effect of loose bonding and corrugated boundary surface on ...t300/5208 graphite/ epoxy composite by...

15
Latin American Journal of Solids and Structures, 2018, 15ሺ1ሻ, e01 Abstract The problems concerns to the propagation of surface wave propaga‐ tion through various anisotropic mediums with initial stress and irreg‐ ular boundaries are of great interest to seismologists, due to their ap‐ plications towards the stability of the medium. The present paper deals with the propagation of Rayleigh‐type wave in a corrugated fibre‐rein‐ forced layer lying over an initially stressed orthotropic half‐space un‐ der gravity. The upper free surface is assumed to be corrugated; while the interface of the layer and half‐space is corrugated as well as loosely bonded. The frequency equation is deduced in closed form. Numerical computation has been carried out which aids to plot the dimensionless phase velocity against dimensionless wave number for sake of graph‐ ical demonstration. Numerical results analyze the influence of corruga‐ tion, loose bonding, initial stress and gravity on the phase velocity of Rayleigh‐type wave. Moreover, the presence and absence of corruga‐ tion, loose bonding and initial stress is also discussed in comparative manner. Keywords Rayleigh‐type wave, initial stress, gravity, loosely bonded, corruga‐ tion, fibre‐reinforced, orthotropic Effect of Loose Bonding and Corrugated Boundary Surface on Propagation of Rayleigh‐Type Wave NOMENCLATURE H The average width of the layer () i f x Periodic functions and independent of y . , j j l l R I The cosine and sine Fourier coefficients respectively. b The wavenumber associated with corrugated boundary surfaces. 1 2 , aa The amplitudes of corrugation. 1 2 3 , , uu u The displacement components of fibre‐reinforced layer along , , x yz direction respectively. * * * 1 2 3 , , u u u The displacement components of orthotropic half‐space along , , x yz direction respectively. * * * 1 2 3 , , a a a a the preferred direction of reinforcement. ij The components of stress of layer. ij e The components of infinitesimal strain of layer. ij Kronecker delta. T Transverse shear modulus of layer. L Longitudinal shear modulus of layer. , Specific stress components for concrete part of the composite material. Lame’s constant of elasticity. P Initial compression in x ‐direction. 1 2 , Medium density, ij The stress components of half‐space. Abhishek Kumar Singh a Kshitish Ch. Mistri a, * Mukesh Kumar Pal a a Department of Applied Mathematics, IITሺISMሻ, Dhanbad‐826004 Email: [email protected], [email protected], [email protected] * Corresponding author http://dx.doi.org/10.1590/1679‐78253577 Received 02.12.2016 In revised form 28.09.2017 Accepted 29.09.2017 Available online 30.09.2017 Original Article

Upload: others

Post on 20-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

 

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01

AbstractTheproblemsconcernstothepropagationofsurfacewavepropaga‐tionthroughvariousanisotropicmediumswithinitialstressandirreg‐ularboundariesareofgreatinteresttoseismologists,duetotheirap‐plicationstowardsthestabilityofthemedium.ThepresentpaperdealswiththepropagationofRayleigh‐typewaveinacorrugatedfibre‐rein‐forcedlayerlyingoveraninitiallystressedorthotropichalf‐spaceun‐dergravity.Theupperfreesurfaceisassumedtobecorrugated;whiletheinterfaceofthelayerandhalf‐spaceiscorrugatedaswellaslooselybonded.Thefrequencyequationisdeducedinclosedform.Numericalcomputationhasbeencarriedoutwhichaidstoplotthedimensionlessphasevelocityagainstdimensionlesswavenumberforsakeofgraph‐icaldemonstration.Numericalresultsanalyzetheinfluenceofcorruga‐tion,loosebonding,initialstressandgravityonthephasevelocityofRayleigh‐typewave.Moreover,thepresenceandabsenceofcorruga‐tion,loosebondingandinitialstressisalsodiscussedincomparativemanner.KeywordsRayleigh‐typewave,initialstress,gravity,looselybonded,corruga‐tion,fibre‐reinforced,orthotropic

EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

NOMENCLATURE

H Theaveragewidthofthelayer( )if x Periodicfunctionsandindependentof y . ,j jl lR I ThecosineandsineFouriercoefficientsrespectively.

b Thewavenumberassociatedwithcorrugatedboundarysurfaces.

1 2,a a Theamplitudesofcorrugation.

1 2 3, ,u u u Thedisplacementcomponentsoffibre‐reinforcedlayeralong , ,x y z directionrespectively.* * *1 2 3, ,u u u Thedisplacementcomponentsoforthotropichalf‐spacealong , ,x y z directionrespectively.

* * *1 2 3, ,a a a a

thepreferreddirectionofreinforcement.

ij Thecomponentsofstressoflayer.

ije Thecomponentsofinfinitesimalstrainoflayer.

ij Kroneckerdelta.

T Transverseshearmodulusoflayer.

L Longitudinalshearmodulusoflayer., Specificstresscomponentsforconcretepartofthecompositematerial.

Lame’sconstantofelasticity.P Initialcompressionin x ‐direction.

1 2, Mediumdensity,

ij Thestresscomponentsofhalf‐space.

AbhishekKumarSinghaKshitishCh.Mistria,*MukeshKumarPalaaDepartmentofAppliedMathematics,IIT ISM ,Dhanbad‐826004Email:[email protected],[email protected],[email protected]*Correspondingauthorhttp://dx.doi.org/10.1590/1679‐78253577Received02.12.2016Inrevisedform28.09.2017Accepted29.09.2017Availableonline30.09.2017

Original Article

Page 2: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 2/15

ij Therotationalcomponentsofhalf‐space.

ijC Stiffnesstensorcomponentsincontractionnotation.

