egee user forum, 2007 #0 f. castejón 1,7 i. campos 2, a. cappa 1, m. c á rdenas 1, l. a....

32
EGEE USER FORUM, 2007 #1 F. Castejón 1,7 [email protected] I. Campos 2 , A. Cappa 1 , M. Cárdenas 1 , L. A. Fernández 3,7 , E. Huedo 4 , I.M. Llorente 4 , V. Martín 3,7 , R.S. Montero 4 , M. Mikhailov 5 , A. Tarancón 7 , M.A. Tereshchenko 6 , J.L. Vazquez-Poletti 4 , J. L. Velasco 7 , V. Voznesensky 5 1) Laboratorio Nacional de Fusión. Asociación EURATOM/CIEMA. 28040, Madrid, Spain 2) Instituto de Física de Cantabria. CSIC. 39005, Santander, Spain 3) Facultad de Físicas. Universidad Complutense de Madrid, 28040, Madrid, Spain 4)Facultad de Informática. Universidad Complutense de Madrid, 28040, Madrid, Spain. 5) Institute Kurchatov. Moscow, Russia. Status of Fusion Status of Fusion activities in the Grid activities in the Grid

Upload: shonda-lang

Post on 06-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

EGEE USER FORUM, 2007 #2 Computing in Plasma Physics (I). Plasmas: Complex systems, with a lot of non-linear processes, with all the time and space scales playing a role (selfsimilarities, self-organization,…): Advances in chaos and selforganisation problems Out of the equilibrium, open systems: Challenging for Statistical Physics. They are in the intermediate range between Fluid and Kinetic Theories. Both of them are at work at given plasma ranges.

TRANSCRIPT

Page 1: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #1

F. Castejón1,7

[email protected]

I. Campos2, A. Cappa1, M. Cárdenas1, L. A. Fernández3,7, E. Huedo4, I.M. Llorente4, V. Martín3,7, R.S. Montero4, M. Mikhailov5, A. Tarancón7, M.A. Tereshchenko6, J.L. Vazquez-Poletti4, J. L. Velasco7,

V. Voznesensky5

1) Laboratorio Nacional de Fusión. Asociación EURATOM/CIEMA. 28040, Madrid, Spain2) Instituto de Física de Cantabria. CSIC. 39005, Santander, Spain

3) Facultad de Físicas. Universidad Complutense de Madrid, 28040, Madrid, Spain4)Facultad de Informática. Universidad Complutense de Madrid, 28040, Madrid, Spain.

5) Institute Kurchatov. Moscow, Russia.6) Institute of General Physics. Moscow. Russia.

7) BIFI: Instituto de Biocomputación y Física de Sistemas Complejos. 50006, Zaragoza, Spain

Status of Fusion activities in the Status of Fusion activities in the GridGrid

Page 2: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #2

Outline• Motivation: Computing in Plasma Physics.

• Parallel vs. distributed problems.

•Supercomputers and parallel problems.

• Grids and distributed problems.

• Fusion VO

• Ported applications.

• Possible future Applications.

• Final remarks.

Page 3: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #3

Computing in Plasma Physics (I).

• Plasmas:

• Complex systems, with a lot of non-linear processes, with all the time and space scales playing a role (selfsimilarities, self-organization,…): Advances in chaos and selforganisation problems

• Out of the equilibrium, open systems: Challenging for Statistical Physics.

• They are in the intermediate range between Fluid and Kinetic Theories. Both of them are at work at given plasma ranges.

Page 4: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #4

Computing in Plasma Physics (II).

• Plasma Physics is, of course, useful for Fusion, but it has interest itself.

• There are still open problems. Their solutions can help in commercial fusion achievement.

• Computing is a key element for solving complex problems in Plasma Physics.

• Computational Plasma Physics: A motivation for developing powerful computers and grid technologies.

Page 5: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #5

Stellarators & Tokamaks: Complex SystemsStellarators: Fully 3D.

Consider exactly the geometry in almost all the

problems.

Tokamaks:

Usually 2D.

Fully 3D Sometimes.

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Challenging Simulation: Numerical Tokamak and Stellarator. Gyrokinetic codes.

