ee321 lab 2

16
University of the South Pacific Faculty of Science & Technology School of Engineering & Physics Electrical & Electronics Engineering Discipline EE321 POWER SYSTEM ANALYSIS LAB 2: Analyze fundamental components of power systems using object oriented programming Group Members: Bernadette Pesamino s11102091 Seci Durivou s11098325 Tevita Daivalu s 11090790 Eddie Arukelana s1109****

Upload: seci-durivou

Post on 05-Apr-2017

32 views

Category:

Engineering


2 download

TRANSCRIPT

University of the South Pacific

Faculty of Science & Technology

School of Engineering & Physics

Electrical & Electronics Engineering Discipline

EE321 POWER SYSTEM ANALYSIS

LAB 2: Analyze fundamental components of power systems using object

oriented programming

Group Members: Bernadette Pesamino s11102091

Seci Durivou s11098325

Tevita Daivalu s 11090790

Eddie Arukelana s1109****

AIM

Analyze important power system components by making the necessary manual

calculations and comparing the results with the results simulated obtained in MATLAB

and Simscape Power Systems.

Finds how Transformer and efficiency behaves and implementing it in Matlab.

ALGORITHM

Question 1

Finding the primary Voltage:

Primary Current

Equivalent Circuit Referred to the

high Voltage Side

Power Factor

Leading or

Lagging

Leading

<+36.87

Lagging

<-36.87

Primary Voltage

Voltage Regulations

MATLAB CODES

Question 1

Question 2

X_G1 = 0.09;

%Transformer 1 Values

Sb_T1 = 80*10^6;

Vb_T1 = 20*10^3;

X_T1 = 0.16;

%Transformer 2 Values

Sb_T2 = 80*10^6;

Vb_T2 = 20*10^3;

X_T2 = 0.2;

%Generator 2 Values

Sb_G2 = 90*10^6;

Vb_G2 = 18*10^3;

X_G2 = 0.09;

%Line

Vb_line = 200*10^3;

Xold_line = 120;

%Load

Vb_load = 200*10^3;

Sb_load = (48*10^6)+j*(64*10^6);

%System Reactance for equivalent circuit

Xnew_G1 = X_G1 * (Sbnew/Sb_G1)*((Vbnew/Vb_G1) ^2)

Xnew_T1 = X_T1 * (Sbnew/Sb_T1)*((Vbnew/Vb_T1)^2)

Xnew_T2 = X_T2 * (Sbnew/Sb_T2)*((Vbnew/Vb_T2)^2)

Xnew_G2 = X_G2 * (Sbnew/Sb_G2)*((Vb_G2/Vbnew)^2)

Zb_line = (Vb_line)^2/Sbnew;

X_line = Xold_line/Zb_line

Zb_load = (Vb_load)^2/Sb_load;

Z_loadpu = Zb_load/400

TESTED RESULTS

Question 1

Question 1:

a) π‘…π‘’π‘“π‘’π‘Ÿ π‘‘β„Žπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘–π‘šπ‘π‘’π‘‘π‘’π‘›π‘π‘’ π‘‘π‘œ π‘π‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦ ∢

π‘Ž =𝑁1

𝑁2=

2400

240= 10

𝑅𝑠𝐼 = π‘Ž2𝑅𝑠 = (10)2(0.002) = 0.2Ξ©

𝑋𝑠𝐼 = π‘Ž2𝑋𝑠 = (10)2(0.045) = 0.45Ξ©

𝑉𝑠𝐼 = π‘Ž2𝑉𝑠 = (10)2(240) = 2400

𝑅𝐸𝑄 = 𝑅𝑠𝐼 + 𝑅𝑝 = 0.4

j𝑋𝐸𝑄 = 𝑗𝑋𝑠𝐼 + 𝑗𝑋𝑝 = 𝑗0.9

𝑍𝐸𝑄 = 𝑅𝐸𝑄 + 𝐽𝑋𝐸𝑄 = 0.4 + 𝑗0.9

b)𝐴𝑑 𝑓𝑒𝑙𝑙 π‘™π‘œπ‘Žπ‘‘ 0.8 𝑝𝑓 π‘™π‘Žπ‘”π‘”π‘–π‘›π‘”: 𝑆 = 150 < βˆ’36.87Β° π‘˜π‘‰π΄