G Biot’sgravityparameter. Bondingparameter.1 INTRODUCTION

Theproblemsofelastodynamicsarenotlimitedtothemechanicsofthoseelasticmaterialswhicharesimplyisotropic,rathertheproblemstakeamoregeneralandrealisticformwhenthemediaconsideredareanisotropic.Thepresenceofsomeeffectivephysicalfactorsnamelyinitialstress,hydrostaticstress,cracks,fractures,etc.causesthemediumstobe‐haveanisotropicallytothepropagationofwavesthroughit.Theseinitialstresses tensile/compressive aretheresultsofoverburdenedlayer,atmosphericpressure,variationintemperature,slowprocessofcreepandgravitationalfield.Tensilestressissaidtoresponsibleformorerigidityandcompressivestressforlessrigidityofamedium.Ontheotherhand,presenceoffibre‐reinforcedmaterialsinearth’scrust,intheformofhardorsoftrocksmayalsoaffectthewavepropagation.Thesecompositematerialsadoptself‐reinforcedbehaviorundercertaintemperatureandpressure.Itfindsnumerousapplicationsinconstruction,civilengineering,geophysicsandgeomechanicsduetoitslowweightandhighstrength.Thereinforcementofsoil,bothnaturallyandsynthetically,enhancesthestrengthandloadbearingcapacityofit.Themechanicalbehaviorofcompositematerialscouldbewellunderstoodthroughthestudyofanisotropicelasticity.Carbon,nylonorconceivablemetalwhiskers,etc.aregoodmodelsoffibre‐reinforcedmaterials.PrikazchikovandRog‐erson 2003 studiedtheeffectofpre‐stressonthepropagationofsmallamplitudewavesinanincompressible,trans‐versely isotropic elastic solid. Prosser and Green 1990 calculated some of the nonlinear third order moduli ofT300/5208graphite/epoxycompositebymeasuringthenormalizedchangeinultrasonic"natural"velocityasafunctionofstressandtemperature.AlotofinformationaboutsuchreinforcedmaterialscanbegainedfromSpencer 1972 whoanalysesthemacroscopicpropertiesoffiber‐reinforcedmaterials.Intherecentpast,ChattopadhyayandSingh 2012 studiedthepropagationofhorizontallypolarisedshearwavesinaninternalirregular rectangularandparabolicirreg‐ularity magnetoelasticself‐reinforcedstratumsandwichedbetweentwosemi‐infinitemagnetoelasticself‐reinforcedmedia.SomemoreimportantworksincludeFanandHwu 1998 ,Grünewaldetal. 2012 ,ChattopadhyayandSingh2013 ,Chattopadhyayetal. 2010 ,SamalandChattaraj 2011 ,Sethietal. 2016 ,Abd‐Alla 1999 andGaurandRana2014 .

Anotherimportantclassofmaterialwhichmaybeconsideredinthestudyofelastodynamicproblemsistheor‐thotropicmaterial.Themechanicalpropertiesofsuchmaterialsareuniqueandindependentinthreemutuallyper‐pendiculardirections.Sometimessomefiber‐reinforcedcompositesimitateorthotropicmaterials.

ChaiandWu 1996 extendedtheBarnett‐Lothe'sintegralformalisminordertodeterminethevelocitiesofsur‐facewavespropagatinginapre‐stressedanisotropiccrystal.SinghandYadav 2013 dealtwiththereflectionofqPandqSVwavesatafreesurfaceofaperfectlyconductingtransverselyisotropicelasticsolidhalf‐spaceunderinitialstress.UsingRayleigh'smethodofapproximation,thereflectionandtransmissionofplaneqP‐waveatacorrugatedinterfacebetweentwodissimilarpre‐stressedelasticsolidhalf‐spaceswasdiscussedbySinghandTomar 2008 .AtremendousamountofknowledgecanbegatheredregardingtheeffectofgravityonthepropagationofwavesfromBiot 1965 ;andalsothroughsomepapersincludingDasetal. 1992 andChattopadhyayetal. 2009 .Moreover,KumarandKumar 2011 ,Destrade 2001 andChow 1971 havealsocontributedconsideringanorthotropicmate‐rialmediumintheirstudy.

Changingmediummayaffectthewavepropagation;intimatingthattheboundarysurfaces freeboundaryorin‐terface ofmediumsplayimportantroleinthestudyofwavepropagationthroughdifferentmediums.Itisnotneces‐sarythattheboundarysurfacealwaysacquirearegularplanarshape.Whiledealingwithdifferentelastodynamicalproblems,onemayencounterboundarysurfacesofdifferentshapes.Forexample,theboundariesmaypossessarec‐tangularorparabolicirregularity;oritmaybecorrugated.Corrugatedboundarysurfacemaybedefinedasaseriesofparallelridgesandfurrows.Theundulatoryfactorofsuchboundariesaffectsthepropagationofwavesandvibrations.Further,theinterfaceoftwomediumsmaynotbealwaysweldedratheritmaybelooselyboundedtoo.

Thestudyofcorrugatedboundarysurfacesandlooselybondedinterfacesofmaterialmediumsisalsoimportanttounderstandthebehaviorofwavepropagation.StartingwithTomarandKaur 2007 ,Singh 2011,2014 ,SinghandKumar 1998 ,KhuranaandVashisth 2001 ,continuedtoNandalandSaini 2013 andSinghetal. 2015 hadstudiedthepropagationofwavesthroughcorrugatedboundarysurfacesandlooselybondedinterfaces.

