efficient computation of matched solutions of the kv ...lund/uspas/sbp_2018/lec_intro/06.env... ·...

27
Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic Focusing Lattices * Sven H. Chilton, 1   Steven M. Lund and Edward P. Lee 1 1 Lawrence Berkeley National Laboratory (LBNL) 2 Lawrence Livermore National Laboratory (LLNL) Heavy Ion Fusion Group Presentation Berkeley, CA 18 January, 2006 Research supported by the US Dept. of Energy at LBNL and LLNL under    contract Nos. DE-AC03-76SF00098 and W-7405-Eng-48

Upload: others

Post on 30-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic 

Focusing Lattices*

Sven H. Chilton,1  Steven M. Lund2  and Edward P. Lee1

1Lawrence Berkeley National Laboratory (LBNL)2Lawrence Livermore National Laboratory (LLNL)

Heavy Ion Fusion Group PresentationBerkeley, CA

18 January, 2006

* Research supported by the US Dept. of Energy at LBNL and LLNL under    contract Nos. DE­AC03­76SF00098 and W­7405­Eng­48

Page 2: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Conventional root­finding methods of solving the KV envelope equations often require a priori knowledge of initial conditions

Actual initial conditions:Incorrect IC's leading to non­matched solutions

Syncopated Quadrupole Lattice

Page 3: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

New iterative numerical method converges rapidly to matched solution without prior knowledge of initial conditions

Iteration 0 Iteration 1

Iteration 2

Page 4: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Introduction: New Iterative Numerical Method to construct matched solutions to the KV envelope equations

Based on consistency between particle orbits and the matched beam envelopeUses betatron formulation

Method works over entire parameter space Works for all  parameterizations of matched solutionsValid for all linear lattices without skew couplingRapidly convergent and robust, even where envelope is unstable

Page 5: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Outline

Introduction (Already Done)Theoretical ModelMatched Envelope PropertiesNumerical Iterative Method Example ApplicationsConclusions

Page 6: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Theoretical Model: Definition of the KV Equations and Relevant Parameters

rms/KV envelope Equations:

 define applied focusing forces of the lattice

Periodicity:

Page 7: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Undepressed particle phase advance σ0x

measures the strength of 

the applied focusing function κx(s) of periodic lattices

Undepressed particle phase advance:

Single­particle orbit without space­charge:

2 x 2 Transfer Matrix from 

to

Tr

The same applies to 

Page 8: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Undepressed Principal Orbit Equations 

Transfer Matrix:

Cosine­like Principal Orbit Equation:

 Note that stability requires:

Tr

[Courant and Snyder, Annals of Physics 3, 1 (1958)]

Initial Conditions:Sine­like case analogousy­plane analogous

Page 9: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Depressed Principal Orbit Equations 

Cosine­like Principal Orbit Equation:

Depression:

Maintain same basic formulation as before except:

Notation: drop 0 subscript to indicate depression

Applied focusing Space­charge defocusing

Page 10: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Depressed single­particle phase advance in the presence of uniform space­charge for a  particle moving in the matched beam envelope:

Normalized space charge strength or “ depressed tune”  :

The depressed particle phase advance provides a convenient measure of space­charge strength

Cold Beam(space­charge dominated)

Warm Beam(kinetic dominated)

Page 11: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Parameterization Classes

Possible parameterizations of matched envelope solutions:

Examples from here on assume a symmetric system:

“ Normal”  parameterization

Page 12: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Typical principal orbit functions and corresponding matched envelope functions

Syncopated Quadrupole Lattice

Page 13: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

The betatron consistency condition allows us to construct matched solutions of the KV equations

Consistency Condition:

Used to formulate iterative numerical method for matched envelope soutions

Page 14: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

The continuous limit is employed to seed the numerical method

Period Averages:

Continuous Limit Replacements:

Continuous Limit KV Envelope Equation (x­plane):

Page 15: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Form of solution of continuous limit envelope equations depends on parameters specified

Symmetric System:

Q, ε parameterization:

Q, σ parameterization:

ε, σ  parameterization:

Page 16: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Numerical Iterative Method uses connection between principal orbits and envelope to generate a correction closer to actual matched solution

Notation: denote iteration order with superscript

For iterations             , we calculate refinements of the principal orbit functions in terms of the envelope calculated at the previous iteration from

calculated from   using consistency condition

Cosine­like initial conditions: Sine­like case analogous

 and

Space­charge defocusing from previous iteration

Page 17: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Unspecified parameters may be calculated with one or more of the constraint equations below

Depressed Phase Advance:

Period Averaged Envelope Equation:

Page 18: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Seed Iteration and Cutoff

Seed iteration:

Cutoff: Terminate iterations when

 calculated depending on parameterization case

Continuous focusing space­charge

Note: seed iteration is more accurate than continuous focusing limit

Actual applied focus

Page 19: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Occupancy η

Syncopation Factor α

Lattice Period

Solenoid descriptioncarried out implicitly inLarmor frame [see Lund and Bukh, PRST­ AB7, 024801 (2004)]

Example applications­ solenoid and quadrupole lattices, treating the focusing functions as piecewise constant

Page 20: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Typical Matched Solutions

Syncopated Quadrupole Lattice (α = 0.1)

Solenoidal Lattice FODO Quadrupole Lattice (α = 0.5)

Page 21: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Iterative numerical method converges rapidly to matched solution for all parameterizations with specified σ

Iteration 0 Iteration 1

Iteration 2

Syncopated Quadrupole Lattice

Page 22: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Parameter space plots illustrating the number of iterations necessary to achieve a fractional tolerance of 10­6

Syncopated Quadrupole Lattice

Envelope Instability Bands

Page 23: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Tolerance decreases rapidly toward numerical precision

Syncopated Quadrupole Lattice

Tolerance decreases more slowly with:Increasing undepressed phase advanceIncreasing lattice complexity

Machine precision

Page 24: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Problem: Simplest implementation of Q, ε parameterization fails over approximately half of the parameter space

x = Failure point due to complex 

Solenoidal Lattice FODO Quadrupole Lattice:

in iterations:  Beam squeezed too hard for given Q; principal orbits overcompensate, grow too large, and yield complex phase advances

Page 25: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

We attempted to implement the Q, ε parameterization in the entire parameter space through several methods

Raise Q until method fails, lower until method works, then increase adaptivelyFound this only works for very slow increases in Q, leading to many iterations

1) Calculate the depressed phase advances via previous iteration integral formula

Converges systematically to unphysical solutions

2) Vary perveance adaptively

3) Hybrid Method

Assume trial σx, σ

y values and find consistent values with specified Q and/or 

εx, ε

y using numerical root­finding

Page 26: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Fortunately, the Q, ε parameterization can be extended to the entire parameter space by employing hybrid methods

(Q, ε)/(Q, σ) Hybrid

Find  satisfying

 Then employ Q, σ  method

Page 27: Efficient Computation of Matched Solutions of the KV ...lund/uspas/sbp_2018/lec_intro/06.env... · Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic

Conclusions

Has a large basin of attractionConverges rapidlyWorks over entire parameter space, even in regions of strong instabilityApplicable to all linear lattices without skew couplingStraightforward to code

A new iterative method for generating matched envelope solutions to the KV equations has been developed

However, the Q, ε method can be implemented with hybrids

Downside: Direct application of Q, ε parameterization fails in about half of the parameter space

Manuscript submitted to PRST­ABPrograms and presentation slides (soon) available online

Extra: