effect of rotation speed and pulling rate on...

38
EFFECT OF ROTATION SPEED AND PULLING RATE ON PHYSICAL PROPERTIES OF TITANIUM-DOPED SAPPHIRE SINGLE CRYSTALS MOHAMMAD NABIL BIN JAINAL UNIVERSITI TEKNOLOGI MALAYSIA

Upload: vuthuy

Post on 03-Mar-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

EFFECT OF ROTATION SPEED AND PULLING RATE ON

PHYSICAL PROPERTIES OF TITANIUM-DOPED SAPPHIRE

SINGLE CRYSTALS

MOHAMMAD NABIL BIN JAINAL

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

EFFECT OF ROTATION SPEED AND PULLING RATE ON

PHYSICAL PROPERTIES OF TITANIUM-DOPED SAPPHIRE

SINGLE CRYSTALS

MOHAMMAD NABIL BIN JAINAL

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Science (Physics)

Faculty of Science

Universiti Teknologi Malaysia

APRIL 2013

Page 3: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

iii

To my beloved parents,

Jainal Bin Sakiban & Masamah Binti Othman,

To my brother,

Mohammad Ikbal Iskandar,

And to my lovely dear,

Nurul Farhana Binti Jumaat.

Page 4: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

iv

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah SWT, the Almighty, for giving me the

courage, strength, and perseverance to complete my study. First and foremost, I

would like to extend my token of appreciation to Allahyarham Assoc. Prof. Dr.

Mohamad Khairi Saidin which encouraged on pursuing study on Master’s degree

level. I would like to express my deepest gratitude to my research supervisor, Dr.

Zuhairi Ibrahim for the motivational support, criticism and advice on my work.

I would like to extend my gratitude to Mr Wan Hairul Anuar Kamaruddin and

Mr. Hamdan Hadi Kusuma for their patience and guidance on sharing their

knowledge on the crystal growth. Also, my sincere appreciation extended to the

laboratory assistants: Mr Abd Rahman Abdullah, Mrs. Radiah Hassan, Mr. Azizi

Safar, Mr. Mohd Azidy Abdull Aziz, Mr. Mohd Jaafar Mohamed Raji, Mrs. Anisah

Salikin, Mr. Rashdan Rani, Mr. Zainalabidin Abbas and Mr. Ayub Abu for their help

and guidance that made the material characterization and analysis ran out smoothly

according to plan.

I wish to express my warm thanks to all my fellow researchers for their

support and friendliness during my study at the university. I also would like to thank

to Ministry of Higher Education of Malaysia, Ministry of Science and Technology of

Malaysia for the financial supports that made me possible to complete my study.

Last but not least, I owe my most sincere loving appreciation to my beloved

ones, especially my parents Mr. Jainal Sakiban and Mrs. Masamah Othman, my

brother Mohammad Ikbal Iskandar and my dear Nurul Farhana Jumaat for their

continuous motivational support.

Page 5: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

v

ABSTRACT

Titanium-doped sapphire single crystals with 0.20 weight percentage of

dopant were successfully produced by using the Automatic Diameter Control-

Crystal Growth System based on the Czochralski technique. Group A crystals were

produced at a constant pulling rate of 1.50 mm h-1

and a rotational speed (8-24) rpm

and Group B crystal were produced at a constant rotational speed of 15 rpm and

pulling rate (0.75-1.75) mm h-1

. The presence of macroscopic defects such as gas

bubbles and inclusions were found in the crystals produced at low rotation speed and

at high pulling rate. XRD spectra of the crystals identified synthetic corundum as the

main phase of the crystals and Al2TiO5 as the second phase. EDAX analysis showed

the presence of Al, O and Ti element. Temperature, control power and growth rate

were investigated for their correlation on the growth process and crystal diameter

profile. When the rotation speed was increased, Group A crystals showed an increase

in density from 3.963 g cm-3

to 3.999 g cm-3

. For group B crystals, the density

decreased from 3.988 g cm-3

to 3.955 g cm-3

with increasing pulling rate. The

porosity of the Group A crystals was found to decrease from 0.27% to 0.08% with

increasing rotation speed. Group B crystals showed an increase in porosity from

0.09% to 0.44% with increasing pulling rate. From Vickers hardness test, the

hardness of Group A crystals increased from 855 HV to 1698 HV with an increase in

rotational speed. A decreased in hardness from 1439 HV to 845 HV was observed

with increasing pulling rate for Group B crystals. The Young’s Modulus of Group A

crystals increased from 1542 MPa to 2069 MPa with increasing rotation speed.

However, when the pulling rate was increased for the Group B crystals, the Young’s

Modulus was found to decrease from 2002 MPa to 1311 MPa.

Page 6: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

vi

ABSTRAK

Hablur tunggal safir yang didop dengan titanium dengan peratusan berat

dopan 0.20 telah berjaya dihasilkan dengan menggunakan Sistem Pertumbuhan

Hablur-Kawalan Diameter Automatik berdasarkan kepada teknik Czochralski.

Hablur Kumpulan A telah dihasilkan pada kadar tarikan malar 1.50 mm per jam dan

kelajuan putaran (8-24) putaran per minit dan hablur Kumpulan B telah dihasilkan

dengan kelajuan putaran malar 15 putaran per minit dan kadar tarikan (0.75-1.75)

mm per jam. Kehadiran kecacatan makroskopik seperti gelembung gas dan

bendasing telah ditemui dalam hablur yang dihasilkan pada kelajuan putaran yang

rendah dan kadar tarikan yang tinggi. Spektrum XRD daripada hablur telah

mengenalpasti korundum sintetik sebagai fasa utama hablur dan Al2Ti2O5 sebagai

fasa kedua. Analisis EDAX menunjukkan kehadiran elemen Al, O dan Ti. Suhu,

kuasa kawalan dan kadar pertumbuhan telah dikaji untuk hubungkaitnya pada proses

pertumbuhan dan profil diameter hablur. Apabila kelajuan putaran bertambah, hablur

Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963 g cm-3

ke

3.999 g cm-3

. Bagi hablur Kumpulan B, ketumpatannya susut dari 3.988 g cm-3

to

3.955 g cm-3

dengan meningkatnya kadar tarikan. Keporosan hablur kumpulan A

didapati susut dari 0.27% ke 0.08% dengan meningkatnya kelajuan putaran. Hablur

Kumpulan B menunjukkan pertambahan keporosan dari 0.09% ke 0.44% dengan

peningkatan kadar tarikan. Daripada ujian kekerasan Vickers, kekerasan hablur

Kumpulan A bertambah dari 855 HV ke 1698 HV dengan peningkatan kelajuan

putaran. Penyusutan kekerasan dari 1439 HV ke 845 HV telah diamati dengan

peningkatan kadar tarikan bagi hablur Kumpulan B. Modulus Young bagi hablur

Kumpulan A meningkat dari 1542 MPa ke 2069 MPa dengan peningkatan kelajuan

putaran. Bagaimanapun, apabila kadar tarikan ditingkatkan bagi hablur Kumpulan B,

Modulus Young didapati susut dari 2002 MPa ke 1311 MPa.

Page 7: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS xvi

LIST OF ABBREVIATIONS xviii

LIST OF APPENDICES xix

1 INTRODUCTION

1.1 Problem Background 1

1.2 Problem Statement 4

1.3 Objectives of Research 5

1.4 Scope of Research 6

1.5 Significance of Research 6

1.6 Thesis Plan 7

1.7 Research Flow Chart 8

Page 8: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

viii

2 LITERATURE REVIEW

2.1 Introduction 9

2.2 Czochralski Crystal Growth 9

2.2.1 Basic Principles of Czochralski Crystal 10

Growth

2.2.2 Crystal / Crucible Rotation 15

2.2.3 Pulling Rate 17

2.2.4 Growth Rate 18

2.2.5 Growth Direction 21

2.3 Diameter Control 23

2.4 Automatic Diameter Control – Crystal Growth 25

System (ADC-CGS)

2.4.1 ADC Program Control Process 26

2.4.1.1 Power Control 27

2.4.1.2 Diameter Control 28

2.4.1.3 Diameter Calculation 29

2.4.1.4 Power Adjustments 31

2.5 Sapphire 33

2.5.1 Titanium-doped Sapphire (Ti:Sapphire) 37

2.6 Density 38

2.7 Porosity 39

2.8 Hardness 41

2.9 Young’s Modulus 43

2.10 X-Ray Diffraction 44

2.11 Energy Dispersive X-Ray Analysis 46

3 RESEARCH METHODOLOGY

3.1 Introduction 49

3.2 Sample Preparation 49

3.2.1 Raw Material Preparation 50

3.2.2 Seed Crystal Preparation 50

3.2.3 Hot Zone Set Up 51

3.2.4 Growth Process 54

Page 9: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

ix

3.2.5 Slicing and Polishing 60

3.3 Sample Characterization 60

3.3.1 Density 60

3.3.2 Porosity 61

3.3.3 Vickers Hardness Test 62

3.3.4 Young’s Modulus 63

3.3.5 X-Ray Diffraction (XRD) Analysis 64

3.3.6 Energy Dispersive X-Ray (EDAX) Analysis 65

4 RESULTS AND DISCUSSIONS

4.1 Introduction 66

4.2 Growth of Ti:Sapphire Crystals 67

4.3 Growth Parameter Analysis 70

4.3.1 Correlation of Control Power and 70

Temperature to the Growth Process

4.3.2 Effect of Control Power on the Crystal 75

Diameter

4.3.3 Effect of Growth Rate on the Crystal 85

Diameter

4.4 X-Ray Diffraction (XRD) Analysis 88

4.5 Chemical Composition Assessment by Energy 92

Dispersive X-Ray (EDAX) Analysis

4.6 Effect of Rotation Speed and Pulling Rate on 93

Density

4.7 Effect of Rotation Speed and Pulling Rate on 97

Porosity

4.8 Effect of Rotation Speed and Pulling rate on 99

Hardness

4.9 Effect of Rotation Speed and Pulling Rate on 103

Young’s Modulus

Page 10: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

x

5 CONCLUSIONS AND SUGGESTIONS

5.1 Introduction 108

5.2 Conclusions 108

5.3 Suggestions 111

REFERENCES 112

APPENDICES 123

Page 11: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Main Characteristic of Sapphire 35

3.1 Aspects of growth conditions used in the experiment 57

3.2 Setting parameters for Ti:Sapphire crystal growth 58

3.3 Summary of growth parameters used to grow 59

Ti:Sapphire single crystal

4.1 Chemical composition for selected Ti:Sapphire crystals 92

4.2 Density value for Group A crystals 93

4.3 Density value for Group B crystals 95

4.4 Porosity value for Group A crystals 97

4.5 Porosity value for Group B crystals 98

4.6 Vickers hardness number obtained from Group A crystals 100

4.7 Vickers hardness number obtained from Group B crystals 101

4.8 Young’s Modulus value for Group A crystals 104

4.9 Young’s Modulus value for Group B crystals 105

Page 12: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Research flow chart 8

2.1 Basic elements of a Czochralski crystal growth 11

2.2 The phases of Czochralski technique crystal growth 14

2.3 Surface and bulk fluid flows on simulation experiment in a 16

Czochralski system

2.4 Parameters for growth rate determination 18

2.5 LiTaO3 crystals grown along different growth directions 22

2.6 Crystal Weighing Technique 24

2.7 Diameter control by optical technique 25

2.8 First 12 control parameters of ADC program 26

2.9 The principal control loop in ADC Program 27

2.10 The control loop regarding diameter control 28

2.11 Reading of weight versus time are gathered at intervals 29

defined by Weight Reading Interval parameter – C(24).

and Diameter Update Interval parameter – C(25)

2.12 Hypothetical trace of the measured diameter as function of 33

time for Point A, Point B and Point C

2.13 Structure and crystallographic planes of Sapphire 34

Page 13: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xiii

2.14 Synthetically grown titanium-doped sapphire single 37

crystals

2.15 Schematic diagram of diamond pyramid indenter and the 42

diagonals of the indentation on the specimen surface

2.16 X-ray diffraction diagram 46

2.17 Example of EDAX spectrum 47

2.18 The emission of X-ray photon energies 48

3.1 Ti:Al2O3 polycrystalline bulk pellet with nominal dopant of 50

0.20 wt. % Ti, with reference to a coin

3.2 Design layout for hot zone insulation 52

3.3 ZrO2 ceramic discs for the hot zone 53

3.4 Al2O3 tubes used placed on top of the ZrO2 insulators 53

3.5 Complete setup for the hot zone insulation 54

3.6 Automatic Diameter Control – Crystal Growth System 55

3.7 Seed crystal and seed holder configuration 56

3.8 AND Model GR200 densitometer 61

3.9 Two diagonals of the indentation left on the surface of the 62

material

3.10 CV Instruments Vickers Hardness Tester Model 450AAT 63

3.11 INSTRON Universal Testing Machine Model 3882 64

3.12 Siemens Diffractometer D5000 65

4.1 Group A crystals with a fixed pull rate of 1.50 mm h-1

and 68

varying crystal rotation speed

4.2 Group B crystals grown with a fixed seed rotation speed of 69

15 rpm and varying pull rate

Page 14: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xiv

4.3 Variation of control power and temperature against growth 72

elapsed time for Sample A1 at pulling rate 1.50 mm h-1

and

rotation speed 8 rpm

4.4 Variation of control power and temperature against growth 72

elapsed time for Sample B1 at pulling rate 0.75 mm h-1

and

rotation speed 15 rpm

4.5 Variation of control power and temperature against growth 73

elapsed time for Sample B2 at pulling rate 1.00 mm h-1 and

rotation speed 15 rpm

4.6 Variation of control power and temperature against growth 73

elapsed time for Sample B5 at pulling rate 1.75 mm h-1 and

rotation speed 15 rpm

4.7 Variation of control power and measured diameter against 77

growth elapsed time for Sample A2 at pulling rate 1.50

mm h-1 and rotation speed 12 rpm

4.8 Variation of control power and measured diameter against 79

growth elapsed time for Sample A3 at pulling rate 1.50

mm h-1 and rotation speed 16 rpm

4.9 Variation of control power and measured diameter against 81

growth elapsed time for Sample A5 at pulling rate 1.50

mm h-1 and rotation speed 24 rpm

4.10 Variation of control power and measured diameter against 83

growth elapsed time for Sample B5 at pulling rate 1.75

mm h-1 and rotation speed 15 rpm

4.11 Variation of measured diameter and growth rate against 85

growth elapsed time for Sample A2 at pulling rate of 1.50

mm h-1 and rotation speed 12 rpm

4.12 Variation of measured diameter and growth rate against 86

growth elapsed time for Sample A4 at pulling rate of 1.50

mm h-1 and rotation speed 20 rpm

4.13 Variation of measured diameter and growth rate against 86

growth elapsed time for Sample B1 at pulling rate of 0.75

mm h-1 and rotation speed 15 rpm

Page 15: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xv

4.14 Variation of measured diameter and growth rate against 87

growth elapsed time for Sample B5 at pulling rate of 1.75

mm h-1 and rotation speed 15 rpm

4.15 Powder X-Ray pattern of Ti:Sapphire crystal for Sample A1 89

4.16 Powder X-Ray pattern of Ti:Sapphire crystal for Sample A3 89

4.17 Powder X-Ray pattern of Ti:Sapphire crystal for Sample A5 90

4.18 Powder X-Ray pattern of Ti:Sapphire crystal for Sample B1 90

4.19 Powder X-Ray pattern of Ti:Sapphire crystal for Sample B3 91

4.20 Powder X-Ray pattern of Ti:Sapphire crystal for Sample B5 91

4.21 The graph of density against rotation speed implemented on 94

Group A growth runs

4.22 The graph of density against pulling rate implemented on 95

Group B growth runs

4.23 The graph of porosity against rotation speed for Group A 97

crystals

4.24 The graph of porosity against pulling rate for Group B 99

crystals

4.25 Graph of Vickers hardness number against rotation speed for 100

Group A crystals

4.26 Graph of Vickers hardness number against pulling rate for 102

Group B crystals

4.27 Graph of Young’s Modulus against rotation speed for Group 104

A crystals

4.28 Graph of Young’s Modulus against pulling rate for Group B 106

crystals

Page 16: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xvi

LIST OF SYMBOLS

A - surface area of residual deformation

A0 - original cross-sectional area

Ac - surface area of crystal interface

d - mean diagonal

D - ratio of crystal radius to crucible radius

dcryst. - diameter of the crystal

dD/dt - first derivative of the diameter

dhkl - interplanar spacing of the (hkl) spacing

dW/dt - first derivative of the crystal

E - Young’s Modulus

F - peak load

FC - force exerted on the specimen under compression

Gc - crystal growth rate

Gl - amount of liquid crystallized per unit time

H - hardness

hc - height of crystal grown per unit time or linear growth rate

L - height of liquid crystallized per unit time

L0 - original length of the specimen

Lm - liquid level drop

m - mass

n - integer or order of reflection

P(t) - control power at time

Pr - sum of the pull rate

rc - radius of the crystal

Rcr - radius of the crucible

Page 17: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xvii

t - time

v - volume

Vb - bulk volume

Vop - open pore volume

W1 - weight of sample in air

W2 - weight of sample in liquid

WD - weight of the dry sample

WS - weight of saturated sample

WSS - weight of the saturated sample submerged in liquid

ΔL - length displaced over original length

ε - strain

θ - diffraction angle

κ - ratio of average liquid density to solid density of the crystal

λ - wavelength of the beam

ρ - density

ρair - density of air

ρL - liquid density

ρliq - density of immersion liquid

ρS - solid density of the crystal

σ - stress

Page 18: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xviii

LIST OF ABBREVIATIONS

ADC - Automatic Diameter Control

ADC-CGS - Automatic Diameter Control-Crystal Growth System

CP - control power

Cz - Czochralski

DG - derivative gain

EDAX - Energy Dispersive X-ray

err - error

HV - Vickers hardness number

ICSD - Inorganic Crystal Diffraction Database

ID - inside diameter

IG - integral gain

LED - light emitting diode

OD - outside diameter

PDF - powder diffraction file

PG - proportional gain

PI - proportional-integral

PID - proportional-integral-derivative

RF - radio frequency

SEM scanning electron microscopy

T - thickness

Ti:Sapphire - titanium-doped sapphire

WDS wavelength dispersive X-ray spectroscopy

wt. - weight

XRD - X-ray Diffraction

Page 19: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

xix

LIST OF APPENDICES

APPENDIX TITLE PAGE

A ICSD standard powder X-ray diffraction database of 123

Al2O3 (synthetic corundum)

B ICSD standard powder X-ray diffraction database of 124

Al2TiO5

C Chemical composition Assessment by Energy 125

Dispersive X-ray (EDAX) analysis

D Calculation of density 128

E Porosity calculation 129

F Vickers hardness number calculation 130

G Young’s Modulus determination 132

H EKSPLA titanium-doped sapphire laser crystal 134

brochure

I Related publication 135

Page 20: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Crystals are one of the unrecognized backbones of modern technology. For

the past few decades, crystal has profound yet prominence importance in electronic

industry, photonic industry, communication industry, which rely on semiconductors,

superconductors, polarizers, transducers, radiation detectors, ultrasonic amplifiers,

ferrites, magnetic garnets, solid state lasers, non-linear optics, piezoelectric, electro-

optic, acousto-optic, photosensitive, refractory of different grades, crystalline films

for microelectronics and computer industries. Crystal growth is a highly-diverse

subject that covers physics, chemistry, material science, chemical engineering,

metallurgy, crystallography, mineralogy and many more (Caroline, 2009).

With the increasing demands to fulfil the needs of large size and high yield of

crystal for commercial purposes and technological applications, the understanding on

the crystal growth process was the major interest. Therefore, research on the

development of crystal growth process was extensively carried out among the

industrial crystal growers and scientific researchers within the past few decades.

With the technological advancement of scientific instruments and analytical methods

Page 21: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

2

such as x-rays, electron microscopy, FTIR and NMR, crystal growth research has

embarked into atomic level, which makes it possible for further understanding of the

physical, chemical, optical and other properties of the structural nature of various

crystals (Zhang, 1999).

Single crystal is a solid with the structure of the atoms that are perfectly

arranged in periodic and repetitive manner which extends in long-range atomic order.

A single crystal is formed by the growth of a crystal nucleus without secondary

nucleation or impingement on other crystals. As the crystal grows, differences in

chemical composition and temperature cause variations. The atomic structure

determines the chemical and physical properties of the single crystal, including

colour (Glazer, 1987). The occurrence of single crystals can be found in nature, but

they may also be produced synthetically. They are ordinarily difficult to grow,

because the environment must be carefully controlled. Nowadays, single crystals are

produced synthetically in order to fulfil the demands of commercial purposes and

scientific interests.

Generally, single crystal growth methods are classified into three categories

which are growth from melt, growth from solution and growth from the vapour

phase. The most widely employed method on production of single crystal is the

growth from melt. Basically, all materials can be solidified into single crystal form

from melt under these conditions; they melted congruently, they do not disintegrate

into simpler chemical compounds during pre-melting and they are not subjected to a

phase transformation between the melting point and room temperature (Srivastava,

2005). One of the growth methods from melt, the Czochralski is the most dominant

process of single crystal growth in the industry nowadays. This technique is widely

used in the large-scale production of semiconductor and optical single crystals such

as silicon, GaAs, Sapphire, Ti:Sapphire, Nd:YAG, LiNbO3, and many more

(Brandle, 2004).

Page 22: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

3

Much of the crystal growth process is considered as an art and technique

rather than science. The process is remains an extremely delicate process due to its

nature (Burgers, 1963). This difficulty arises from the complexity of relationships

between the phenomena involved in the process such as heat transfer, phase

transformations and fluid flow transitions (Duffar, 2000). The control of crystal-melt

interface in Czochralski crystal growth has its crucial governance on the produced

crystal. Thus, it is essential to take special measure of the growth parameters that

modify the crystal-melt interface, especially the axial temperature gradient, the

crystal rotation speed and the pulling rate (Takagi et. al, 1976: Dhanaraj et al., 2010).

Negligence to the mentioned growth parameters would probably lead to undesirable

defect formations to the grown crystals such as dislocations, crystal cracking, gas

bubble entrapment and much more (Buckley, 1951; Carruthers, 1967; Jackson 1967).

These defects would preferably affect the quality of the crystals, regarding to their

physical, structural, optical, and their mechanical properties. Thus, profound

understanding on the growth parameters is essential on optimization of the crystal

growth process.

Titanium-doped sapphire (Ti3+

:α-Al2O3) also known as Ti:Sapphire is a

candidate for lasing medium with supreme physical and optical properties with

broadest lasing range. Lasers based on Ti:Sapphire crystals were first constructed in

1982 (Moulton, 1986). It has a very large gain bandwidth, allowing the generation of

very short pulses and also wide wavelength tunability. The possible tuning range is

about 650 nm to 1100 nm. The absorption band of Ti:Sapphire centered at 490 nm

makes it suitable for variety of laser pump sources such as argon ion, frequency

doubled Nd:YAG and YLF and copper vapour lasers. Despite the huge emission

bandwidth, Ti:Sapphire has relatively high laser cross sections, which reduces the

tendency of Ti:Sapphire lasers for Q-switching instabilities (Xing et al., 1995). With

an appropriate design, Ti:Sapphire can also be used in continuous wave lasers with

extremely narrow linewidths tunable over a wide range (Albers et al., 1986). In

addition, the host structure itself, sapphire, the single crystal form of Al2O3, is well-

known for its excellent mechanical strength, high thermal resistance and inertness

against chemical attack (Dobrovinskaya et al., 2009).

Page 23: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

4

In this research, an Automatic Diameter Control – Crystal Growth System

(ADC-CGS) with a Czochralski (Cz) technique was utilized to grow single crystals

of Titanium doped Sapphire, Ti:Sapphire. Besides that, the inter-relationship of the

growth parameters to the diameter of the crystal was studied. In addition, the effect

of the growth parameters (the rotation speed and the pulling rate) on the properties of

the crystal such as their structure, physical and mechanical characteristics was also

analysed and reported.