Page 6: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #6

Time scales and run time estimates

1ns 1μs 1ms 1s 1000s

electrontransittime

minimumsimulation

time

energyconfinement

time

maximumdischarge

time

• Today, one could perform a 1 ms simulation within several days onthe Mare Nostrum (a 100 TFlop/s machine)

• In 2014, a transport-time-scale simulation will take several weeks ona 4 PFlop/s machine (computer power doubles every 18 months)

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Page 7: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #7

Parallel vs. Distributed problems. • Two main kinds of problems, depending on the interaction between their elements:

• Parallel: those that require a lot of communication. The collective behaviour is dominant.

•Fluid Theory. Gyrokinetic codes. Turbulence. Equilibrium and Stability…

• Distributed: a large fraction of the problem can be treated solving for its independent elements.

• Kinetic theory. Massively repeated calculations. Monte Carlo codes…

Page 8: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #8

Supercomputers and parallel problems.

• Gyrokinetic codes: Continous and PIC.

• Turbulence and Transport.

• MHD.

• Fokker-Planck codes and Kinetic Theory.

• Equilibrium in Stellarators.

• Stellarator Optimization.

• Global NC Transport in Stellarators

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Page 9: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #9

Grids and distributed problems.• Monte Carlo codes:

• Plasma-wall interaction; neutral particle orbits.

• Kinetic transport: guiding centre orbits in toks. and stell.

• Langevin equations.

• Parameter Variation:

• Neoclassical Transport estimates (DKES).

• Massive Transport analysis.

• Simulation of Heating by Microwaves: Massive Ray Tracing.

• Stellarator Optimization.

•…

Page 11: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #11

Open Problem: Global NC Transport

Time consuming MC Codes in the LMFP regime . Suitable for Grids.

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

In optimised stellarators: Poloidal Drifts close to

magnetic surfaces.In no optimised ones:

large radial excursions.

106-107 markers or particles. Tflops.

Page 12: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #12

Kinetic Transport

Example of orbit in the real 3D TJ-II Example of orbit in the real 3D TJ-II Geometry (single PE).Geometry (single PE).Collisions included: 1 ms of trajectory Collisions included: 1 ms of trajectory takes 4 sec CPU. takes 4 sec CPU. Particle life: 150 - 200 ms. Single Particle life: 150 - 200 ms. Single particle particle ~ 10 - 20 min.~ 10 - 20 min.101066 - 10 - 107 7 particles needed.particles needed. 0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

ρ

B (T)

ρ

B (T)

l (m)

Page 13: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #13

Kinetic Transport

• Monte Carlo code that solves microscopic Langevin Equations for every ion, including:– the movement inside the magnetic and electric fields created by the magnetic confinement

device and the plasma.– random term to simulate collisions with the background plasma.

• The particles are distributed randomly in the plasma according to experimental results:– The spatial distribution of particles is done accordingly to plasma density.– The distribution of particles in momentum space follows a Maxwellian distribution

function according to the measured temperature (which astonishingly happens to be almost constant).

• Estimate every trajectory independently in a single CPU (about 10 - 20 min of elapsed time).

Page 14: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #14

Kinetic Transport

• Every case (particle) needs:– A seed for random space distribution.– A seed for random momentum distribution.– An initial seed for collisions.

• The background plasma is common for every particle, therefore is located at the catalog:– Background density and temperature, i. e., collisionality.– Background electric field.– Background magnetic field and magnetic configuration.

• ~107 particles launched in bunches of about 103 to be run in every CPU. • Post process. Statistical measures: Fluxes, velocity distribution, space distribution, etc. • No problem if some (few) cases are lost.

Input parameters

Stored at the FUSION VO catalogue

Page 15: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #15

Relevant Results

Radial Flux evolution: A key quantity for transport.

Persistence of particles: =28 ms (to be compared with 21 ms measured)

Collaboration with BIFI.

Page 16: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #16

Standard Neoclassical Transport.