𝐼𝑠 =150π‘˜π‘‰π΄

240< βˆ’36.87 = 625 < βˆ’36.87Β°

𝐼𝑠𝐼 =𝐼𝑠

π‘Ž=

625<βˆ’36.87

10= 62.5 < βˆ’36.87𝐴

𝑉𝑝 = 𝑉𝑠𝐼 + (𝑅𝐸𝑄 + 𝑄𝐸𝑄)𝐼𝑠𝐼 = (2400 < 0) + [0.4 + 𝑗0.9](62.5 < βˆ’36.87)

= 2453.934 < 0.7004V

π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘…π‘’π‘”π‘™π‘Žπ‘‘π‘–π‘œπ‘›: 𝑉𝑅 =2453.934βˆ’2400

2400Γ— 100 = 2.24%

c)50% π‘œπ‘“ 150π‘˜π‘‰π΄: 150π‘˜π‘‰π΄ Γ— 50% = 75π‘˜π‘‰π΄

𝐼𝑠 =75π‘˜π‘‰π΄

240< βˆ’36.87 = 312.5 < βˆ’36.87Β°

𝐼𝑠𝐼 =𝐼𝑠

π‘Ž=

312.5<βˆ’36.87

10= 31.25 < βˆ’36.87𝐴

𝑉𝑝 = 𝑉𝑠𝐼 + (𝑅𝐸𝑄 + 𝑄𝐸𝑄)𝐼𝑠𝐼 = (2400 < 0) + [0.4 + 𝑗0.9](31.25 < βˆ’36.87)

= 2426.77 < 0.35 V

π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘…π‘’π‘”π‘™π‘Žπ‘‘π‘–π‘œπ‘›: 𝑉𝑅 =2426.77βˆ’2400

2400Γ— 100 = 1.11%

d) 𝐼𝑠 =150π‘˜π‘‰π΄

240< 36.87 = 625 < 36.87Β°

𝐼𝑠𝐼 =𝐼𝑠

π‘Ž=

625<36.87

10= 62.5 < 36.87𝐴

𝑉𝑝 = 𝑉𝑠𝐼 + (𝑅𝐸𝑄 + 𝑄𝐸𝑄)𝐼𝑠𝐼 = (2400 < 0) + [0.4 + 𝑗0.9](62.5 < 36.87)

= 2387.07 < 1.43V

π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘…π‘’π‘”π‘™π‘Žπ‘‘π‘–π‘œπ‘›: 𝑉𝑅 =2387.07βˆ’2400

2400Γ— 100 = βˆ’0.53%

Regulation and Efficiency

f) Linear Transformer with a source and load Simulation and Output

a) Voltage Output

b) Current Input

Q2

Flowchart:

Algorithm

Draw an impedance diagram for the electric power system shown in Figure

26 showing all impedances in per unit on a 100-MVA base. Choose 20 kV as the

voltage base for generator. The three-phase power and line-line ratings are

given below.