1.2 Problem Statement

The Ti:Sapphire single crystal have been the major interest both either in

research purposes or industrial applications. It is well known for its lasing properties

and its outstanding mechanical properties. However, extensive study needs to be

done on the optimization of Ti:Sapphire single crystal by Czohcralski technique in

order to grow high quality crystals. Rotation speed and the pull rate are the growth

parameters that are directly influential to the formation of the crystal from the melt in

a Czochralski crystal growth. These parameters are usually associated with the

formation of growth defects such as bubbles entrapment, inclusions and crystal

cracks. These defects affect the quality of the crystal in terms of their physical and

mechanical properties. However, for some reasons, the exact optimization for

growing the Ti:Sapphire crystal with low dislocations yet not undisclosed because it

is a well-kept secret for some companies and researcher. In addition, the study of the

influence of rotation speed and the pull rate on the of the Ti:Sapphire properties

especially on physical and mechanical properties characterization are not splendidly

mentioned in literature. Therefore, the aims of this research are to use the

Czochralski technique with the aid of automatic diameter control system namely

ADC-CGS for growing the Ti:Sapphire single crystal. In addition, the correlation of

the growth parameters during the crystal growth process is studied. The physical

properties of the crystal in reference to the growth parameters (the rotation speed and

the pulling rate), are also studied.

Page 24: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

5

1.3 Objectives of Research

The objectives of the research are as follows:

i. To grow Ti:Sapphire single crystals by Czochralski method using

Automatic Diameter Control – Crystal Growth System

ii. To study the inter-correlation between control power, temperature,

diameter and growth rate on Ti:Sapphire crystal growth process.

iii. To determine the structural phase of the grown Ti:Sapphire crystals.

iv. To ascertain the chemical composition of the grown Ti:Sapphire crystals

v. To study the effect of rotation speed and pulling rate on the physical

properties of Ti:Sapphire crystals by means of density, porosity, Vickers

hardness and Young’s Modulus.

Page 25: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

6

1.4 Scope of Research

To achieve the objectives that have been listed, the scope of research is outlined.

i. Growth of Ti:Sapphire single crystal of 0.20 wt.% Ti dopant by

Czochralski Method using ADC-CGS (Automatic Diameter Control-

Crystal Growth System) with implementation of changing variable of

the rotation speed and the pulling rate.

ii. Finding the correlation of temperature, control power, growth rate to the

diameter profile in respect to specified growth parameters (the rotation

speed and the pulling rate)

iii. Determining of structural phase using X-Ray Diffraction

iv. Determining of composition of the crystal using Energy Dispersive X-

Ray analysis.

v. Determining the physical properties such as density, porosity, hardness

and Young’s Modulus by means of Archimedes Principles test, Vickers

hardness test and compressive test.

1.5 Significance of Research

It is hoped that this study could give researchers and crystal growers some

profound insight about the inter-relationship of the temperature, control power,

diameter and growth rate on the growth process of Ti:Sapphire and also the effect of

both rotation speed and the pull rate on the physical properties of Ti: Sapphire

grown by Czochralski technique. Thus, give more understanding for the Czochralski

crystal growers on the optimization of rotation speed and pulling rate for Ti:

Sapphire crystal growth process by this technique.

Page 26: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

7

1.6 Thesis Plan

The thesis describes the growth process of titanium doped sapphire crystal

prepared by Czochralski technique using Automatic Diameter Control – Crystal

Growth System. This thesis is categorized into five chapters. Chapter 1 is the

introduction of the research, which emphasizes the research problem statement,

objective and scope of the study. Chapter 2 briefly reviews the works done by

previous researcher on related crystal material, the rudimentary principles of

Czochralski growth technique, fundamental theories on the characterization

assessments and some basic knowledge regarding the grown materials. For Chapter

3, the details of the crystal growth experiments and measurement techniques are

explained. In Chapter 4, the experimental results accompanied with discussions are

represented. Within this chapter, the correlation of control power-temperature,

control power-diameter, and diameter-growth rate on the crystal growth process are

explained. The structural phase and elemental composition of the grown crystals is

discussed. The effect of the growth parameters (the rotation speed and the pulling

rate) on the physical attributes such like density and porosity, hardness and Young’s

Modulus are also reported. As the epilogue of the thesis, Chapter 5 presents the

major conclusions of the research and suggestions for future studies.

Page 27: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

8

1.7 Research Flow Chart

Figure 1.1: Research flow chart.

Preparation of

raw material

Preparation of

Crystal

Growth System

1) Growth of Ti:Sapphire single

with desired full diameter

2) Investigation of the

correlation of the growth

parameters to growth process

Temperature

Control Power

Diameter

Growth Rate

Instrument:

Czochralski

technique with

Automatic

Diameter Control -

Crystal Growth

System

Characterization

Instruments:

1) X-Ray

Diffraction

(XRD)

2) Energy-

Dispersive by

X-ray (EDAX)

3) Densitometer

4) Vickers

Hardness Test

5) Universal

Testing

Machine -

Compression

Test

Research Report

Crystal Growth

Process

Data Analysis

1) Seed crystal preparation

2) Load raw material into

crucible

1) Heat zone insulation setup

inside the furnace

2) Growth parameters

setup on the control computer

1) Structural Phase

2) Chemical composition

3) Physical

- Density

- Porosity

- Hardness

- Young’s Modulus

Page 28: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

REFERENCES

Akselrod, M. S. and Bruni, F. J. (2012). Modern Trends in Crystal Growth and New

Applications of Sapphire. J. Crystal Growth, 360: 134-145.

Albers, P., Stark, E. and Huber, G. (1986). Continuous-Wave Laser Operation and

Quantum Efficiency of Titanium-Doped Sapphire. J. Opt. Soc. Am. B., 3(1):

134-139.

Armou, A. and Christofides, P. D. (2001). Crystal Temperature Control in the

Czochralski Growh Process. AlChE Journal, 47(1): 79-106.

Ashby, M. F. and Sammis, C. G. (1990). The Damage Mechanics of Brittle Solids in

Compression. Pure Appl. Geophys., 133(3): 489-521.