ThecurrentstudyinvestigatesthepropagationofRayleigh‐typewaveinafibre‐reinforcedlayeroverlyinganin‐itiallystressedorthotropichalf‐spaceundergravity.Theupperfreesurfaceisassumedtobecorrugated;whiletheinterfaceofthelayerandhalf‐spaceiscorrugatedaswellaslooselybonded.Theclosedformexpressionoffrequencyequationisderivedandnumericalcomputationforphasevelocityisperformedwhichisreflectedgraphically.Theeffectofcorrugation, loosebonding, initialstressandgravityonthephasevelocityofRayleigh‐typewaveishigh‐lightedinthestudy.

Page 3: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 3/15

2 FORMULATIONANDSOLUTIONOFTHEPROBLEM

ConsiderthepropagationofRayleigh‐typewaveinafibre‐reinforcedlayerlyingoveraninitiallystressedorthotropichalf‐spaceundergravitywheretheupperfreesurfaceiscorrugatedandtheinterfaceofthelayerandhalf‐spaceiscorrugatedaswellaslooselybonded.TheaveragewidthofthelayerisassumedtobeH .Cartesianco‐ordinatesystemischoseninsuchawaythat x ‐axisisthedirectionofwavepropagation, z ‐axisispositivelypointingdownwardsandtheoriginisattheinterfaceofthelayerandhalf‐space.ThesaidgeometryisillustratedinFig.1.

Lettheequationofuppermostcorrugatedboundarysurfacebe 2 ( )z f x H andtheequationofcorrugatedin‐terfacebetweenlayerandhalf‐spacebe 1 ( ),z f x where 1 ( )f x and 2 ( )f x areperiodicfunctionsandindependentofy .TakingasuitableoriginofcoordinateswecanrepresentTrigonometricFourierseriesof. 1 ( )f x ., 2 ( )f x asfollowsAsano, 1966 :

( ) ( )

1

, 1,2,j ilbx j ilbxj l l

l

f f e f e j

1

where ( )jlf and ( )j

lf areFourierexpansioncoefficientsand l isseriesexpansionorder.Letusintroducetheconstants

1 2, , ,j jl la a R I asfollows:

(1) (2) ( )1 21 1, , , 1,2, and 2,3,...

2 2 2

j jj l l

l

R iIa af f f j l

and

1 1(1) (1)1 1 2 2cos cos2 sin 2 ... cos sin ...,l lf a bx R bx I bx R lbx I lbx

2 2(2) (2)2 2 2 2cos cos2 sin 2 ... cos sin ...,l lf a bx R bx I bx R lbx I lbx

where ,j jl lR I arethecosineandsineFouriercoefficientsrespectively.Asfarthepresentproblemisconcerned,the

corrugatedupperboundarysurfaceandlowerboundarysurfacemaybeexpressedwiththeaidofcosinetermsi.e.

1 1 cosf a bx and 2 2 cosf a bx respectively,whereb isthewavenumberassociatedwithcorrugatedboundarysur‐faces, 1a and 2a aretheamplitudesofcorrugationandthewavelengthofthecorrugationis 2 / b .

Figure1:Typicalstructureofanalysis.

Letusassume 1 2 3, ,u u u and * * *1 2 3, ,u u u

asthedisplacementcomponentsofupperfibre‐reinforcedlayerand

lowerinitiallystressedorthotropichalf‐spaceundergravityrespectively.3 GOVERNINGEQUATIONSANDSOLUTIONOFTHEPROBLEM

ForthepropagationofRayleigh‐typewave,weconsider

1 1 2 3 3

* * * * *1 1 2 3 3

( , , ), 0, ( , , ),

( , , ), 0, ( , , ),

u u x z t u u u x z t

u u x z t u u u x z t

2

Page 4: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 4/15

andtheconditionforplainstraindeformationin xz ‐planeis 0.y

Herewedenotethepartialderivativewithrespect toavariable 1,2,3ix i by i .Thefirstandsecondtime

derivativearerepresentedas t and tt respectively.Moreover, xd and xxd standsford

dx and

2

2

d

dxrespectively.

3.1DynamicsofFibre‐ReinforcedMaterial

Theconstitutiveequation fora fibre‐reinforced linearlyelasticanisotropicmediumwithpreferreddirection a is

givenby Spencer 1972

* * * * * * * * * * * *2 2 ,

, , , 1,2,3.

ij kk ij T ij k m km ij i j kk L T i k kj j k ki k m km i je e a a e a a e a a e a a e a a e a a

i j k m

3

where ij arethecomponentsofstress, 1

2ij j i i je u u arethecomponentsofinfinitesimalstrain, ij isKronecker

delta, * * *1 2 3, ,a a a a

, which may be function of position, is the preferred direction of reinforcement such that

3 2*

1

1ii

a

.Indicestakethevalues1,2,3andsummationconventionisemployed. , and L T arereinforce‐

mentparameters. T and L canbeidentifiedasthetransverseshearandlongitudinalshearmodulusinthepre‐ferreddirectionsrespectively. ,

arespecificstresscomponentstotakeintoaccountdifferentlayersforconcrete

partofthecompositematerial, isLame’sconstantofelasticity.Now,theequationsofmotionwithoutbodyforceare

, 1ij j tt iu 4

where 1 standsformassdensity.UsingEquations 2 and 3 ,Equation 4 reducesto

1 1 1 3 1 1 1 1,xx xz zz ttP u Q u R u u 5

1 3 1 1 2 3 1 3 ,xx xz zz ttR u Q u P u u 6where

1 1 2 12 4 2 , , 2 , .L T L T LP Q P R

AssumethesolutionofEquations 5 and 6 as

( )1 1

kz ik x ctu A e , ( )3 3 ,kz ik x ctu A e 7

where 1 3( , 0, ) aretheunitdisplacementvectorcomponents.InviewofEquation 7 ,Equations 5 and 6 yields

2 21 1 1 1 3( ) 0,L c P i Q 8

2 2

1 1 2 1 1 3( ) 0.i Q P c R 9

Fornon‐trivialsolutionofEquations 8 and 9 ,itfollowsthat

4 22 0,LP m n 10

where

222

2

4,

2L

L

m m P n

P

2 2 22 1 1 1( ) ( ) ,L Lm c P c P Q

2 21 1 1( )( )Ln c c R ,

11

Page 5: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 5/15

sothat,Equations 7 and 8 gives

2 21 13

1 1

, 1,2j Lj

j

c Puj

u i Q

.