• The diffusion coefficients are given by the following integrals (j=1,2,3):€

Γs = −nsD1s ∇nsns

− qsE rTs

+ D2s

D1s − 3

2

⎛ ⎝ ⎜

⎞ ⎠ ⎟∇TsTs

⎝ ⎜

⎠ ⎟

Qs = −nsTsD2s ∇nsns

− qsE rTs

+ D3s

D2s − 3

2

⎛ ⎝ ⎜

⎞ ⎠ ⎟∇TsTs

⎝ ⎜

⎠ ⎟

D js = 4

πDToks D*

s ϑ *,E r,v( )∫ vv th

⎛ ⎝ ⎜

⎞ ⎠ ⎟3+2 j

exp − vv th

⎛ ⎝ ⎜

⎞ ⎠ ⎟2 ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟dv

•APPLICATION IS IN “GRIDIFICATION” PROCESS.

•DKES (Drift Kinetic Equation Solver).

• Diffusive NC Transport. Particle and energy fluxes (s: plasma species):

Page 17: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #17

Standard Neoclassical Transport.• The monoenergetic coefficient D* is a function of:

• Device Structure (Magnetic field and equilibrium)

• Collisionality, i. e., Plasma characteristics: Density and Temperature.

• Electric field.

• Energy.

• DKES (Drift Kinetic Equation Solver).

• All of them are independent (10 min a single value).

•STRATEGY: Estimate a table of monoenergeitc coefficients at separate CPUs. THEN Integrate them.

D*s = D*

s ϑ *,E r,v( )

Page 18: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #18

MaRaTra: Massive Ray Tracing

Single Ray (1 CPU): Single Ray (1 CPU): Hamiltonian Ray Tracing Equations.Hamiltonian Ray Tracing Equations.

Beam Simulation: Beam Simulation:

Bunch of rays with Bunch of rays with beam waist close beam waist close to the critical layer to the critical layer (100-200 rays) x (100-200 rays) x (100-200 wave (100-200 wave numbers) numbers) ~10~1055

Application in production phase. Application in production phase. Gridification based on Gridway:Gridification based on Gridway:EGEE’07 EGEE’07 by J.L Vby J.L Vázquez-Poletti et al. ázquez-Poletti et al. UCM (Spain) UCM (Spain)

Page 19: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #19

MaRaTra

• A single ray is solved in every CPU: Hamiltonian Equations.• The rays are distributed accordingly to the microwave beam structure: Every

case needs Initial space position and Wave vector.• The background plasma is common for every particle, therefore it can be

downloaded from a close Storage Element: Background plasma and magnetic configuration.

• ~105 rays launched.

• Post process: Distribution of absorbed power (add all the absorbed powers of the single rays). No case must be lost. This is one reason for using the GridWay metascheduler.

Page 20: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #20

Opt. Stellarators in Supercomputers

NCSXQPS

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

W7-X

Page 21: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #21

Stellarator optimization in the Grid

-OPTIMIZATION NECESARY BASED ON KNOWLEDGE OF STELLARATOR PHYSICS.Plasma configuration may be optimised numerically by variation of the field parameters.Every variant computed on a separate processor (~10’) VMEC (Variational Momentum Equilibrium Code)

120 Fourier parameters are varied.

rB(ψ ,θ,ϕ )=

ρBm ,n

m ,n∑ (ψ )ei(mθ−nϕ )

R(ψ )= Rm ,nm ,n∑ (ψ )cos(mθ −nϕ )

Z(ψ )= Zm ,nm ,n∑ (ψ )sin(mθ −nϕ )

STELLARATORS: A lot of different Magnetic Configurations operating nowadays.

V. Voznesensky. Kurchatov Institute. Russia

Page 22: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #22

-Neoclassical Transport.- Bootstrap current.- Equilibrium vs. plasma pressure.- Stability (Balloning, Mercier,…)

Partícle trajectories in W7-X

Optimization Criteria: Target Functions

-Genetic Algorithm to select the optimum configuration for given Target Functions.

• LCG-2 - based Russian Data Intensive Grid.• About 7.500 cases computed (about 1.500 was not VMEC-computable), i.e. no equilibrium). • Each case took about 20 minutes. Up to 70 simultaneous jobs running in the grid.

Page 23: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #23

New possible Fusion applications

to be ported to the grid.

Page 24: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #24

Ion trajectories in ITER NBI system.

High statistics Montecarlo calculations: High performance computation resources are required.

