ee2012 complex

Upload: anh-tan

Post on 03-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 EE2012 Complex

    1/139

    omp ex na ys somp ex na ys somp ex na ys somp ex na ys s

    EE2012 ~ Page 9 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    2/139

    FlowChartofMaterialinComplexAnalysisFlowChartofMaterialinComplexAnalysisFlowChartofMaterialinComplexAnalysisFlowChartofMaterialinComplexAnalysisz x iy ( ) ( ) ( )z t x t iy t ( ) ( , ) ( , )f z u iv u x y iv x y

    Complex function of a complex

    variable

    ~ define a complex mapping from

    Complex function of

    a real variable

    ~ define a curvecurve on

    one comp ex p ane to anot era complex plane

    ( ) ( ) ( )C

    f z dz f z t z t dt

    ( ) 0Cf z dzComplex integral

    ~ integration of a complex

    function (of a complex variable)

    Cauchys Integral theorem

    ~ valid whenf(z) is analyticalanalyticalfor every point encircled by a

    ~ upperboundofacomplexupperboundofacomplex

    integrationintegration

    ~~ CauchyCauchy--Riemannequations,Riemannequations,

    singularitiessingularities

    EE2012 ~ Page 10 / Part 2 ben m chen, nus ece

    to

    be

    continued

    on

    the

    next

    pageto

    be

    continued

    on

    the

    next

    page

  • 8/12/2019 EE2012 Complex

    3/139

    FlowChartofMaterialinComplexAnalysis(cont.)FlowChartofMaterialinComplexAnalysis(cont.)FlowChartofMaterialinComplexAnalysis(cont.)FlowChartofMaterialinComplexAnalysis(cont.)( )f z

    ( )

    0( )( ) n

    f zf z

    Another integral formulaCauchys integral formula

    0Cz z 10 !( )

    n

    C nz z

    ~ n 0, Cis a closed curve enclosesz0andf(z) is analytic inside C

    ~powerseriesofananalyticfunctionpowerseriesofananalyticfunction

    ~ Cis a closed curve encloses

    z0andf(z) is analytic for

    every point inside C

    A licationsofcom lexA licationsofcom lex

    complex integral in terms of residues

    0,C

    z z z esintegralintegral

    ~ TaylorseriesTaylorseries,,LaurentseriesLaurentseries,,orderofsingularities,residuesorderofsingularities,residues

    ~ The most general result for

    EE2012 ~ Page 11 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    4/139

    FlowChartofMaterialinComplexAnalysis(cont.)FlowChartofMaterialinComplexAnalysis(cont.)FlowChartofMaterialinComplexAnalysis(cont.)FlowChartofMaterialinComplexAnalysis(cont.)

    A licationsofcom lexA licationsofcom lexintegralintegral

    2

    cos sin d

    ( )P x

    x dx dx

    cosf x mxdx

    0 ( )Q x

    sinf x mxdx

    LaplacetransformLaplacetransform argumentprincipleargumentprinciple RouchestheoremRouchestheorem

    MissioncompletedMissioncompleted

    EE2012 ~ Page 12 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    5/139

    Basic Operations of Complex NumbersBasic Operations of Complex NumbersBasic Operations of Complex NumbersBasic Operations of Complex Numbers

    Cartesian and Polar Coordinates:Cartesian and Polar Coordinates:

    1tanar 2 2

    yii z x

    Eulers Formula:Eulers Formula: cos( ) sin( )ie i

    Additions:Additions: It is easy to do additions (subtractions) in Cartesian coordinate, i.e.,

    ( ) ( ) ( ) ( )a ib v iw a v i b w

    Multi l ication:Multi l ication: It is eas to do multi lication division in Polar coordinate, i.e.,

    ( )( )i i ire ue ru e ( )i

    i

    i

    re re

    EE2012 ~ Page 13 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    6/139

    Complex Functions of a Real VariableComplex Functions of a Real VariableComplex Functions of a Real VariableComplex Functions of a Real Variable

    Complex functions of a real variable are needed to represent paths

    or contours in the complex plane.

    ( ) ( ) ( ) , [ , ]z t x t i y t t a b

    Example 1

    5 0 2itz t e t 34

    5

    5cos 5sint i t

    - 5 - 4 - 3 - 2 - 1 1 2 3 4 5-1

    1

    2

    ( ) 5cos( ) 5sin , [0,2 ]

    x t t

    y t t t

    -4

    -3

    -2

    EE2012 ~ Page 14 / Part 2 ben m chen, nus ece

    -5

  • 8/12/2019 EE2012 Complex

    7/139

  • 8/12/2019 EE2012 Complex

    8/139

    Real Variable (cont.)Real Variable (cont.)Real Variable (cont.)Real Variable (cont.)