Therefore, thedisplacementcomponentsoftheupperFibre‐reinforcedlayerforpropagationofRayleigh‐typewavearefoundas

1 2 1 2 ( )1 1 2 3 4( ) ,k z k z k z k z ik x ctu Ae A e A e A e e 12

1 1 2 2 ( )3 1 1 3 2 2 4( ) ( ) .k z k z k z k z ik x ctu Ae A e A e A e e 13

3.2DynamicsoftheLowerInitiallyStressedOrthotropicHalf‐SpaceunderGravity

Thedynamicalequationsofmotionforanelasticmediumundergravityandinitialcompressionstress P in x ‐direc‐tionare

11 12 13 12 13 2 3 2 1 ,x y z y z x ttP g u u 14

12 22 23 12 2 2 ,x y z x ttP u 15

13 23 33 12 2 1 2 3 ,x y z x x ttP g u u 16

where 2 isthemediumdensity, ij arethestresscomponentsand 1

2 jij jiiu u aretherotationalcomponents.

ForthepropagationofRayleigh‐typewave,Equations 14 , 15 and 16 withtheaidofEquation 2 ,leadsto

11 13 13 2 3 2 1 ,x z z x ttP g u u 17

13 33 13 2 1 2 3 .x z x x ttP g u u 18

Thestresscomponents ij inthiscasecanbewrittenas:

11 11 1 13 3 ,x zC P u C P u 19

22 13 1 33 3 ,x zC u C u 20

13 11 13 1 3

1,

2 z xC C u u 21

where ijC arestiffnesstensorcomponentsincontractionnotation.Since,theproblemisconfinedto xz ‐planeonly,it

isfoundthat

12 22C C 23 0C .

SubstitutingEquations 19 , 20 , 21 andtakingintoconsiderationtheaboveassumptions,Equations 17 and18 canberewrittenintermsofthedisplacementcomponents 1 3,0,u u as

11 1 1 3 13 3 1 2 3 2 12 2 2 ,xx zz xz xz zz x ttC P u u u C u u g u u 22

11 1 3 13 1 3 33 3 2 1 2 32 2 2 .xz xx xz xx zz x ttC u u C P u u C u g u u 23

Thedisplacements 1u and 3u canbederivedfromthedisplacementpotentials ( , , ) andx y t ( , , )x y t usingtherelations

1 3, .x z z xu u 24

Equations 22 and 23 whensubstituteduponbyEquation 24 ,respectivelygive

Page 6: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 6/15

211 2 2 ,x ttC P g 25

211 13 2 22 x ttC C P g 26

and

11 33 2 2 ,xx zz x ttC C g 27

211 13 33 2 22 2 2 ,xx zz zz x ttC C P C g 28

where

2

.xx zz

Itmaybenotedthat,asthedirectionofinitialcompressivewaveistakenalong x ‐axis,thebodywavevelocitiesmustbedifferentin x and z directions.Thus,onlyEquations 25 and 28 istobeconsideredwithaviewthatthewaveispropagatinginthedirectionof x only.Equations 25 and 28 correspondtocompressiveandshearwaverespectively,alongthe x directiononly;whileEquations 26 and 27 correspondtocompressiveandshearwaverespectivelyalongthe z directiononly.

InordertosolvetheEquations 25 and 28 ,itisassumedthat

,ik x ctz e 29

.

ik x ct

z e

30

UsingEquations 29 and 30 inEquations 25 and 28 itisobtainedthat

2 2 221

0 , zz

k gd k M i

31

2 22

1

0 , zz

k gd k N i

32

where

222 2 2 11 132

2 21 1

21 , ,

c C C PcM N

2 21 11 1 33 11 13, 2 .C P C C C P

33

Equation 31 and 32 suggeststhat

2 21 2 , 0,zz zzd k s d k s 34

where

2

2 2 2 2 2 2 2 2 441 2 1 2

1 1

, .GC

s s M N s s M N

35

and 2

44

gG

C k

isBiot’sgravityparameter.

Now,weassumethesolutionofEquation 34 oftheform

1 2 1 2* * * *5 6 7 8 ,iks z iks z iks z iks zz A e A e A e A e 36

where * * * *5 6 7 8, , ,A A A A arearbitraryconstants.

Keepinginviewthatthedisplacementvanishesas z ,theappropriatesolutionofEquations 25 and 28 maybewrittenas

1 25 6 ,ik x ctiks z iks zA e A e e 37

Page 7: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 7/15

1 25 6 ,ik x ctiks z iks zA e A e e 38

wherethearbitraryconstants 5 6,A A arerelatedto 5 6,A A respectivelybymeansofEquations 31 or 32 .

