

    t i n, 1 6 -P S K

    2 -level, 2 -it e t i n, 1 6 -P S K

  • 8/8/2019 elec599

    28/31

    Conclusion

    Using iterative MSD with updated a prioriprobabilities in the first iteration, a broader

    subregion of the capacity region of MLC scheme

    can be achieved.

    Lower complexity multilevel codes can be

    designed to achieve the same performance.

    Coded modulation schemes with constellation

    expansion ratio greater than two can achieve better

    performance for fading channels.

  • 8/8/2019 elec599

    29/31

  • 8/8/2019 elec599

    30/31

  • 8/8/2019 elec599

    31/31

    6 8 1 0 1 2 1 4 1 6 1 8 2 01 0

    -4

    1 0-3

    1 0-2

    1 0-1

    1 00

    S N R e it

    E

    P

    ilit

    A

    t i e, 1- it e

    t i n

    A

    t i e, 2- it e

    t i n

    A f equen , 1 -it e t i n

    A

    f equen

    , 2 -it e

    t i n

    8-PSK, 2-level, 4-state, 2-state