eee223 signals and systems lecture 17

17
EEE223 Signals and Systems Lecture 22 DTFT Dr. Shadan Khattak

Upload: others

Post on 08-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

EEE223 Signals and Systems

Lecture 22 DTFT

Dr. Shadan Khattak

DTFT

𝑋(π‘’π‘—πœ”) = π‘₯,𝑛-π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=βˆ’βˆž (DTFT) (Analysis equation)

π‘₯ 𝑛 =1

2πœ‹ 𝑋(π‘’π‘—πœ”)π‘’π‘—π‘›πœ”πœ‹

πœ”=βˆ’πœ‹π‘‘πœ” (IDTFT) (Synthesis equation)

β€’ 𝑋 π‘’π‘—πœ” is called the spectrum of π‘₯ 𝑛 .

β€’ 𝑋 π‘’π‘—πœ” =

𝑋(π‘’π‘—πœ”) . π‘’π‘—βˆ π‘‹(π‘’π‘—πœ”)

𝑋(π‘’π‘—πœ”) : π΄π‘šπ‘π‘™π‘–π‘‘π‘’π‘‘π‘’ π‘ π‘π‘’π‘π‘‘π‘Ÿπ‘’π‘š

βˆ π‘‹ π‘’π‘—πœ” : π‘ƒβ„Žπ‘Žπ‘ π‘’ π‘ π‘π‘’π‘π‘‘π‘Ÿπ‘’π‘š

Dr. Shadan Khattak

DTFT

β€’ Two major differences between CTFT and DTFT:

1. Periodicity of the DTFT 𝑋 π‘’π‘—πœ”

2. Finite interval of integration in the synthesis equation of DTFT.

β€’ As 𝑋 π‘’π‘—πœ” = 𝑋 𝑒𝑗(πœ”+2π‘›πœ‹) , πœ” ∈ *βˆ’πœ‹, πœ‹+ is sufficient to describe the

spectrum.

β€’ Many texts refer to 𝑋 π‘’π‘—πœ” as 𝑋 Ξ© or 𝑋 𝑒𝑗Ω . They all mean the

same thing.

Dr. Shadan Khattak

DTFT

β€’ Signals at frequencies near even multiple of πœ‹ are slowly varying and, therefore, are thought of as low-frequency signals.

β€’ Signals at frequencies near odd multiples of πœ‹ are rapidly varying and, therefore, are thought of as high-frequency signals.

Dr. Shadan Khattak

DTFT

1. DTFT of a unit impulse signal

π‘₯ 𝑛 = 𝛿,𝑛-

𝑋(π‘’π‘—πœ”) = 𝛿,𝑛-π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=βˆ’βˆž

= 1

Similarly, 𝐷𝑇𝐹𝑇 𝛿 𝑛 βˆ’ 𝑛0 = π‘’βˆ’π‘—πœ”π‘›0

Dr. Shadan Khattak

DTFT

2. DTFT of a causal exponential signal π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 , 𝛼 < 1

𝑋(π‘’π‘—πœ”) = π›Όπ‘›π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=0

= (π›Όπ‘’βˆ’π‘—πœ”)π‘›βˆžπ‘›=0

=1

1βˆ’π›Όπ‘’βˆ’π‘—πœ”

𝑋(π‘’π‘—πœ”) =1

1 + 𝛼2 βˆ’ 2π›Όπ‘π‘œπ‘ πœ”

βˆ π‘‹ π‘’π‘—πœ” = βˆ’π‘‘π‘Žπ‘›βˆ’1π›Όπ‘ π‘–π‘›πœ”

1 βˆ’ π›Όπ‘π‘œπ‘ πœ”

Dr. Shadan Khattak

𝛼 > 0

DTFT

2. DTFT of a causal exponential signal π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 , 𝛼 < 1

𝑋(π‘’π‘—πœ”) = π›Όπ‘›π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=0

= (π›Όπ‘’βˆ’π‘—πœ”)π‘›βˆžπ‘›=0

=1

1βˆ’π›Όπ‘’βˆ’π‘—πœ”

𝑋(π‘’π‘—πœ”) =1

1 + 𝛼2 βˆ’ 2π›Όπ‘π‘œπ‘ πœ”

