ee354 : communications system i

16
Lecture 25,26,27: Digital communication Aliazam Abbasfar

Upload: faxon

Post on 25-Jan-2016

38 views

Category:

Documents


0 download

DESCRIPTION

EE354 : Communications System I. Lecture 25,26,27: Digital communication Aliazam Abbasfar. Outline. Digital communication Baseband systems Optimum receiver. Digital communication. Transfer of digital messages from source to destination reliably Sometimes called signaling - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: EE354 : Communications    System I

Lecture 25,26,27: Digital communication

Aliazam Abbasfar

Page 2: EE354 : Communications    System I

OutlineDigital communication

Baseband systems

Optimum receiver

Page 3: EE354 : Communications    System I

Digital communication Transfer of digital messages from source to destination reliably

Sometimes called signaling

Digital message Sequence of symbols (digits) Symbols are chosen from an alphabet (M symbols)

Binary symbols : bits : alphabet {0,1}

Data rate Symbol/Baud/Signaling rate (symbols per second) (r) bit rate (bits per second) (rb)

Reliability is measured by probability of error Symbol/Bit error rate (BER) Packet error rate (PER)

BER targets Voice : 10-5 Data : 10-6 Video : 10-7

Page 4: EE354 : Communications    System I

Digital systems

Digital source Digitized voice/images Data

Source encoder and decoder Data compression

Encryption

Channel encoder and decoder Error detection/correction Example : repetition code

Modulation/demodulation Digital Baseband/bandpass

SourcedecoderChannelSourc

eencoder

messagex(t) y(t)

Digital

Source

Page 5: EE354 : Communications    System I

Pulse Amplitude Modulation (PAM) A sequence of pulses with varying amplitudes

y(t) = ak p(t- kT) + n(t) T : symbol time

Inter-symbol interference (ISI) y(kT) = ak p(0) + am p(mT) + n(kT) p(0) = 1; p(mT) = 0; for all m<>0

Rectangular pulse Sinc pulse

Symbols are mapped into pulse amplitudes (ak) M-PAM has M levels unipolar 2-PAM levels: {0, A} Alphabet {0,1} bipolar 2-PAM levels: {-A, A} Alphabet {0,1} bipolar 2-PAM levels: {-A, A} Alphabet {0,1,2} bipolar 3-PAM levels: {-A, 0, A} Alphabet {0,1,2,3} bipolar 4-PAM levels: {-3A, -A, A, 3A}

Data rate Symbol rate : r= 1/T Bit rate : rb = log2(M)/T

Example: binary signaling with rectangular pulse Bipolar 2-PAM RZ and NRZ

T

y(t)

Page 6: EE354 : Communications    System I

Performance with noise AWGN with power 2

E[n2(t)] = 2

Sampled signal distribution No ISI and p(0)=1 z = y(kT) = ak + n(kT)

Symbol detection Compare with thresholds Slicer or A/D

Probability of error Pe = Pi Pe|i Pe|i : probability of error for ith symbol

Unipolar binary : Pe = Q(A/2) Bipolar binary : Pe = Q(A/) Bipolar M-PAM : Pe = 2(1-1/M) Q(A/)

= 2(1-1/M) Q(Amax/(M-1))

Page 7: EE354 : Communications    System I

Analog vs Digital repeaterDigital (regenerative) repeater detects the

symbols and regenerate them againPem = 1-(1-Pe)m m Pe Accumulate errors

Analog repeater amplifies signal + noise

Accumulate noisem

2 = m 2 Pem = 2(1-1/M) Q(A/m)

Hybrid repeater : A digital repeater after every m analog repeaterPemxk = k Pem

Page 8: EE354 : Communications    System I

Pulse detector x(t) = {0 or p(t)} + n(t)

p(t) is time-limited pulse p(t) = 0; t<0 or t> T

AWGN with power spectral density of N0/2 Rn() = N0/2 () Gn(f) = N0/2

Filter x(t) with H(f) and sample at time T Signal amplitude : Noise power :

Maximize A/2 Matched filter

H(f) = P(f)* e-j2fT h(t) = p(T-t)

Amax = Ep = EpN0/2

Probability of error

-

fT j2π dfP(f)H(f)e A

-

202 dfH(f)2

N

0

pmaxe 2N

EQ )

2

AQ( p

Page 9: EE354 : Communications    System I

Correlator Matched filter output is the correlation of the signal and the pulse

Detecting one out of two different pulses y(t) = {p0(t) or p1(t)} + n(t) y(t)-p0(t) = {0 or p1(t)-p0(t)} + n(t) Correlate y(t) with p1(t)-p0(t) Decision level : corr( [p1(t)+p0(t)]/2, p(t) )

Error probability

Correlator receiver Correlate y(t) with all pi(t) Detected symbol based on the output of the correlators

If we have a series of pulses, each pulse is detected by correlation

y(t) = ak p(t- kT) + n(t) Correlate y(t) with p(t-kT) ak

T

0 p E dt p(t) x(t) z(T)

0

p0-p1maxe 2N

EQ )

2

AQ( p

Page 10: EE354 : Communications    System I

ISI free matched filteringISI free : Matched filter output due to other

pulses = 0 Shifted versions of the pulse are orthogonalcombT(Rp())= Ep() rep1/T(|P(f)|2) = Cte

Folded spectrum is flat

Band-limited pulsesSinc pulseRoot raised cosine

δ[k] E dt kT)-p(t p(t) p

Page 11: EE354 : Communications    System I

Power spectrumx(t) = ak p(t- kT) = [ ak (t- kT)] p(t)

Gx(f) = Ga(f) |P(f)|2

Bipolar PAM : Ga(f) = E[ak

2]/T

Gx(f) = E[ak2]/T |P(f)|2

Px = E[ak2] Ep/T = Es/T

Page 12: EE354 : Communications    System I

Bandpass modulationsAmplitude shift keying (ASK)

x(t) = ak p(t- kT)

p(t) = cos(wct)

ak = 0 or A

Coherent detectionDown convert unipolar 2-PAM

Envelope detectorSimilar to AM (a strong carrier)

0

b

0

pe N

EQ

2N

EQ p

0

be 2N

Eexp

2

1 p

Page 13: EE354 : Communications    System I

PSKPhase shift keying (PSK)

x(t) = p(t- kT) p(t) = cos(wct + k)

BPSK Modulated bipolar 2-PAM x(t) = ak p(t- kT)

ak = -A or A p(t) = cos(wct)

QPSK x(t) = ak p1(t- kT) + bk p2(t- kT)

ak = -A or A p1(t) = cos(wct) p2(t) = sin(wct)

0

be N

2EQ p

Page 14: EE354 : Communications    System I

QAMQuadrature amplitude modulation(QAM)

Amplitude and phase modulations

x(t) = ak p1(t- kT) + bk p2(t- kT)

p1(t) = cos(wct)

p2(t) = sin(wct)

2 independent PAM

Page 15: EE354 : Communications    System I

FSKFrequency shift keying (FSK)

Two different frequencies fc1 and fc2

x(t) = {A cos(c1t) or A cos(c2t)}

Coherent detectionEp1-p2 = 2K Eb

K=1 when orthogonal pulses

Non-coherent detectionUse frequency detectors

0

b

0

p2-p1e N

EK Q

2N

EQ p

0

be 2N

Eexp

2

1 p

Page 16: EE354 : Communications    System I

ReadingCarlson Ch. 11.1, 11.2, 11.3