effect of temperature and pressure on antimycobacterial ... · chaturvedi m, rani r, sharma d,...

8
© 2020 International Journal of Mycobacteriology | Published by Wolters Kluwer - Medknow 296 Abstract Original Article INTRODUCTION Curcuma caesia Roxb. also known as Kali Haldi belongs to Zingiberaceae family. Various tribal communities have used C. caesia long ago. Traditionally, its rhizomes were used in treating asthma, leukoderma, rheumatic pains, piles, antidiarrheic, bronchitis, and snake and scorpion bite. C. caesia is an aromatic perennial herb with creeping horizontal or tuberous rhizomes having diverse pharmacological activities such as anti‑inflammation, anticancerous, antihelminthic, antileprosy, [1] antidiabetic activity, [2] antimutagenic activity, [3] antimycobacterial activity, [4] and antitoxicity against cyclophosphamide. [5] Numerous bioactive metabolites used in pharmacological industries have been reported to present in C. caesia rhizomes such as flavonoids, alkaloids, sesquiterpene, and phenolic. [6‑8] Methanol extract of C. caesia was analyzed to have cytotoxicity (IC 50 90.70 + 8.37 ug/mL) on Ehrlich Ascites carcinoma cell lines. [9] Nowadays, herbal medicines are gaining much importance as they are less toxic than chemical based drugs. Extraction of secondary metabolites from plant for the preparation of herbal medicine is increasing. Supercritical fluid extraction (SFE) method, which employs fluids in their supercritical states Background: Supercritical fluid extraction (SFE) is an advanced technique using CO 2 as a solvent and plant‑based drug exploration is a topic of growing interest. Curcuma caesia is a medicinal herb with many medicinal potential. Hence, in the present study, the effect of temperature (40°C–60°C) and pressure (10–20 MPa) on extraction yield and antimycobacterium potential of C. caesia Roxb. dry rhizome powder using supercritical fluid extraction method were evaluated. Methods: The extract of C. caesia by SFE was accomplished using temperature range (40°C–60°C) and pressure range (10–20 MPa). The chemical profile of the extracts were investigated by Gas Chromatography Mass Spectrometry (GCMS) and the antimycobacterial activity of the extracts were analyzed against Mycobacterium smegmatis strains MTCC06 and MTCC994. Compounds found in the extract were further checked by in silico analyses with two protein target 4DRE and 3UCI. Results: Extraction yield ranged from 3.0 to 5.6 g/25g dry substrate, with the highest value being achieved at 50°C and 15 MPa. The results of GCMS analyses revealed the presence of beta‑elemene, curzerenone, boldenone, and 2‑cyclohexen‑1‑one, 4‑ethynyl‑4‑hydroxy‑3, 5, 5‑trimethyl in the extracts. The extract obtained at 50°C temperature and 15 MPa pressure showed the highest zone of inhibition against M. smegmatis strains MTCC06 and MTCC994, that is, 15.6 mm and 13.6 mm, respectively. Active constituents present in the extracts showed good binding energy with 4DRE and 3UCI by in silico analysis. Conclusion: This study identified the effect of temperature and pressure on yield C. caesia extract by SFE method. Furthermore, the effect of different extracts on antimycobacterial potential and docking study validated the antimycobacterial potential. Keywords: Curcuma caesia, docking, Mycobacterium smegmatis, supercritical fluid extraction Access this article online Quick Response Code: Website: www.ijmyco.org DOI: 10.4103/ijmy.ijmy_113_20 Address for correspondence: Prof. Jaya Parkash Yadav, Department of Genetics, Maharshi Dayanand University, Rohtak ‑ 124 001, Haryana, India. E‑mail: [email protected] ORCID: https://orcid.org/0000‑0002‑3500‑6811 This is an open access journal, and arcles are distributed under the terms of the Creave Commons Aribuon‑NonCommercial‑ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non‑commercially, as long as appropriate credit is given and the new creaons are licensed under the idencal terms. For reprints contact: [email protected] How to cite this article: Chaturvedi M, Rani R, Sharma D, Yadav JP. Effect of temperature and pressure on antimycobacterial activity of Curcuma caesia extract by supercritical fluid extraction method. Int J Mycobacteriol 2020;9:296‑302. Effect of Temperature and Pressure on Antimycobacterial Activity of Curcuma caesia Extract by Supercritical Fluid Extraction Method Monika Chaturvedi 1 , Reena Rani 1 , Dushyant Sharma 1 , Jaya Parkash Yadav 1 1 Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India Submitted: 25‑Jun‑2020 Accepted: 01‑Jul‑2020 Published: 28‑Aug‑2020 [Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Upload: others

Post on 09-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

© 2020 International Journal of Mycobacteriology | Published by Wolters Kluwer - Medknow296