Thecoefficientof 1iks ze and 2iks ze whenequatedtozero,Equation 31 gives

5 1 5 6 2 6, ,A ikk A A ikk A

where

2 2 21 44

, 1, 2.j

j

s M kCk j

G

39

Therefore,theexpressionsforthedisplacementpotentialsare

1 25 6 ,ik x ctiks z iks zA e A e e 40

1 25 1 6 2 .ik x ctiks z iks zik A k e A k e e 41

Sothatthedisplacementcomponentsmaybewrittenas

1 22 21 5 1 1 6 2 2 .ik x ctiks z iks zu A ik k s k e A ik k s k e e 42

1 3 2 32 23 5 1 1 6 2 2 .ik x ctiks x iks xu A iks k k e A iks k k e e 43

4 BOUNDARYCONDITIONSANDSOLUTIONOFTHEPROBLEM

Followingaretheboundaryconditionsattheuppermostcorrugatedsurface,andatthecommoncorrugatedaswellaslooselybondedinterfaceoflayerandhalf‐space:

i Tractionfreeconditionattheuppersurface:

33 2 31 13 2 11 20, 0, atf x f x z f x H 44

ii Conditionforcontinuityofstressesatthecommoninterface

33 1 31 33 1 31 13 1 11 13 1 11 1, , atf x f x f x f x z f x 45

iii Conditionforcontinuityofnormaldisplacementsatthecommoninterface

3 3 1, atu u z f x 46

iv Conditionfortheproportionalityofshearstresstotheslipatthecommoninterface Vashisthetal. 1991

113 1 11 44 1 1 1, at

1 T

f ikC c u u z f x

47

where 0 1 isthebondingparameter.Thecommoninterfaceissaidtobeperfectlybondedforthecasewhen

1 ;andideallysmoothwhen 0 .Substitutingtheexpressionsoftheobtaineddisplacementcomponents,asgiveninEquations 12 , 13 , 42 and

43 ,intheaboveboundaryconditions,sixhomogeneousequationsin jA 1,2...,6j areobtainedwhosenon‐trivial

solutionrequires

0ijt , 48

whereentries ijt areasprovidedintheAppendix.Equation 48 isthedispersionrelationforthepropagationofRay‐

leigh‐typewaveinacorrugatedfibre‐reinforcedlayerlyingoveraninitiallystressedorthotropichalf‐spaceundergravity.

Page 8: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 8/15

5 NUMERICALRESULTSANDDISCUSSION

ThenumericalvalueswhichhavebeentakenintoconsiderationwithaviewtoperformnumericalcomputationofphasevelocityofRayleigh‐typewavepropagatinginacorrugatedfibre‐reinforcedlayerlyingoveraninitiallystressedorthotropichalf‐spaceundergravity,withlooselybondedcommoninterface,areasfollows:

Forfibre‐reinforcedlayer Markham, 1970

9 2 9 2 9 2 9 27.07 10 N/ m , 3.5 10 N/ m , 1.28 10 N/ m , 220.90 10 N/ m ,L T 9 2 3

15.66 10 N/ m , 1600kg/m .

Forinitiallystressedorthotropichalf‐spaceundergravity ProsserandGreen 190

9 2 9 2 9 2 9 211 13 33 4414.295 10 N/ m , 9 10 N/ m , 108.4 10 N/ m , 5.28 10 N/ m ,C C C C

32 1442kg/m .

Figs.1to6irradiatetheeffectsofundulation,corrugation,bondingofthelayerandhalf‐space,initialstressand

gravityonthephasevelocityofRayleigh‐typewavepropagatinginafibre‐reinforcedlayerlyingoveranorthotropic

half‐space.Inallthefigures,dimensionlessphasevelocity 1 Tc hasbeenplottedagainstdimensionlesswave

number kH fordifferentvaluesoftheaffectingparameters.ThesefiguressuggestthatthephasevelocityofRay‐

leigh‐typewavedecreaseswithincreaseinwavenumber.1.EffectofCorrugatedBoundarySurfacesonthePhaseVelocityofRayleigh‐TypeWave

Figs.2,3and4showtheeffectofcorrugationandundulationonthephasevelocityofRayleigh‐typewave.Inparticu‐lar,Fig.2showstheeffectofcorrugationparameterassociatedwiththeupperboundarysurface 1a b ;Fig.3inter‐

pretstheeffectofcorrugationparameterassociatedwiththecommoninterfaceoflayerandhalf‐space 2a b ;andFig.

4showstheeffectofundulationparameter bH andpositionparameter x H ,onthephasevelocityofRayleigh‐

typewave.Curve1inFigs.2and3correspondtothecaseswhenthereisnocorrugationintheupperboundarysurfaceandthecommoninterfaceoflayerandhalf‐spacerespectively.Figs.2and3elucidatethatthephasevelocityofRay‐leigh‐typewaveincreaseswithincreaseinthemagnitudeofcorrugationparameterassociatedwiththeupperbound‐arysurfacewhereasitdecreaseswithincreaseinthemagnitudeofcorrugationparameterassociatedwiththecom‐moninterfaceoflayerandhalf‐space.ComparativestudyofFigs.2and3suggestthattheabsenceofcorrugationinupperboundarysurfacedisfavorsthephasevelocity;buttheabsenceofcorrugationattheinterfaceofthelayerandhalf‐spacegreatlysupportsthephasevelocity.ThesimilarantagonisticbehaviorofcorrugationonthephasevelocityofRayleigh‐typewaveatupperboundarysurfaceandcommoninterfaceoflayerandhalf‐spaceismarkedbySinghetal 2016,2017 .Fig.4manifeststhatundulationparameteralongwithpositionparameteralsohasgreatimpactonthephasevelocityofRayleigh‐typewaveasasmallincreaseintheirmagnitudesignificantlyincreasesthephaseve‐locity Singhetal.,2017 .

Page 9: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 9/15

Figure2:Variationofphasevelocity 1 Tc withwavenumber kH fordifferent

valuesofcorrugationparameterassociatedwiththeupperboundarysurface 1a b .

Figure3:Variationofphasevelocity 1 Tc withwavenumber kH fordifferent

valuesofcorrugationparameterassociatedwiththeinterface 2a b .

Page 10: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 10/15

Figure4:Variationofphasevelocity 1 Tc withwavenumber kH fordifferentvalues

ofundulationparameter bH andpositionparameter x H .