Baldochi, S. L., Mazzocchi, V. L., Parente, C. B. R. and Morato, S. P. (1994). Study

of the Crystalline Quality of Czochralski Grown Barium Lithium Fluoride

Single Crystals. Mat. Res. Bull., 29(12): 1321-1331.

Basu, B. Enger, S., Breuer, M. and Durst, F. (2001). Effect of Crystal Rotation on the

Three-Dimensional Mixed Convection in the Oxide Melt for Czochralski

Growth. J. Crystal Growth, 230(1-2): 148-154.

Brandle, C. D. (1980). Crystal Pulling. In Pamplin, B. R. (Ed.) Crystal Growth. 2nd

edition. Oxford: Pergamon. 275-300.

Page 29: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

113

Brandle, C. D. (2004). Czochralski Growth of Oxides. J. Crystal Growth, 264 (4):

593-604.

Brandle, C. D. and Valentino A. J. (1972). Czochralski Growth of Rare Earth

Gallium Garnets. J. Crystal Growth, 12(1): 3-8.

Brandle, C. D. and Miller, D. C. (1974). Czochralski Growth of Large Diameter

LiTaO3 Crystals. J. Crystal Growth, 24-25: 432-436.

Brice, J. C. (1986). Crystal Growth Processes. New York: John Wiley & Sons.

Bruni, F. J. (2004). ADC Software Instruction Manual: Power Adjusting Type.

Release 3.0.8. Santa Rosa: Bruni Consultant.

Bruni, F. J. (2005). Automatic Diameter Control & Interface Shape Stability. Third

International Workshop on Crystal Growth Technology, Beatenberg,

Switzerland. 10-18 September 2005.

Brown, Robert A. (1988). Theory of Transport Process in Single Crystal Growth

from Melt. AlChE Journal. 34(6): 811-911.

Buckley, H. E. (1951). Crystal Growth. New York: Wiley.

Burgers, W. G. (1963). Principles of Recrystallization. In Gilman, J. J. (Ed.) The Art

and Science of Growing Crystals. New York: John Wiley & Sons, Inc. 416-450.

Burns, R. G. (1993). Mineralogical Application of Crystal Field Theory. 2nd

edition.

Cambridge: Cambridge University Press.

Callister, Jr., W. D. and Rethwisch, D. G. (2011). Fundamentals of Materials Science

Engineering: An Integrated Approach. 4th

edition. New York: John Wiley &

Sons. Inc.

Page 30: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

114

Cardarelli, F. (2008). Materials Handbook: A Concise Desktop Reference. 2nd

edition.

London: Springer.

Caroline, M. L. (2009). Growth and Characterization of Some Organic and Semi

Organic Amino Acid Based Nonlinear Optical Single Crystals. Bharath

University: PhD Thesis.

Carruthers, J. R. (1967). Origin of Convective Temperature Oscillations in Crystal

Growth Melts. J. Crystal Growth, 32(1): 13-26.

Carruthers, J. R. and Nassau, K. (1968). Nonmixing Cells Due to Crucible Rotation

during Czochralski Crystal Growth. J. Appl. Phys., 39(11): 5205-5214.

Chauhan, A. K. (2004). Development of a PC-Based Automatic Diameter Controlled

Czochralski Crystal Growth System Using aVersatile Algorithm. Cryst. Growth

Des., 4(1): 135-139.

Choe, K. S., Stefani, J. A., Dettling, T. B., Tien, J. K. and Wallace, J. P. (1991).

Effects of Growth Conditions on Thermal Profiles During Czochralski Silicon

Crystal Growth. J. Crystal Growth, 108(1-2): 262-276.

Chopra, D. R. and Chourasia, A. R. (1997). X-Ray Photoelectron Spectroscopy. In

Settle, F. A. (Ed) Handbook of Instrumental Techniques for Analytical

Chemistry. New Jersey: Prentice-Hall PTR. 809-828.

Cockayne, B. (1968). Developments in Melt-Grown Oxide Crystals. J. Crystal

Growth, 3-4: 60-70.

Dash, W. C. (1959). Growth of Silicon Single Crystal Free from Dislocations. J.

Appl. Phys., 30(40): 459-474.

Page 31: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

115

Derby, J. J., Atherton, L. J. and Gresho, P. M. (1989). An Integrated Process Model

for the Growth of Oxide Crystals by the Czochralski Method. J. Crystal Growth,

97(3-4): 792-826.

Dhanaraj, G., Byrappa, K., Prasad, V. and Dudley, M. (Eds.) (2010). Springer

Handbook of Crystal Growth. Berlin, Heidelberg: Springer.

Dobrovinskaya, E. R., Lytvynov, L. A. and Pishchik, V. (2009). Sapphire: Material,

Manufacturing, Applications. New York: Springer.

Duffar, T. (2000). Crystal Growth Process Engineering. J. Optoelectron. Adv. M.,

2(5): 432-440.

Fang, H., Tian, J., Zhang, Q., Pan, Y. and Wang, S. (2012). Study of the Melt and

Interface Shape During Sapphire Crystal Growth by Czochralski Method. Int. J.

Heat Mass Transfer, 55(25-26): 8003-8009.

Fang, H.S, Pan, Y. Y., Zheng, L. L., Zhang, Q. J., Wang, S. and Jin, Z. L. (2013). To

Investigate Interface Shape and Thermal Stress During Sapphire Single Crystal

Growth by the Cz Method. J. Crystal Growth, 363: 25-32.

Garrat-Reed, A. J. and Bell, D.C. (2003). Energy Dispersive X-ray Analysis in the

Electron Microscope. Oxford: BIOS Scientific Publishers Limited.

Giordano, L., Viviani, M., Bottino, C., Buscaglia, M. T. and Nanni, P. (2002).

Microstructure and Thermal Expansion of Al2TiO5-MgTi2O5 Solid Solution

Obtained by Reaction Sintering. J. Eur. Cer. Soc., 22(11): 1811-1822.

Glazer, A. M. (1987). The Structure of Crystals. Bristol: Adam Hilger.

Globus, M. E. and Grinyov, V. B. (2000). Inorganic Scintillators: New and

Traditional Materials. Kharkov: Akta.