The LNF is contributing to the European Neutral Beam Test Facility: RID Simulation and design of a set of coils to generate the Residual Magnetic foreseen inside the ITER Injectors, (0 - 2mT).Ion Trajectories: Ion source, extracting grid, neutralizer, and RID

Page 25: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #25

Plasma-Wall Interaction

– EDGE2D and EIRENE for tokamaks & Stellarators. Following a large number of neutral particles in a plasma background.

– The real Geometry of the wall and all the elements inside the vessel needed.

– Independent orbits of the neutrals.– Iteration with a transport code needed.

Page 26: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #26

EIRENE Code

Trayectory of a He atom in TJ-II. Vertical and horizontal proyections. It starts in the green point and is absorbed in the plasma by an ionization process. The real 3D geometry of TJ-II vacuum chamber is considerd.

Page 27: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #27

EIRENE Code

Two parts: 1) Following trajectories (Totally distributed) --> GRID 2) Reduction to put all together.

EIRENE Code comes from IPP (Jülich, Germany) and is extensively used by Fusion community.

0

5 109

1 1010

1,5 10 10

2 1010

2,5 10 10

3 1010

0 0,2 0,4 0,6 0,8 1

Neutral densityHelium

enl13=0.95

enl (10

13 cm-3)

r/a

Fit

Radial profile of atoms of He in TJ-II plasmas. An average on every magnetic surface has been done

Radial profile of atoms of H in TJ-II

0

1 109

2 109

3 109

4 109

5 109

6 109

7 109

0 0,2 0,4 0,6 0,8 1

Neutral densityHydrogen

enl13=0.65enl13=1.00enl13=1.80

enl (10

13 cm-3)

r/a

Page 28: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #28

EDGE2D: Determine plasma shape.

-EDGE2D solves the 2D fluid equations for the conservation of energy, momentum and particles in the plasma edge.

-Ions, electrons and all ionisation stages of multiple species are considered.

-Interaction with the vessel is simulated by coupling to Monte-carlo codes, to provide the neutral ion and impurity sources.

Page 29: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #29

Variation of Parameters

Run the same code with different enter parameters. Examples:- NEOCLASSICAL TRANSPORT: DKES Code (solve for Monoenergetic coefficient and convolution it with distribution function).

- Transport Analysis: Obtain Heat Diffusivity for a lot of discharges.

0

0.5

1

1.5

-15 -10 -5 0 5 10 15

2562256525582560.2559

<r> (cm)0.1

1

10

0 5 10 15

Chi-2562Chi-2565Chi-2558Chi-2560Chi-2559

r (cm)

Page 30: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #30

EUFORIA: A new project submitted to FP7

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Bring Fusion community users to use e-Infrastructures in Europe.

Take the most of ITER Exploitation

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Consortium with people from Fusion, Grid and HPC communities.

¡More applications to the Grid!

Page 31: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #31

• Computational Plasma Physics is a challenging discipline that can push forwards Physics Frontiers.

• Present generation of Supercomputers (~50 Tflops) are overcome by some open problems. Needed simulations for ITER: e. g. Integrated models towards Numerical Tokamak and Stellarator.

• Grids are powerful tools for distributed calculations (the poor man’s supercomputer).

• Fusion VO is working: Several applications are running.• New applications to be ported to the grid envisaged.• Possible Workflows that involve both types of computation.• Slow increasing of grid using by the Fusion Community.• EUFORIA Project can boost the grid use.

Final Remarks

Page 32: EGEE USER FORUM, 2007 #0 F. Castejón 1,7 I. Campos 2, A. Cappa 1, M. C á rdenas 1, L. A. Fernández 3,7, E. Huedo 4, I.M. Llorente

EGEE USER FORUM, 2007 #32

Future of Fusion Plasmas Modelling

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW).

Para ver esta película, debedisponer de QuickTime™ y deun descompresor TIFF (LZW). DEMO

Module Development

Linear & Non-linear MHD Instabilities

Fast Particle Driven Instabilnstabilities

Turbulent Transport

Plasma- Wall Interaction

Kinetic Theory and Plasma Heating

JT-60UK-STAR…

Numerical Tokamak

Numerical Stellarator

General Knowledge

Inte

grat

ion

Inte

grat

ion

Equilibrium & Stability

Global Neoclassical Transport