2.EffectofInitialStressonthePhaseVelocityofRayleigh‐TypeWave

Theeffectofinitialstress 442P C onthephasevelocityofRayleigh‐typewaveisdemonstratedinFig.5.Inthisfigure,

curves1and2correspondtothecasewhenthehalf‐spaceisunderhorizontaltensileinitialstress 442 0P C ;curve

3representthecasewhenhalf‐spaceisundernoinitialstress 442 0P C ;andcurves4and5correspondtothecase

whenhalf‐spaceisunderhorizontalcompressiveinitialstress 442 0P C .Itcanbeobservedfromthefigurethat

thephasevelocityofRayleigh‐typewaveincreaseswithincreaseininitialstress.MeticulousexaminationofthefigureconcludesthatthephasevelocityofRayleigh‐typewavedecreaseswithincreaseinthemagnitudeofhorizontaltensileinitialstress;whereasitincreaseswithincreaseinthemagnitudeofhorizontalcompressiveinitialstress.Moreover,theinfluenceofinitialstressinfoundsignificantatlowfrequencyregionascomparetothehighfrequencyregion.Similarresultmaybeobservedwhenthecaseofgravitytendingtozeroi.e. 0G istakeninthestudybyAbd‐Alla1999 .3.EffectofLooseBondingonthePhaseVelocityofRayleigh‐TypeWave

Theinfluenceoflooselybondedinterfaceofthelayerandhalf‐spaceonthephasevelocityofRayleigh‐typewaveismarkedbyplottingthedispersioncurvefordifferentvaluesofbondingparameter, whichhasbeendemonstratedinFig.6.Curve1inthefigureinterpretsthecasewhentheinterfaceoflayerandhalf‐spaceareneartoasmoothcontact 0.01 ;curves2,3and4representthattheyarelooselybonded 0 1 ;andcurve5correspondstothecase

whentheinterfaceisperfectlybonded inweldedcontact 1 .Thefiguremanifeststhatthephasevelocityde‐

creaseswithincreaseinthemagnitudeofbondingparameter.Minuteobservationofthefiguresetforththefactthat,thevariationofbondingparameterfromloosebondingtowardssmoothcontactmildlyaffectsthephasevelocityofRayleigh‐typewaveincomparisontoitsvariationfromloosebondingtowardsweldedcontact.

Page 11: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 11/15

Figure5:Variationofphasevelocity 1 Tc withwavenumber kH

fordifferentvaluesofinitialstressparameter 442P C .

Figure6:Variationofphasevelocity 1 Tc withwavenumber kH

fordifferentvaluesofbondingparameter .

Page 12: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 12/15

Figure7:Variationofphasevelocity 1 Tc withwavenumber kH

fordifferentvaluesofBiot’sgravityparameter G .

4.EffectofGravityonthePhaseVelocityofRayleigh‐TypeWave

TheeffectofgravityonthephasevelocityofRayleigh‐typewaveisshowninFig.7.Curve1inthisfigurerepresentsthecasewheneffectofgravityisneglected 0G whereascurve2,3,4,5correspondstothecasewheneffectof

gravityinincreasingorderisconsidered.ItisnotedfromthefigurethatthephasevelocitydecreaseswithincreaseinthemagnitudeofBiot’sgravityparameter G Singhetal.,2017 .Inadditiontothis,thefigureillustratethatthe

impactofBiot’sgravityparameterissignificantatlowfrequencyregionbutlessathighfrequencyregion.Infact,athighfrequencyregion,allthecurvesseemtosharealmostacommonmagnitudeofphasevelocity.6 CONCLUSION

Theeffectsofundulation,corrugation,bondingofthelayerandhalf‐space,initialstressandgravityonthephaseve‐locityofRayleigh‐typewavepropagatinginacorrugatedfibre‐reinforcedlayerlyingoveraninitiallystressedortho‐tropichalf‐spaceundergravityareinvestigated.Theoutcomesofthestudyaresummarizedasfollows:

ThephasevelocityofRayleigh‐typewavedecreaseswithincreaseinwavenumber. ThecorrugationparameterassociatedwiththeupperboundarysurfacefavorsthephasevelocityofRayleigh‐typewavewhereascorrugationparameterassociatedwiththecommoninterfaceoflayerandhalf‐spacedisfa‐vorsthephasevelocityofRayleigh‐typewave.

ThephasevelocityRayleigh‐typewaveincreaseswithincreaseinundulationparameterandpositionparame‐ter.

PhasevelocityofRayleigh‐typewaveincreaseswithincreaseintheinitialstress.Moreprecisely,phasevelocityofRayleigh‐typewavedecreaseswithincreaseinthehorizontaltensileinitialstressbutitincreaseswithin‐creaseinhorizontalcompressiveinitialstress.

Withincreaseinthemagnitudeofbondingparameterofthecommoninterface,thephasevelocityofRayleigh‐typewavedecreases.InparticularphasevelocityofRayleigh‐typewaveismaximumincaseofperfectcontactandleastincaseofsmoothcontactoflayerandhalf‐space

Biot’sgravityparameterdisfavorsthephasevelocityofRayleigh‐typewave. AlthoughtheaffectingparametershavesignificanteffectonthephasevelocityofRayleigh‐typewaveyettheeffectofpresenceandabsenceofcorrugationattheboundarysurfacesonthedispersioncurveisfoundtobegreat.

Thepresentproblemmayfindsomeapplicationsinthefieldofconstruction,civilengineering,geophysicsandgeomechanics.Lowweightandhighstrengthoffibre‐reinforcedmaterialsmakesitacrucialmaterialforvariouscon‐structionworkslikebridges,buildings,towers,etc.Thereinforcementofsoilenhancesthestrengthandloadbearingcapacityofit.Therefore,itisveryimportanttostudytheeffectofdifferentfactorsonthepropagationofwavesthroughthesematerialmediumwithcomplexgeometriesinviewofitspossibleapplicationsindiverseareasofscienceandengineering.