Abstract

Original Article

IntroductIon

Curcuma caesia Roxb. also known asKaliHaldi belongsto Zingiberaceae family. Various tribal communities have used C. caesia long ago. Traditionally, its rhizomeswereusedintreatingasthma,leukoderma,rheumaticpains,piles,antidiarrheic,bronchitis,andsnakeandscorpionbite.C. caesia is an aromatic perennial herbwith creeping horizontal ortuberous rhizomes having diverse pharmacological activities such as anti‑inflammation, anticancerous, antihelminthic,antileprosy,[1]antidiabeticactivity,[2]antimutagenicactivity,[3] antimycobacterial activity,[4] and antitoxicity against cyclophosphamide.[5] Numerous bioactive metabolites used in pharmacological industries have been reported to present in C. caesiarhizomessuchasflavonoids,alkaloids,sesquiterpene,andphenolic.[6‑8] Methanol extract of C. caesia

wasanalyzedtohavecytotoxicity(IC50 90.70 + 8.37 ug/mL) onEhrlichAscitescarcinomacelllines.[9]

Nowadays,herbalmedicinesaregainingmuchimportanceasthey are less toxic than chemical based drugs. Extraction of secondary metabolites from plant for the preparation of herbal medicine is increasing.Supercriticalfluid extraction (SFE)method,which employsfluids in their supercritical states

Background: Supercriticalfluid extraction (SFE) is an advanced techniqueusingCO2 as a solvent and plant‑based drug exploration is a topicofgrowing interest.Curcuma caesia isamedicinalherbwithmanymedicinalpotential.Hence, in thepresentstudy, theeffectoftemperature(40°C–60°C)andpressure(10–20MPa)onextractionyieldandantimycobacteriumpotentialofC. caesia Roxb.dryrhizomepowderusingsupercriticalfluidextractionmethodwereevaluated.Methods: The extract of C. caesiabySFEwasaccomplishedusingtemperaturerange(40°C–60°C)andpressurerange(10–20MPa).ThechemicalprofileoftheextractswereinvestigatedbyGasChromatographyMassSpectrometry(GCMS)andtheantimycobacterialactivityoftheextractswereanalyzedagainstMycobacterium smegmatisstrainsMTCC06andMTCC994.Compoundsfoundintheextractwerefurthercheckedbyin silicoanalyseswithtwoproteintarget4DREand3UCI.Results: Extractionyieldrangedfrom3.0to5.6g/25gdrysubstrate,withthehighestvaluebeingachievedat50°Cand15MPa.TheresultsofGCMSanalysesrevealedthepresenceofbeta‑elemene,curzerenone,boldenone,and2‑cyclohexen‑1‑one,4‑ethynyl‑4‑hydroxy‑3,5,5‑trimethylintheextracts.Theextractobtainedat50°Ctemperatureand15MPapressureshowedthehighestzoneofinhibitionagainstM. smegmatis strains MTCC06andMTCC994,thatis,15.6mmand13.6mm,respectively.Activeconstituentspresentintheextractsshowedgoodbindingenergywith4DREand3UCIbyin silico analysis. Conclusion: ThisstudyidentifiedtheeffectoftemperatureandpressureonyieldC. caesia extract by SFE method.Furthermore,theeffectofdifferentextractsonantimycobacterialpotentialanddockingstudyvalidatedtheantimycobacterialpotential.

Keywords: Curcuma caesia,docking,Mycobacterium smegmatis,supercriticalfluidextraction

Access this article online

Quick Response Code:Website: www.ijmyco.org

DOI: 10.4103/ijmy.ijmy_113_20

Address for correspondence: Prof. Jaya Parkash Yadav, Department of Genetics, Maharshi Dayanand University, Rohtak ‑ 124 001,

Haryana, India. E‑mail: [email protected]

ORCID: https://orcid.org/0000‑0002‑3500‑6811

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non‑commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: [email protected]

How to cite this article: ChaturvediM,RaniR,SharmaD,YadavJP.Effectof temperature and pressure on antimycobacterial activity of Curcuma caesiaextractbysupercriticalfluidextractionmethod.IntJMycobacteriol2020;9:296‑302.

Effect of Temperature and Pressure on Antimycobacterial Activity of Curcuma caesia Extract by Supercritical Fluid

Extraction MethodMonika Chaturvedi1, Reena Rani1, Dushyant Sharma1, Jaya Parkash Yadav1

1Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India

Submitted: 25‑Jun‑2020 Accepted: 01‑Jul‑2020 Published:28‑Aug‑2020

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 2: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Chaturvedi, et al.: Antimycobacterial activity of Curcuma caesia extract

International Journal of Mycobacteriology ¦ Volume 9 ¦ Issue 3 ¦ July‑September 2020 297

for theextractionofsolidsamples, isapowerful techniquefor separation of natural compounds from plants. In recent years,many investigations have beenmade on apparentindustrialapplicationsoftheSFE,whichoffersomebenefitsovertheconventionaltechniques,mainlyinfood,chemical,pharmaceutical, and oil industries.The SFEmethod hasadvantage over conventional methods of extraction due to less useoftoxicsolvent,extractionofheat‑labilemetabolite,andcontamination‑free product.[10,11]