Page 32: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

116

Grabmaier, J. G., Plattner, R. D. and Schieber, M. (1973). Suppression of

Constitutional Supercooling in Czochralski-Growth Paratellurite. J. Crystal

Growth, 20(2): 82-88.

Green, D. J. (1998) An Introduction to the Mechanical Properties of Ceramics.

Cambridge: Cambridge University Press.

Havrilla, G. J. (1997). X-Ray Fluorescence Spectrometry. In Settle, F. A. (Ed.)

Handbook of Instrumental Techniques for Analytical Chemistry. Upper Saddle

River, New Jersey: Prentice Hall PTR. 459-479.

He, B. B. (2009). Two Dimensional X-Ray Diffraction. New Jersey: John Wiley &

Sons, Inc.

Henderson, B. and Bartram, R. H. (2000). Crystal-Field Engineering of Solid State

Materials. Cambridge: Cambridge University Press.

Hurle, D. T J. (1973). Melt Growth. In Hartman, P. (Ed.) Crystal Growth: An

Introduction. Amsterdam: North-Holland. 233.

Hurle, D. T. J. (1977). Control of Diameter in Czochralski and Related Crystal

Growth Techniques. J. Crystal Growth, 42: 473-482.

Jackson, K. A. (1967). Current Concepts in Crystal Growth from the Melt. Prog.

Solis State Ch. 4: 53-56.

Jia, L. S., Yan, X. L., Zhou, J. F. and Chen, X. L. (2003). Effects of Pulling Rates on

Quality of La2-xBaxCuO4 Single Crystal. Physica C., 385(4): 483-487.

Jones, J. T. and Berard, M. F. (1972). Ceramics: Industrial Processing and Testing.

Ames: Iowa State University Press.

Page 33: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

117

Joyce, D. B. and Schmid, F. (2010). Progress in The Growth of Large Scale

Ti:Saphhire Crystals by The Heat Exchanger Method (HEM) for Petawatt Class

Lasers. J. Crystal Growth, 312(8): 1138-1141.

Kamaruddin, W. H. A. (2010). Growth of Nd:YAG Crystals by using Automatic

Diameter Control-Crystal by Czochralski Melt-Growth Method. Universiti

Teknologi Malaysia: Master’s Thesis.

Katsurayama, M., Anzai, Y., Sugiyama, A., Koike, M. and Kato, Y. (2001). Growth

of Neodymium Doped Y3Al5O12 Single Crystals by Double Crucible Method. J.

Crystal Growth, 229(1-4): 193-198.

Khattak, C. P. and Schmid, F. (2001). Growth of the World’s Largest Sapphire

Crystals. J. Crystal Growth, 225(2-4): 572-579.

Kingery, W. D. (1960). Introduction to Ceramics. New York, London: John Wiley &

Sons, Inc.

Kobayashi, N. (1978). Computational Simulations of the Melt Flow during

Czochralski Growth. J. Crystal Growth, 43(3): 357-363.

Kobayashi, N. (1981a). Heat Transfer in Czochralski Crystal Growth. In Wilcox, W.

R. (Ed.) Preparation and Properties of Solid State Materials, 6. New York:

Dekker.119-253.

Kobayashi, N. (1981b). Effect of Fluid Flow on The Formation of Gas Bubbles in

Oxide Crystals Grown by The Czochralski Method. J. Cryst. Growth, 54(3):

414-416.

Kokta, M. (2007). Growth of Oxide Laser Crystal. Opt. Mater., 30(1): 1-5.

Kusuma, H. H. (2007). Merekabentuk Dan Membina Sistem Pertumbuhan Hablur

Kaedah Czochralski Dengan Menggunakan Pemanasan Rintangan. Universiti

Teknologi Malaysia: Master’s Thesis.

Page 34: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

118

Kusuma, H. H. (2012). Structural and Optical Properties of Sapphire Doped

Transition Metals Single Crystal by Czochralski Method. Universiti Teknologi

Malaysia: PhD Thesis.

Kvapil, J., Perner, B. and Kvapil, Jos. (1974). Liquid/Solid Interface Profile of Melt

Grown Oxide Crystals: II- Crystal Quality. Czech. Phys. B., 24(12): 1345-1350.

Lawn, B. R. (1993). Fracture of Brittle Solids. 2nd

edition. Cambridge: Cambridge

University Press.

Lawn, B. R. and Evans, A. G. (1977). A Model for Crack Initiation in Elastic-Plastic

Indentation Fields. J. Mater. Sci., 12(11): 2195-2199.

Lawn, B. R. and Wils-haw, T. R. (1975). Indentation Fracture: Principles and

Applications. J. Mater. Sci., 10(6): 1049-1081.

Li, H., Ghezal, E. A., Nehari, A., Alombert-Goget, G., Brenier, A. and Lebbou, K.

(2013). Bubbles Defetcs Distribution in Sapphire Bulk Crystals Grown by

Czochralski Technique. Opt. Mater., 35:1071-1076.

Lim, L. C., Tan, L. K. And Zeng, H. C. (1996). Bubble Formation in Czochralski-

Grown Lead Molybdate Crystals. J. Crystal Growth, 167(3-4): 686-692.

Mencik, J. (1992). Strength and Fracture of Glass and Ceramics, Glass and Science

Technology, 12. Amsterdam: Elsevier.

Miller, D. C., Valentino, A. J. and Schick, L. K. (1978). The Effect of Melt Flow

Phenomena on the Perfection of Czochralski Grown Gadolinium Gallium Garnet.

J. Crystal Growth, 44(2): 121-134.

Miyazawa, S. (1980). Fluid-Flow Effect on Gas-Bubble Entrapment in Czochralski-

Grown Oxide Crystals. J. Crystal Growth, 49(3): 515-521.

Page 35: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

119

Moulton, P.F. (1986). Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc.

Am. B., 3(1): 125-132.

Nassau, K. (1983). The Physics and Chemistry of Color: The Fifteen Causes of Color.

New York: John Wiley & Sons, Inc.

Nehari, A. N., Brenier, A., Panzer, G., Lebbou, K., Godfroy, J.,Labor, S., Legal, H.,

Cheriaux, G., Chambaret, J. P., Duffar, T. And Moncorge, R. (2011). Ti-Doped

Sapphire (Al2O3) Single Crystals Grown by the Kyropoulos Technique and

Optical Characterizations. Cryst. Growth Des., 11(2): 445-448.