Page 13: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 13/15

Acknowledgements

TheauthorsconveytheirsincerethankstotheNationalBoardofHigherMathematics NBHM fortheirfinancialsup‐porttocarryoutthisresearchworkthroughProjectNBHM/R.P.78/2015/Fresh/2017/24.1.2017titled“Mathemat‐icalmodelingofelasticwavepropagationinhighlyanisotropicandheterogeneousmedia.”References

Abd‐Alla,A.M., 1999 .PropagationofRayleighwavesinanelastichalf‐spaceoforthotropicmaterial.AppliedMathematicsandCompu‐tation99 1 :61‐69.

Asano,S., 1966 .Reflectionandrefractionofelasticwavesatacorrugatedinterface.BulletinoftheSeismologicalSocietyofAmerica561 :201‐221.

Biot,M.A., 1965 .MechanicsofIncrementalDeformation,Wiley,NewYork.

Chai,J.F.,Wu,T.T., 1996 .Determinationofsurfacewavevelocitiesinaprestressedanisotropicsolid.NDT&EInt.29:281–292.

Chattopadhyay,A.,Gupta,S.,Singh,A.K., 2009 .InfluenceofGravityonthePropagationofSHWavesinaMagnetoelasticSelf‐reinforcedMedia.InternationalJournalofMechanicsandSolids4 1 :71‐83.

Chattopadhyay,A.,Gupta,S.,Singh,A.K., 2010 .Thedispersionofshearwaveinmulti‐layeredmagnetoelasticself‐reinforcedmedia.InternationalJournalofSolidsandStructure47 9 :1317‐1324.

Chattopadhyay,A.,Singh,A.K., 2012 Propagationofmagnetoelasticshearwavesinanirregularself‐reinforcedlayer.JournalofEngi‐neeringMathematics75:139‐155.

Chattopadhyay,A.,Singh,A.K., 2013 .Propagationofacrackduetomagnetoelasticshearwavesinaself‐reinforcedmedium.JournalofVibrationandControl20 3 :406‐420.

Chow,T.S., 1971 .Onthepropagationofflexuralwavesinanorthotropiclaminatedplateanditsresponsetoanimpulsiveload.JournalofCompositeMaterials5 3 :306‐319.

Das,S.C.,Acharya,D.P.,Sengupta,D.R., 1992 .Surfacewavesinaninhomogeneouselasticmediumundertheinfluenceofgravity.RevRoumaineSciTechSerMecAppl37:539–551.

Destrade,M., 2001 .Surfacewavesinorthotropicincompressiblematerials.JournaloftheAcousticalSocietyofAmerica110 2 :837‐840.

Fan,C.W.,Hwu,C. 1998 .Rigidstampindentationonacurvilinearholeboundaryofananisotropicelasticbody.Journalofappliedme‐chanics65 2 :389‐397.

Grünewald,S.,Laranjeira,F.,Walraven,J.,Aguado,A.,Molins,C., 2012 .Improvedtensileperformancewithfiberreinforcedself‐compact‐ingconcrete.HighPerformanceFiberReinforcedCementComposites6:51‐58.

Gaur,A.M.,Rana,D.S., 2014 .Shearwavepropagationinpiezoelectric‐piezoelectriccompositelayeredstructure.LatinAmericanJournalofSolidsandStructures11 13 :2483‐2496.

Khurana,P.,Vashisth,A.K., 2001 .Lovewavepropagationinapre‐stressedmedium.IndianJournalofPureandAppliedMathematics32 8 :1201‐1208.

Kumar,R.,Kumar,R., 2011 .Analysisofwavemotionattheboundarysurfaceoforthotropicthermoelasticmaterialwithvoidsandiso‐tropicelastichalf‐space.JournalofEngineeringPhysicsandThermophysics84 2 :463‐478.

Markham,M.F., 1970 .MeasurementsofElasticconstantsoffibrecomposites.Ultrasonics1:145‐149.

Munish,S.,Sharma,A.,Sharma,A., 2016 .PropagationofSHWavesinaDoubleNon‐HomogeneousCrustalLayersofFiniteDepthLyingOveranhomogeneousHalf‐Space.LatinAmericanJournalofSolids&Structures13 14 :2628‐2642.

Nandal,J.S.,Saini,T.N., 2013 .Reflectionandrefractionatanimperfectlybondedinterfacebetweenporoelasticsolidandcrackedelasticsolid.JournalofSeismology17 2 :239‐253.

Prikazchikov,D.A.,Rogerson,G.A., 2003 . Somecommentson thedynamicpropertiesof anisotropicandstronglyanisotropicpre‐stressedelasticsolids.InternationalJournalofEngineeringScience41:149–171.

Prosser,W.H.,Green,R.E., 1990 .Characterizationofthenonlinearelasticpropertiesofgraphite/epoxycompositesusingultrasound.JournalofReinforcedPlasticsandComposites9 2 :162‐173.

Samal,S.,Chattaraj,R., 2011 .Surfacewavepropagationinfiber‐reinforcedanisotropicelasticlayerbetweenliquidsaturatedporoushalfspaceanduniformliquidlayer.ActaGeophysica59 3 :470‐482.

Singh,B.,Kumar,R., 1998 .Reflectionandrefractionofmicropolarelasticwavesatalooselybondedinterfacebetweenviscoelasticsolidandmicropolarelasticsolid.InternationalJournalofEngineeringScience36 2 :101‐117.