Therefore,theobjectiveofthepresentstudyistheexperimentalstudy of SFE of C. caesia in a bench‑top unit to study the effect of pressure and temperature on the extraction yield. The chemical constituents of C. caesiaextractwerealsoanalyzedbygaschromatography–massspectrometry(GCMS)andtheirantimycobacterialactivitywascheckedagainstMycobacterium smegmatis.Moreover,thedockingstudywasalsoconductedto explore the possibility of metabolite as a future drug against Mycobacterium tuberculosis.

methods

Curcuma caesia collection and preparationC. caesiaRoxb.wascollectedandidentifiedfromICAR‑IndianInstitute of Spices Research Kozhikode, Kerala, withAccessionNo:1154(Voucherno:266608)andgrownintheherbal garden ofMaharshiDayanandUniversity,Rohtak,Haryana.HarvestingofrhizomewasdoneinNovember2018.Rhizomes of C. caesiawerewashedwith distilledwater,shade‑driedfor1week,and thengrinded intofinepowder.Themoisturecontentof therhizomewascalculatedbyhotair oven drying method.

Supercritical fluid extractionAlaboratoryscaleSFEunit(Speed™SFEPrimeofAppliedSeparations,Allentown,PA,USA)wasusedtoperformtheSFE assays to obtain the extracts from C. caesia by loading 10gofsubstrateina25mlofextractionvessel.Glasswoolwascastoffintheextractionvesselatboththeendstoavoidentrainment of the sample.All the SFE extractionswereperformedinaconstantextractiontime,i.e.,60mininstaticmode.Theinfluenceofpressureandtemperaturewasestimatedon the yield of C. caesiaextractwithtemperaturerangesfrom40°C to 60°C andpressure from10MPa to 20MPa.Themassofextractwasevaluatedbycollectinginapreweighedcleananddryglassvial.Extractionyield(Y)ofC. caesiawasindicated as grams extract per 25 g of dry substrate (g/25 g d.s.).Thepackedbedsupercriticalextractionprocedurewascarried out.[12]

Experimental design and statistical analysisThe effect of independent variables (temperature and pressure) on yield (response variable) of C. caesiaextractwasevaluatedby central composite rotatable design of response surface methodology.ThefactorsandtheirlevelsareshowninTable 1. Atotalof11runswerecarriedout,whichinclude4factorialpoints, 4 axial points, and 3 center pointswith a value of

α=1.41.Itwascreatedonatwo‑factorfactorialdesign(n=2),bytwolevels(codedvalues−1and+1).Codedtemperature(A1) indegreecentigradeandcodedpressure(A2) inMPacalculated by Equation 1 and 2 respectively.

A T1 505

�� (1)

A P2 155

�� (2)

Theexperimentdatawerebasedonthesecond‑ordermodelEq.(3),whichexpressedtheyield(Y) (response variable) as a function of temperature (A1) and pressure (A2) (independent variable).Experimentswereconductedinarandomizedorderto reduce the effect of unexpected variability in the observed response due to unnecessary factors.

Y=X0+X1A1+X2A2+X12A1A2+X11A12+X22A22 (3)

whereX0isaconstant;X1andX2arelinearcoefficients,andX12isacross‑productcoefficient.QuadraticcoefficientsaresymbolizedbyX11andX22.Three‑dimensional(3D)surfaceresponseplotsweregeneratedandgoodnessoffitwasassessedby analysis of variance (ANOVA).UsingDesign‑ExpertSoftware,version12(Stat‑Ease,Inc.,Minneapolis,MN,USA),thecoefficientsofresponsesurfaceequationwereassessed.

Gas chromatography–mass spectrometry analysisThe extracts obtainedwere further analyzed for chemicalprofilebyBRUKERSCION436‑GCSQGCMSinstrumentequippedwithRESTEKRtx®‑5(Crossbond®5%diphenyl/95%dimethylpolysiloxane)with 30m length, 0.25μmdf, and0.25mmIDcolumn.Heliumasacarriergaswasusedataflowrateof1ml/mininsplitmodeandwasusedfortheseparationofphytochemicals.GCMSprotocolwasusedfollowingthemethodofChaturvediet al.[13]

Antimycobacterium activityThe antimycobacterium activity of all SFE extracts of C. caesiawasanalyzedusingagarwelldiffusionassayagainstM. smegmatisstrains,i.e.,MTCC06andMTCC994.[14]Both

Table 1: Independent variable with level of central composite rotatable design matrix

Independent variable

Symbols Levels

Uncoded Coded Uncoded CodedTemperature(°C) T A1 36 −1.41

40 −150 060 +164 +1.41

Pressure (MPa) P A2 8 −1.4110 −115 020 +122 +1.41

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 3: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Chaturvedi, et al.: Antimycobacterial activity of Curcuma caesia extract

International Journal of Mycobacteriology ¦ Volume 9 ¦ Issue 3 ¦ July‑September 2020298

the strains of M. smegmatis obtained from the National Jalma InstituteofLeprosyandotherMycobacterialDiseases,Agra,Uttar Pradesh, India.The rifampicin diskwas used as astandard against M. smegmatiswithaconcentrationof10μg.