O’Kane, D. F., Sadagopan, V., Giess, E. A. and Mendel, E. (1973). Crystal Growth

and Characterization of Gadolinium Gallium Garnet. J. Electrochem. Soc., 120:

1272.

Okano, Y., Fukuda, T., Hirata, A., Takano, N., Tsukada, T., Hozawa, M. and Imaishi,

N. (1991). Numerical Study on Czochralski Growth of Oxide Single Crystals. J.

Crystal Growth, 109(1-4): 94-98.

Oliver, B. R. E. G. (2005). Natural Sciences: Chemistry. Crystallography.

Mineralogy; Practical laboratory chemistry. Preparative and experimental

chemistry. New York: Interscience Publishers, Inc.

Paschotta, R. (2008). Encyclopedia of Laser Physics and Technology, 1. Weinheim:

Wiley-VCH.

Peng, Y., Shu, C., Chew, Y. T. and Qiu, J. (2003). Numerical Investigations of Flows

in Czochralski Crystal Growth by an Axisymmetric Lattice Boltzmann Method.

J. Comput. Phys., 186(1): 295-307.

Philip, M. and Bolton W. (2002). Technology of Engineering Materials. Oxford,

Massachusetts: Butterworth-Heinemann.

Page 36: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

121

Pimputkar, S. M. and Ostrach, S. (1981). Convective Effects in Crystal Grown from

Melt. J. Crystal Growth, 55(3): 614-646.

Raghavan, P. S. and Ramasamy, P. (2002). Recent Trends in Crystal Growth

Technology. PINSA, 68A(3): 235-249.

Rapoport, W. R. and Khattak, C. P. (1988). Titanium Sapphire Laser Characteristic.

Appl. Optics, 27(13): 2677-2684.

Rasmussen, J. J. (1969). Effect of Dopants on the Defect Structure of Single Crystal

Aluminum Oxide. Massachusetts Institute of Technology: PhD Thesis.

Reed, T. B and Fahey, R. E. (1966). Resistance Heated Crystal Puller for Operation

at 2000°C. Rev. Sci. Instr., 37(1): 59.

Rice, R. W. (1998). Porosity of Ceramics. New York: Marcell Decker, Inc.

Robertson, D. S. (1966). A Study of the Flow Patterns in Liquids Using a Model

Czochralski Crystal Growing System. Br. J. Appl. Phys., 17(8): 1047.

Rojo, J. C., Dieguez, E. and Derby, J. J. (1999). A Heat Shield to Control Thermal

Gradients, Melt Convection, and Interface Shape during Shouldering in

Czochralski Oxide Growth. J. Crystal Growth, 200(1-2): 329-334.

Sangwal, K. And Benz, K. W. (1996). Impurity Striations in Crystals. Prog. Cryst.

Growth Ch., 32(1-3): 135-169.

Shiroki, K. (1977). Simulations of Czochralski Growth on Crystal Rotation Rate

Influence in Fixed Crucibles. J. Crystal Growth, 40(1): 129-138.

Smith, J. D. and Fahrenholtz, W. G. (2008). Refractory Oxides. In Shackelford J. F.

and Doremus, R. H. (Eds.) Ceramics and Glass Materials: Structure, Properties

and Processing. New York: Springer. 87-110.

Page 37: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

121

Srivastava, A. (2005). Optical Imaging and Control of Convection around a KDP

Crystal Growing From Its Aqueous Solution. Indian Institute of Technology:

PhD Thesis.

Sugii, K., Iwasaki, H., Miyazawa, S. and Niizeki, N. (1973). An X-Ray Topographic

Study on Lithium Niobate Single Crystals. J. Crystal Growth, 18: 159.

Takagi, K., Fukuzawa,T. and Ishii, M. (1976). Inversion of the Direction of the

Solid-Liquid Interface on the Czochralski Growth of GGG Crystals. J. Crystal

Growth, 32(1): 89-94.

Tang, H., Li, H. and Xu, J. (2013). Growth and Development of Sapphire Crystal for

LED Applications. In Ferreira, S. O. (Ed.) Advance Topics on Crystal Growth,

307-333. InTech.

Tavakoli, M. H. (2008). Numerical Study of Heat Transport and Fluid Flow during

Different Stages of Sapphire Czochralski Crystal Growth. J. Crystal Growth,

310(12): 3107-3112.

Tavakoli, M. H., Omid, S. and Mohammadi-Manesh, E. (2011). Influence of Active

Afterheater on the Fluid Dynamics and Heat Transfer During Czochralski

Growth of Oxide Single Crystals. Cryst. Eng. Comm., 13: 5088-5093.

Tavakoli, M. H., Abasi, T. A., Omid, S. and Mohammadi-Manesh, E. (2013). The

Role of Inner and Internal Radiation on the Melt Growth of Sapphire Crystal.

Cryst. Res. Technol., 48(2): 58-68.

Teal, G. K. and Little, J. B. (1950). Growth of Germanium Single Crystals. Phys.

Rev., 78: 647.

Wang, C. J. and Huang, C. Y. (2008). Effect of TiO2 Addition on the Sintering

Behavior, Hardness and Fracture Toughness of an Ultrafine Alumina. Mat. Sci.

Eng. A-Struct., 492(1-2): 306-310.

Page 38: EFFECT OF ROTATION SPEED AND PULLING RATE ON …eprints.utm.my/id/eprint/50696/25/MohammadNabilJainalMFS2013.pdf · Kumpulan A menunjukkan peningkatan dalam ketumpatan dari 3.963

122

Wang, E. Z. And Shrive, N. G. (1995). Brittle Fracture in Compression: Mechanisms,

Models and Criteria. Eng. Fract. Mech., 52(6): 1107-1126.

Xing, Q., Zhang, W. and Yoo, K. M. (1995). Self-Q Switched Self-Mode-Locked

Ti:Sapphire Laser. Opt. Commun., 119(1): 113-116.

Zhang, Z. (1999). Crystal Growth. Proc. Natl. Acad. Sci. USA, 96(20): 11069-11070.