Singh,S.S.,Tomar,S.K., 2008 .qP‐waveatacorrugatedinterfacebetweentwodissimilarpre‐stressedelastichalf‐spaces.JournalofSoundandVibration317 3 :687‐708.

Singh,S.S., 2011 .Lovewaveatalayermediumboundedbyirregularboundarysurfaces.JournalofVibrationandControl17 5 :789‐795.

Singh,B.,Yadav,A.K., 2013 .Reflectionofplanewavesinaninitiallystressedperfectlyconductingtransverselyisotropicsolidhalf‐space.JournalofEarthSystemandScience122 4 :1045‐1053.

Singh,S.S., 2014 .ReflectionandTransmissionofElasticWavesataLooselyBondedInterfacebetweenanElasticSolidandaViscoelasticPorousSolidSaturatedbyViscousLiquid.GlobalJournalofResearchesinEngineering14 3 .

Singh,A.K.,Das,A.,Kumar,S.,Chattopadhyay,A., 2015 .Influenceofcorrugatedboundarysurfaces,reinforcement,hydrostaticstress,heterogeneityandanisotropyonLove‐typewavepropagation.Meccanica50 12 :2977‐2994.

Page 14: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 14/15

Singh,A.K.,Mistri,K.C.,Das,A., 2016 .PropagationofLove‐typewaveinacorrugatedfibre‐reinforcedlayer.JournalofMechanics32 6 :693‐708.

Singh,A.K.,Mistri,K.C.,Kaur,T.,Chattopadhyay,A., 2017 .EffectofundulationonSH‐wavepropagationincorrugatedmagneto‐elastictransverselyisotropiclayer.MechanicsofAdvancedMaterialsandStructures24 3 :200‐211.

Spencer,A.J.M., 1972 .Deformationsoffibre‐reinforcedmaterials.OxfordUniversityPress,NewYork.

Tomar,S.K.,Kaur,J., 2007 .SH‐wavesatacorrugatedinterfacebetweenadrysandyhalf‐spaceandananisotropicelastichalf‐space.ActaMechanica190 1‐4 :1‐28.

Vashisth,A.K.,Sharma,M.D.,Gogna,M.L., 1991 Reflectionandtransmissionofelasticwavesatalooselybondedinterfacebetweenanelasticsolidandliquid‐saturatedporoussolid.Geophysicaljournalinternational105 3 :601‐617.

APPENDIX

1 2

11 1 1 2 1 2 12 ,k f HT T Tt f i f e

2 2

12 2 2 2 2 2 22 ,k f HT T Tt f i f e

1 2

13 1 1 2 1 2 12 ,k f HT T Tt f i f e

2 2

14 2 2 2 2 2 22 ,k f HT T Tt f i f e

15 160, 0,t t

1 2

21 1 2 1 1 1 22 4 2 ,k f HT T L Tt f i f e

2 2

22 2 2 2 2 2 22 4 2 ,k f HT T L Tt f i f e

1 2

23 1 2 1 1 1 22 4 2 ,k f HT T L Tt f i f e

2 2

24 2 2 2 2 2 22 4 2 ,k f HT T L Tt f i f e

25 260, 0,t t 1 1'31 1 1 1 1 1 12 ,k f

T T Tt f i f e

2 132 2 2 1 2 2 12 ,k f

T T Tt f i f e 1 1

33 1 1 1 1 1 12 ,k fT T Tt f i f e

2 1'34 2 2 1 2 2 12 ,k f

T T Tt f i f e

1 12 2 ' 2 '35 13 33 1 1 44 1 1 13 1 33 1 1 44 1 1 442 ,iks ft k C C s f C s ik k C s C s f C s f C e

2 12 2 ' 2 '36 13 33 2 1 44 2 2 13 2 33 2 1 44 2 1 442 ,iks ft k C C s f C s ik k C s C s f C s f C e

1 141 1 1 1 1 1 12 4 2 ,k f

T T L Tt f i f e

2 142 2 1 2 2 2 12 4 2 ,k f

T T L Tt f i f e 1 1

43 1 1 1 1 1 12 4 2 ,k fT T L Tt f i f e

2 144 2 1 2 2 2 12 4 2 ,k f

T T L Tt f i f e

112 2 245 44 1 1 11 1 13 1 1 44 1 44 1 11 1 1 13 12 ,

iks ft C ks f C P k f C P ks ik k C s C f C P s f C P s e

12

246 44 2 1 11 1 13 2

2 22 44 2 44 1 11 2 1 13 2

2

,iks f

t C ks f C P k f C P ks

ik k C s C f C P s f C P s e

1 1 2 1 1 1 2 1 1 1 2 12 251 1 52 2 53 1 54 2 55 1 1 56 2 2, , , , , ,k f k f k f k f iks f iks ft e t e t e t e t k k s ki e t k k s ki e

1 1161 1 44 1 1 1 1 12 4 2 ,

1k f

T T L TT

t k ikC c f k ik f e

2 1162 2 44 1 2 2 2 12 4 2 ,

1k f

T T L TT

t k ikC c f k ik f e

1 1163 1 44 1 1 1 1 12 4 2 ,

1k f

T T L TT

t k ikC c f k ik f e

Page 15: Effect of Loose Bonding and Corrugated Boundary Surface on ...T300/5208 graphite/ epoxy composite by measuring the normalized change in ultrasonic "natural" velocity as a function

A.K.Singhetal./EffectofLooseBondingandCorrugatedBoundarySurfaceonPropagationofRayleigh‐TypeWave

LatinAmericanJournalofSolidsandStructures,2018,15 1 ,e01 15/15

2 1164 2 44 1 2 2 2 12 4 2 ,

1k f

T T L TT

t k ikC c f k ik f e

1 1 2 165 44 1 1 66 44 2 2, .

1 1iks f iks ft ikC ks k i e t ikC ks k i e