Docking studyMoleculardockinganalysiswasperformedusingMGLdockingtoolthroughAutoDock4.2softwarefromtheScrippsResearchInstitute ofUSA for the prediction of interaction betweenmetabolite present in SFE extract and potential drug targets of mycobacterium,i.e.,enoyl‑acylreductaseenzymeInhA(PDBID: 4DRE) and gyrase type IIA topoisomerase (PDB ID:3UCI)ofMycobacterium tuberculosis. The generated results ofdockingwereanalyzedandvisualizedbyDiscoveryStudio.Lipinski’sruleoffivehelpsinpreliminaryanalysisofmoleculethatitcanbeusedasdrugornot.Beforedockinganalysis,compoundswereanalyzedbySCFBIO‑IIT‑Delhi(http://www.scfbio‑iitd.res.in/software/drugdesign/lipinski.jsp) onlinesoftwareforLipinski’sruleoffive.TheADMETpropertiesofallligandswasanalyzedusinganonlineserver,i.e.,AdmetSAR(http://lmmd.ecust.edu.cn/admetsar2/about).[15]

resuLts

In packed bed SFE the solid particle size has a great effect on the yield because small particle size provides larger surface areaandlowerinternaldiffusionresistance.Iftheparticlesizeisbelow0.71mm,itseffectcanbeneglectedasaccordingtoDelValle et al.[16] The average particle size of C. caesia dry sieved powderwas0.64mm.Moisturecontentswerecalculatedbyhotairovendryingmethod,whichisfoundtobe8.0%±0.5%.Plantmaterialswerecharacterizedwithbedporosityof0.38+0.004andsoliddensityof791.6+3.2kg/m3 and apparent density of 189.4+1.6kg/m3.

Experimental extraction yield and predicted yield using supercriticalCO2 from dry rhizome powder ofC. caesia are depicted in Table 2.The yieldwas 2.5 times higherthan the lowest yield as it ranges from 3.0 g/25 g to5.6g/25gd.s.Thestatisticalindicatorsobtainedbytheanalysisof the variance applied to the selected second‑order model

Eq. (3) [Supplementary Table 1]. P < 0.05 indicated that model termsweresignificant.

Extraction yieldThe second‑order model Eq. (4) characterizes the effects of independentvariableonresponsevariable,i.e.,pressureandtemperature on yield in the particular experimental section. The equation in terms of coded factors can be used to make predictions about the response for given levels of each factor.

Y=5.43+0.10359(A1)–0.0268(A2)–0.1500A1A2–1A12 –1.5A22 (4)

TheANOVAwasusedtospecifywhichtermsarestatisticallyimportant and that have a positive or a negative effect on yield [Supplementary Table 2].

ThecorrelationbetweenpredictedresponseswithexperimentalresponseshasbeenshowninFigure1a.Thegraphshowsthattheexperimentalvaluesarecloselymatchedwiththepredictedvalues. It means that the second‑order model provides a statisticallysignificantrelationbetweentheresponsevariableand the independent variables.Thedatawere analyzedbydifferenceinfits(DFFITS)plots(theeffectonthepredictedvalue of each point is calculated for the reliability evaluation ofthemodel)andCook’sdistancemethod(measureofhowthe regression changes if the case has been removed) to confirmtheadequacyofmodelorabsenceofoutlier in theexperimentaldata.TheCook’sdistanceplot[Figure1b]andDFFITSplots[Figure1c]analysisrevealedthatmodelshownounpredictederrors.Figure2showsthe3DgraphicalresponseofEq.(4).Theextractionyieldsincreasedwithincreasingthetemperature and pressure upto a certain limit and then decline. Thehighestyieldwas5.6g/25gd.s.at50°Ctemperatureand15 MPa pressure.

Gas chromatography–mass spectrometry profileThemajormetabolitespresentindifferentSFEextractswasidentified byGCMS [Table 3].Metabolites, beta‑elemeneand curzerenone, were present in almost every extractswithvariationintheareapercentagevalueofpeak.GCMSchromatogram of extract obtained at 50°C and 15MPa

Table 2: Experimental and predicted extraction yield as a function of T and P

Run Temperature (T°C) Pressure (P, MPa) A1 A2 Y (g/25 g d.s)

Experimental Predicted1 40 10 −1 −1 3.10 3.152 60 10 +1 −1 3.50 3.573 40 20 −1 +1 3.00 3.104 60 20 +1 +1 3.20 3.285 36 15 −1.41 0 3.60 3.516 64 15 +1.41 0 3.40 3.347 50 8 0 −1.41 5.30 5.438 50 22 0 +1.41 3.10 3.009 50 15 0 0 3.30 3.2510 50 15 0 0 5.60 5.4311 50 15 0 0 5.40 5.43

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 4: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Chaturvedi, et al.: Antimycobacterial activity of Curcuma caesia extract

International Journal of Mycobacteriology ¦ Volume 9 ¦ Issue 3 ¦ July‑September 2020 299

condition showed the highest area of percentage of betaelemeneandcurzerenone[SupplementaryFigure1].Atthiscondition, the peak area of beta‑elemene and curzerenonewas 16.38%and 18.097%, respectively.The peak area ofboldenoneand2‑cyclohexen‑1‑one,4‑ethynyl‑4‑hydroxy‑3,5,5‑trimethylwas15.646%and10.063%,respectively.