βˆ π‘‹ π‘’π‘—πœ” = βˆ’π‘‘π‘Žπ‘›βˆ’1π›Όπ‘ π‘–π‘›πœ”

1 βˆ’ π›Όπ‘π‘œπ‘ πœ”

Dr. Shadan Khattak

𝛼 < 0

DTFT

3. DTFT of a non-causal exponential signal

π‘₯ 𝑛 = 𝛼 𝑛 , 𝛼 < 1

𝑋(π‘’π‘—πœ”) =1 βˆ’ 𝛼2

1 + 𝛼2 βˆ’ 2π›Όπ‘π‘œπ‘ πœ”

Dr. Shadan Khattak

0 < 𝛼 < 1

DTFT

4. DTFT of a rectangular pulse signal

π‘₯ 𝑛 = 1, 𝑛 ≀ 20, 𝑛 > 2

𝑋(π‘’π‘—πœ”) =𝑠𝑖𝑛

5πœ”2

𝑠𝑖𝑛 πœ”2

Generally, for a rectangular pulse signal π‘₯ 𝑛 = 1, 𝑛 ≀ 𝑁1

0, 𝑛 > 𝑁1,

the DTFT is 𝑋(π‘’π‘—πœ”) =

π‘ π‘–π‘›πœ”(𝑁1+1/2)

𝑠𝑖𝑛 πœ”

2

Dr. Shadan Khattak

DTFT

DTFT Analysis of DT LTI Systems

β€’ Frequency response is the DTFT of impulse response β„Ž,𝑛-.

𝐻 Ξ© = β„Ž,𝑛-π‘’βˆ’π‘—Ξ©π‘›βˆž

𝑛=βˆ’βˆž

β€’ The impulse response h[n] can be recovered from the frequency response by taking its IDTFT.

β„Ž 𝑛 =1

2πœ‹ 𝐻 Ξ© 𝑒𝑗Ω𝑛

πœ‹

βˆ’πœ‹

𝑑Ω

Dr. Shadan Khattak

DTFT

DTFT of Periodic Signals

Follows the same principle as that of CTFT of periodic signals except that DTFT of periodic signals is periodic in πœ” with period 2πœ‹. If

π‘₯ 𝑛 = π‘’π‘—πœ”0𝑛

Then

𝑋 π‘’π‘—πœ” = 2πœ‹π›Ώ(πœ” βˆ’ πœ”0 βˆ’ 2πœ‹π‘™)

∞

𝑙=βˆ’βˆž

Dr. Shadan Khattak

DTFT

DTFT of Periodic Signals

DTFT from DTFS

𝑋 π‘’π‘—πœ” = 2πœ‹π·π‘Ÿπ›Ώ(πœ” βˆ’ π‘Ÿπœ”0)

∞

π‘Ÿ=βˆ’βˆž

Dr. Shadan Khattak

DTFT

DTFT of Periodic Signals

Example: Find the DTFT of cos (πœ”0𝑛) with πœ”0 =2πœ‹

5

𝑋 π‘’π‘—πœ” = πœ‹π›Ώ πœ” βˆ’2πœ‹

5βˆ’ 2πœ‹π‘™ + πœ‹π›Ώ(πœ” +

2πœ‹

5βˆ’ 2πœ‹π‘™)

∞

𝑙=βˆ’βˆž

∞

𝑙=βˆ’βˆž

= πœ‹π›Ώ πœ” βˆ’2πœ‹

5+ πœ‹π›Ώ πœ” +

2πœ‹

5, βˆ’πœ‹ ≀ πœ” < πœ‹

(Example 5.5 (Oppenheim)

Dr. Shadan Khattak

Dr. Shadan Khattak

Dr. Shadan Khattak

Useful Readings

β€’ Sections 5.1 – 5.2 (Oppenheim)

Dr. Shadan Khattak

Practice Problems

β€’ Problem 5.1 – 5.9, 5.13 – 5.14, 5.21 – 5.24 (Oppenheim)

β€’ All Examples of Chapter 5 (Oppenheim)

Dr. Shadan Khattak