G1: 90 MVA 20 kV X = 9%

T1: 80 MVA 20/200 kV X = 16%

T2: 80 MVA 200/20 kV X = 20%

G2: 90 MVA 18 kV X = 9%

Line: 200 kV X = 120Ξ©

Load: 200 kV S = 48 MW +j64 Mvar

Calculate the

base voltages

each side of the

transformers

Calculate the

generator &

transformer

reactance

Calculate the

base impedance

for the

transmission line

Calculate the per

unit reactance of

the line

Calculate the

load impedance

in ohms

Calculate the

load impedance

in per unit

Draw equivalent

impedance diagram

using calculated

reactance in per unit

values

Base voltages

𝑉𝑏 𝑅1 = 20π‘˜ (200π‘˜

20π‘˜) = 200π‘˜π‘‰ (Secondary side of T1)

𝑉𝑏 𝑅2 = 200π‘˜π‘‰ (secondary side of T1 & primary side of T2)

𝑉𝑏 𝑅3 = 200π‘˜ (200π‘˜

20π‘˜) = 20π‘˜π‘‰ (secondary side of T2)

Reactances (per unit) of the generators & transformers using a new base

of 100MVA

𝑋𝑛𝑒𝑀 = π‘‹π‘œπ‘™π‘‘ (𝑆𝑛𝑒𝑀

π‘†π‘œπ‘™π‘‘) (

π‘‰π‘œπ‘™π‘‘

𝑉𝑛𝑒𝑀)

2

o Generator 1:

𝑋𝑏 𝐺1 = (0.09) (100𝑀

90𝑀) (

20π‘˜

20π‘˜)

2

= 0.1𝑝𝑒

o Transformer 1:

𝑋𝑏 𝑇1 = (0.16) (100𝑀

80𝑀) (

20π‘˜

20π‘˜)

2

= 0.2𝑝𝑒

o Transformer 2:

𝑋𝑏 𝐺2 = (0.2) (100𝑀

90𝑀) (

20π‘˜

20π‘˜)

2

= 0.22𝑝𝑒

o Generator 2:

𝑋𝑏 𝐺2 = (0.09) (100𝑀

90𝑀) (

20π‘˜

20π‘˜)

2

= 0.2.1

o Base impedance of transmission lines

𝑍𝑏 𝐿𝑖𝑛𝑒 = 𝑉𝑏

2

𝑆=

(200π‘˜)2

100= 400Ξ©

o Obtaining the pu value from ohms:

𝑋𝐿𝑖𝑛𝑒 =𝑍𝑏 𝑙𝑖𝑛𝑒

𝑍𝑏 𝑙𝑖𝑛𝑒=

120Ξ©

400Ξ©= 0.38𝑝𝑒

Load impedance of the line:

π‘π‘™π‘œπ‘Žπ‘‘ =(𝑉𝑏)2

𝑆=

(200π‘˜)2

48π‘€π‘Š + 𝑗64π‘€π‘£π‘Žπ‘Ÿ=

40𝑀

80π‘€βˆ 53.13∘= 0.5∠ βˆ’ 53.13∘ ≃ 0.3 βˆ’ 𝑗0.399Ξ©

π‘πΏπ‘œπ‘Žπ‘‘ (𝑝𝑒) = (π‘π‘™π‘œπ‘Žπ‘‘

𝑍𝑏 𝑙𝑖𝑛𝑒) =

(0.5∠ βˆ’ 53.13∘)

400= 0.75 + 𝑗1.0𝑝𝑒

Equivalent Circuit

DISCUSSION

- The efficiency of a transformer is low as appeared in the figure, however it

increment to a steady incentive as it gets steady.

- Then again the chart of the regulation is diminishing, also, it gets to the base

an incentive after short little time.

- For a decent transformer productivity ought to be high and on the other

regulation control to be little.

- The drawing of the equivalent impedance diagram was done using

calculated reactance in per unit.

CONCLUSION

To conclude, the power systems component were analysis using the Per Unit

systems and the manual calculations were compared with results simulated in

Matlab and Simscape Power Systems as displayed in the result section. In the

underlying state, the efficiency of a transformer is low as appeared in the figure,

however it increment to a steady incentive as it gets steady. Then again the chart

of the regulation is diminishing, also, it gets to the base an incentive after short

little time. So we can conclude that for a decent transformer productivity ought to

be high and on the other regulation control ought to be little.