Antimycobacterium activityAntimycobacteriumstudyresultsshowedthattheextractsat50°Cand15MPaconditionweremostefficientwithrespecttoallotherextracts. The zone of inhibition of various extracts obtained by SFEagainstM.smegmatisstrainsMTCC06andMTCC994wereanalyzed at concentration of 50 mg/ml [Supplementary Figure 2]. Theextractat50°Cand15MPaconditionshowedthemaximumactivitywithzoneofinhibition15.6mmand13.6mmagainstMTCC06andMTCC994,respectively.

Docking resultsMoleculardockingstudiesweredonewithfourmetabolites,namely, beta‑elemene, curzerenone, boldenone, and

2‑cyclohexen‑1‑one, 4‑ethynyl‑4‑hydroxy‑3, 5, 5‑trimethylwith4DREand3UCI.Enoyl‑acylreductaseenzyme(InhA)isnecessaryforcellwallsynthesisasitsynthesizedmycolicacidavitalcomponentofmycobacteriumcellwallandgyrasetype IIA that helps in reducing topological strain inDNAhelix during replication.ADMETproperties andLipinski’sruleoffiveforallthefourmetaboliteshavebeenshowninsupplementaryTable 3.All the fourmetabolites followedtheLipinski’s ruleoffive.The estimation of theADMETproperties plays a significant role in the early phase ofdrugformulationprocess.Caco‑2cellpermeability,blood–brainbarrierpenetration,humanintestinalabsorption,andAmes testpropertieswerecalculated.Afterdrug likenessproperties,thedockingstudywasdone.Thedockingstudyrevealedthatboldenoneshowedthehighestbindingenergyagainst both the receptor 4DRE and 3UCI.The bindingenergyandinhibitionconstantofthefourligandsalongwithstandardethionamidedrugareshowninTable 4.

The3Dinteractionof4DREand3UCIwithligandshavebeenshowninFigure3andFigure4respectively.The3Dinteractionshowsthebondlength,typeofbond,andaminoacidinvolvedintheinteraction.Themostefficientbindingwasshownbythe3UCIproteinwithboldenone,thatis,−8.45Kcal/molwiththree hydrogen bond and nine hydrophobic interactions.

dIscussIon

This study describes the correction between differenttemperatures and pressures on extraction yield of extract using SFEmethod. Furthermore, apart fromyield, the chemicalprofileofdifferentextractswaschangedwithrespecttotheirantimycobacteriumpotential.Inthepresentstudy,thehighestyieldwasobtainedat50°Ctemperatureand15MPapressure.BrunnersuggestedthatthepressureincreasestheCO2 density which further enhances the solvent power by decreasingthedistancebetweenCO2 molecules.[17] Extraction yield in Smyrnium cordifolium Boiss leaves is directly proportional totemperature(40°C–60°C)whatsoeverthepressure(10–30MPa).[18] Many studies suggested that indirect relational between extraction yield and pressure is due to diffusioncoefficient,[19]which is inversely proportional to pressure.

Figure 2: Three‑dimensional response surface graph for extraction yield (Y, g/25 g dry substrate) as a function of temperature (T, °C) and pressure (P, MPa)

Figure 1: Diagnostic plot of model (a) predicted versus actual (b) graphical plots Cook’s distance (c) difference in fits plot normal probability versus residual

cba

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 5: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Chaturvedi, et al.: Antimycobacterial activity of Curcuma caesia extract

International Journal of Mycobacteriology ¦ Volume 9 ¦ Issue 3 ¦ July‑September 2020300

Wanget al.[20]suggestedthatathigh‑pressurelevels,repulsiveinteractions occur between solvent and solutewhichmaydecrease the extraction yield of Cyperus rotundus Linn.

Extractobtainedat50°Cand15MPashowedthehighestoneofinhibitionwithM. smegmatis. This may be due to the presence of fourmetabolites, namely, beta‑elemene, curzerenone,boldenone,and2‑cyclohexen‑1‑one,4‑ethynyl‑4‑hydroxy‑3,

5,5‑trimethyl.Manystudiessuggestedthatsesquiterpenehasantimycobacterium activity[21] for example β‑elemene havethe capacity to alter the expression of dprE1 gene needed for cellwall synthesis and clgRgenes regulate cellmembranestructure[22] of mycobacterium. The essential oil of ginger mainly composed of monoterpenes and sesquiterpenes exhibited inhibitory activity against Mycobacterium tuberculosis.[23]Antimycobacterium activity of Salvia

Table 3: The relative area percentage of compound on GCMS chromatogram

Condition Beta‑elemene (%) Curzerenone (%) Boldenone (%) 2‑Cyclohexen‑1‑one, 4‑ethynyl‑4‑hydroxy‑3,5,5‑trimethyl (%)40°C/10MPa ‑ 10.369 ‑ ‑40°C/15MPa ‑ 13.335 ‑ ‑40°C/20MPa 4.894 19.063 ‑ ‑50°C/10MPa 8.587 16.169 ‑ 11.41350°C/15MPa 16.386 18.097 15.646 10.06350°C/20MPa 9.410 14.538 17.904 ‑60°C/10MPa 7.459 20.542 ‑ 14.88160°C/15MPa ‑ 11.851 ‑ ‑60°C/20MPa ‑ 16.695 ‑ 14.505

Table 4: The binding energy, inhibition constant, hydrogen bond, and hydrophobic interaction

Receptor Ligand Binding energy (Kcal/mol)

Inhibition constant (µM)

Number of hydrogen bond

Number of hydrophobic interaction

4DRE Beta‑elemene −5.88 49.01 ‑ 10Curzerenone −5.57 83.08 1 10Boldenone −7.37 3.93 1 102‑Cyclohexen‑1‑one,4‑ethynyl‑4‑hydroxy‑3,5,5‑trimethyl

−5.34 121.79 1 6

Ethionamide −5.64 73.85 5 43UCI Beta‑elemene −6.35 22.16 ‑ 5

Curzerenone −6.48 17.83 3 3Boldenone −8.45 638.89 3 92‑Cyclohexen‑1‑one,4‑ethynyl‑4‑hydroxy‑3,5,5‑trimethyl

−5.47 97.06 3 5

Ethionamide −5.17 161.60 4 6

Figure 3: The three‑dimensional interaction of ligands with 4DRE receptors (a) beta‑elemene (b) curzerenone (c) boldenone (d) 2‑cyclohexen‑1‑one, 4‑ethynyl‑4‑hydroxy‑3, 5, 5‑trimethyl (e) ethionamide (green line hydrogen bond, purple line hydrophobic interaction)

d

cba

e

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 6: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Chaturvedi, et al.: Antimycobacterial activity of Curcuma caesia extract

International Journal of Mycobacteriology ¦ Volume 9 ¦ Issue 3 ¦ July‑September 2020 301

tomentosa, Origanum minutiflorum, O. syriacum, and Thymus revolutus is due to the presenceof caryophyllene,germacreneD, andβ‑elemene in their essential oil.[24‑27] Hence,thepresenceofsesquiterpeneinextractisresponsiblefor antimycobacterium activity. In contrast, steroids arealso effective in reducing tuberculosismortality, includingpulmonary tuberculosis.[28]Steroidsweregivenincombinationwith antituberculosis drugs showed the decrease in themortality rate in patient suffering from tuberculosis of central nervous system.[29] Testosterone and estradiol derivatives havepotentialasantimycobacteriumactivitywithIC50at10.6μM.[30]Corticosteroidsarealsorecognizedashavingbeneficialeffect on persistence of tuberculosis patients.[31] In the present study, the antimycobacterium activity ofC. caesia seems to be due to the presence of β‑elemene (sesquiterpenoid),curzerenone(monoterpenes),andboldenone(steroid).

In silico analysis is an attractive method used by researchers to recognize the interactions among drug and protein. In silico analysis is advantageous for the synthesis of a better drug for specificpathogen.Thetwobacterialproteins,viz.,4DREand3UCI,wereusedforthein silicoanalysiswithfourmetabolitespresentintheextractobtainedat50°Cand15MPa.Allfourmetabolitesshowgoodbindingenergy,butboldenonewhichisasteroidshowsthehighestnegativebingingenergy.Dockingresults validate that antimycobacterium activity is due to these four metabolites.

concLusIon

This study investigated the effects of pressure and temperature on the extraction yield of C. caesia rhizomepowder fromSFE.A second‑order regressionmodelwasused topredicttheexperimentalresults.Themaximumyieldof5.6(g/25gd.s)wasfoundunder50°Cand15MPawiththehighestzoneof inhibition against antimycobacterium activity.GCMSanalysis shows fourmetabolites inprominent in almost allextracts.Dockinganalysisofthesefourmetaboliteswithtwoproteins of mycobacterium also validate that these metabolites help in antimycobacterium activity. It is concluded that the extractobtainedat50°Cand15MPaconditionshowedthe

presenceof fourmajormetabolites thatmaycontribute forantimycobacterium activity of C. caesia.

AcknowledgmentsThe author would like to thank the University GrantCommission(UGC),NewDelhi,forfinancialsupportbyUGCSAP[F.20/2012(SAPII)]projectfundandalsoICAR‑IndianInstituteofSpicesResearch,Kozhikode,Kerala,forprovidingthe samples.

Financial support and sponsorshipThisstudywasfinanciallysupportedbytheUGC,NewDelhi,byawardnumberUGCSAP[F.20/2012(SAPII)]projectfund.

Conflicts of interestTherearenoconflictsofinterest.

reFerences1. DasS,MondalP,ZamanMJ.Curcuma caesia Roxb. and its medicinal

uses:Areview.IntJResPharmChem2013;3:101‑8.2. JainA, Parihar DK. In vitro antioxidant and antidiabetic activity of

regional chemotypes of three CurcumaspeciesfromChhattisgarh.ResRevJHerbSci2018;7:13‑22.

3. Devi HP, Mazumder PB, Devi LP. Antioxidant and antimutagenicactivity of Curcuma caesia Roxb. rhizome extracts. Toxicol Rep 2015;2:423‑8.

4. GuptaVK,KaushikA,ChauhanDS,AhirwarRK,SharmaS,BishtD.Anti‑mycobacterialactivityofsomemedicinalplantsusedtraditionallybytribesfromMadhyaPradesh,Indiafortreatingtuberculosisrelatedsymptoms.JEthnopharmacol2018;227:113‑20.

5. DeviHP,MazumderPB.MethanolicextractofCurcuma caesia Roxb. Prevents the toxicity caused by cyclophosphamide to bone marrowcells,liverandkidneyofmice.PharmacognosyRes2016;8:43‑9.

6. SarangthemK,HaokipMJ.BioactivecomponentsinCurcuma caesia Roxb.growinginManipur.Bioscan2010;5:113‑5.

7. Paliwal P, Pancholi SS, Patel RK. Pharmacognostic parameters forevaluation of the rhizomes of Curcuma caesia. JAdvPharmTechnolRes2011;2:56‑61.

8. Jose S, Thomas TD. Comparative phytochemical and anti‑bacterialstudiesoftwoindigenousmedicinalplantsCurcuma caesia Roxb. and Curcuma aeruginosaRoxb.IntJGreenPharm2014;8:65‑71.

9. KarmakarI,DolaiN,SureshKumarRB,KarB,RoySN,HaldarPK.AntitumoractivityandantioxidantpropertyofCurcuma caesia against Ehrlich’sascitescarcinomabearingmice.PharmBiol2013;51:753‑9.

10. JouybanA,ChanH,FosterNR.Mathematicalrepresentationofsolutesolubility in supercritical carbon dioxide using empirical expressions. JSupercritFluids2002;24:19‑35.

Figure 4: The three‑dimensional interaction of ligands with 3UCI receptors (a) beta‑elemene (b) curzerenone (c) boldenone (d) 2‑cyclohexen‑1‑one, 4‑ethynyl‑4‑hydroxy‑3, 5, 5‑trimethyl (e) Ethionamide (green line hydrogen bond, purple line hydrophobic interaction)

d

cba

e

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 7: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Chaturvedi, et al.: Antimycobacterial activity of Curcuma caesia extract

International Journal of Mycobacteriology ¦ Volume 9 ¦ Issue 3 ¦ July‑September 2020302

11. Michielin EM, Bresciani LF, Danielski L, Yunes R, Ferreira SR.Composition profile of horsetail (Equisetum giganteumL.) oleoresin:Comparing SFE and organic solvents extraction. J Supercrit Fluids2005;33:131‑8.

12. ChatterjeeD,GhoshPK,GhoshS,BhattacharjeeP.Supercriticalcarbondioxide extraction of eugenol from tulsi leaves: Process optimizationandpackedbedcharacterization.ChemEngResDes2017;118:94‑102.

13. Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison ofCurcuma caesia extracts for bioactive metabolite composition,antioxidantandantimicrobialpotential.NatProdRes2019:1‑5.DOI:10.1080/14786419.2019.1687472.

14. SharmaD,RaniR,ChaturvediM,RohillaP,Yadav JP. In silico and in vitro approach of Allium cepa and isolated quercetin against MDR bacterial strains and Mycobacterium smegmatis. S Afr J Bot2019;124:29‑35.

15. Cheng F, LiW, ZhouY, Shen J,Wu Z, Liu G, et al.Admet SAR:A comprehensive source and free tool for assessment of chemicalADMETproperties.JChemInformModel2012;52:3099‑105.

16. DelValleJM,delaFuenteJC,UquicheE,ZetzlC,BrunnerG.MassTransferandEquilibriumParametersonHigh‑PressureCO2 Extraction of Plant Essential Oils in Food Engineering Interfaces. New York:Springer;2011.p.393‑472.

17. Brunner G. Gas extraction: An introduction to fundamentals ofsupercriticalfluidsandtheapplicationtoseparationprocesses.SpringerSciBusMedia2013;4:57‑175.

18. Sodeifian G, Azizi J, Ghoreishi SM. Response surface optimizationof Smyrnium cordifoliumboiss (SCB) oil extraction via supercriticalcarbondioxide.JSupercritFluids2014;95:1‑7.

19. AnsariK,Goodarznia I.Optimizationof supercritical carbondioxideextraction of essential oil from spearmint (Mentha spicata L.) leaves by usingTaguchimethodology.JSupercritFluids2012;67:123‑30.

20. Wang H, Liu Y, Wei S, Yan Z. Application of response surfacemethodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundusLinn.FoodChem2012;132:582‑7.

21. Cantrell CL, Franzblau SG, Fischer NH. Antimycobacterial plant

terpenoids.PlantaMed2001;67:685‑94.22. SawickiR,SieniawskaE,Swatko‑OssorM,GolusJ,GinalskaG.The

frequently occurring components of essential oils beta elemene and R‑limonene alter expression of dprE1 and clgR genes of Mycobacterium tuberculosisH37Ra.FoodChemToxicol2018;112:145‑9.

23. BaldinVP,BertindeLimaScodroR,MarianoFernandezCM,IequeAL,Caleffi‑Ferracioli KR, Dias Siqueira VL, et al. Ginger essentialoil and fractions against Mycobacterium spp. J Ethnopharmacol 2019;244:112095.

24. TepeB,DafereraD,SokmenA,SokmenM,PolissiouM.Antimicrobialand antioxidant activities of the essential oil and various extracts of Salvia tomentosaMiller.FoodChem2005;90:333‑40.

25. Vardar‑ÜnlüG,ÜnlüM,DönmezE,VuralN.Chemical compositionand in vitro antimicrobial activity of the essential oil of Origanum minutiflorumOSchwarz&PHDavis.JSciFoodAgric2007;87:255‑9.

26. AlmaMH,MaviA,YildirimA,DigrakM,HirataT.Screeningchemicalcomposition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacumL.growinginTurkey.BiolPharmBull2003;26:1725‑9.

27. KaramanS,DigrakM,RavidU,IlcimA.Antibacterialandantifungalactivity of the essential oils of Thymus revolutus celak from Turkey. JEthnopharmacol2001;76:183‑6.

28. CritchleyJA,YoungF,OrtonL,GarnerP.Corticosteroidsforpreventionof mortality in people with tuberculosis: A systematic review andmeta‑analysis.LancetInfectDis2013;13:223‑37.

29. SinghSK,TiwariKK.Useofcorticosteroids in tuberculosis. JAssocChestPhys2017;5:70‑5.

30. Jurášek M, Džubák P, Rimpelová S, Sedlák D, Konečný P,FrydrychI,et al.Trilobolide‑steroidhybrids:Synthesis,cytotoxicandantimycobacterialactivity.Steroids2017;117:97‑104.

31. GräbJ,SuárezI,vanGumpelE,WinterS,SchreiberF,EsserA,et al. Corticosteroids inhibit Mycobacterium tuberculosis‑induced necrotic host cell death by abrogating mitochondrial membrane permeability transition.NatCommun2019;10:688.

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]

Page 8: Effect of Temperature and Pressure on Antimycobacterial ... · Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma caesia extracts for bioactive metabolite composition,

Supplementary Figure 1: Gas chromatography–mass spectrometry spectrum at 50°C and 15 MPa condition

Supplementary Figure 2: Bar diagram of zone of inhibition of various extract obtained by supercritical fluid extraction

Supplementary Table 1: Statistical indicator of appropriateness of the second‑order model

Statistical indicators YF 110.69r2 0.99Lackoffit 0.679nsSignal‑to‑noise‑ratio 23.9CV 3.55Ns:Nonsignificant(P>0.20),CV:Coefficientofvariation

Supplementary Table 2: Analysis of variance for yield

Degree of freedom

Sum of squares

Mean sum of square

F P

Regression 5 10.43 2.09 110.69 0.001Residual 5 0.094 0.018Total 10 10.53

Supplementary Table 3: Drug‑like and ADMET properties of four inhibitors for antimycobacterium study

Compound name MW (g/mol) LogS LogP TPSA (A2) HA HD BBB Caco AmesBeta‑elemene 204.35 −4.76 3.37 0.00 0 0 − + −Curzerenone 230.30 −3.90 2.88 30.21 2 0 + + −Boldenone 286.41 −3.84 2.86 37.30 2 1 + + −2‑Cyclohexen‑1‑one,4‑ethynyl‑4‑hydroxy‑3,5,5‑trimethyl 178.23 −1.34 1.98 37.30 2 1 + + −MW:Molecularweight,LogS:Logarithmofthemolarsolubilityinwater,LogP:Partitioncoefficientbetweenn‑octanolandwater,TPSA:Topologicalpolarsurfacearea,HA:Hydrogenbondacceptors,HD:Hydrogenbonddonors,BBB:Blood–BrainBarrierpenetration,Caco:Caco‑2cellpermeability,Ames:Amestesttoxicity[15]

[Downloaded free from http://www.ijmyco.org on Wednesday, September 23, 2020, IP: 62.193.78.199]