    Normal differentiation and integration rules are applicable:

    1 1 2 2 1 1 2 2( )c z c z c z c z

    b b b

    c c dt c dt c dt a a a

    b

    a

    EE2012 ~ Page 16 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    9/139

    CurvesCurvesCurvesCurves

    The set of images Smooth closed curveSmooth closed curve

    { ( ) | [ , ]}C z t t a b 2

    3

    4Smoot h curve

    - 2 2

    2

    Smooth curveSmooth curve

    the complex plane3

    - 4 - 2 2 4 - 2

    The curve is smooth if

    -

    i ecewi se smooth curve

    Piecewise smooth (pws) curvePiecewise smooth (pws) curve

    is continuous( )z t

    EE2012 ~ Page 17 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    10/139

    Curves (cont.)Curves (cont.)Curves (cont.)Curves (cont.)

    The length of a curvelength of a curve is

    b

    m

    ( )aL z t dt

    A curve is thus a mapping

    of the real number line

    a b

    onto the complex plane

    EE2012 ~ Page 18 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    11/139

    Two Special CurvesTwo Special CurvesTwo Special CurvesTwo Special Curves

    CircleCircle

    e parametr c escr pt on

    for a circlecircle centred at r

    complex point a and with aradius ris Re

    a

    ( ) , [0,2 ]

    it

    z t a re t

    EE2012 ~ Page 19 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    12/139

    Two Special CurvesTwo Special CurvesTwo Special CurvesTwo Special Curves

    Straight LineStraight Line

    e parametr c escr pt on

    of a straight linestraight line segmentb

    with starting point a andendpoint b is

    R ea

    ( ) ( ) , [0,1]z t b a t a t

    EE2012 ~ Page 20 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    13/139

    and Length of Curvesand Length of Curvesand Length of Curvesand Length of Curves

    a) The line segment that connects the points and2 3i 5 6i( ) (7 9) ( 2 3) , [0,1]z t i t i t

    1 1b

    9

    b The circle with radius 2 and centre 1 i

    0 0a

    z t t t t

    7

    ( ) (1 ) 2 , [0, 2 ]itz t i e t

    2 2 2

    0 0 0

    ( ) 2 2 2 1 4b

    it it

    a

    L z t dt i e dt i e dt dt

    EE2012 ~ Page 21 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    14/139

    Example 2 (cont.)Example 2 (cont.)Example 2 (cont.)Example 2 (cont.)

    2, 2 3y x x

    2 3x t t

    c)

    Let 2t

    ( ) ( 2), 2 3z t t i t t

    3 3

    ( ) 1 2 2

    b

    L z t dt i dt dt 2 2a

    EE2012 ~ Page 22 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    15/139

    Complex Functions of a Complex VariableComplex Functions of a Complex VariableComplex Functions of a Complex VariableComplex Functions of a Complex Variable

    A complex function of a complex variable maps one plane to another plane.

    Im[w]Im[z]

    w= f(z)

    Re[z] Re[w]z0

    0

    Cimage

    domain

    ( )f z wThese functions are of the form ( ) ( , ) ( , ) .f x iy u iv u x y iv x y

    EE2012 ~ Page 23 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    16/139

    Complex MappingComplex MappingComplex MappingComplex Mapping

    A complex-valued function

    defines a mappingmapping of a domain,D, onto its imageimage thew-plane.

    , , ,

    For any pointz0

    inD, we call the point the image ofz0. Similarly,

    the points of a curve Care mapped onto a curve on the w-plane.0 0

    ( )w f z

    Im[w]Im[z]

    w= f(z)

    Re[z] Re[w]

    z0w0

    EE2012 ~ Page 24 / Part 2 ben m chen, nus ece

    imagedomain

  • 8/12/2019 EE2012 Complex

    17/139

    Example:Example:zz22Example:Example:zz22

    a) 2 2

    ( ) ( )w f z z x iy 2x y i xy

    u iv

    The functionf(z) =z2

    would for example map the complex number 1 + i to i2and the number 2 i to 3 i 4.

    The line segment or is mapped to

    the line segment , since

    [0, 2], 0x y , [0,2], 0x t t y

    2 0 2 0u t t v 2 2 2( ) ( 0)u iv x iy t i t

    EE2012 ~ Page 25 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    18/139

    Example:Example:zz22 (cont.)(cont.)Example:Example:zz22 (cont.)(cont.)

    2 2 2 2( ) ( )i i iw f z R e z r e r e In polar coordinate:

    or examp e, e mage o e reg on

    under the mapping is

    ,r

    2w z 1 9 / 4, / 3 2 / 3R

    v

    2

    x u

    EE2012 ~ Page 26 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    19/139

    Example:Example: eezzExample:Example: eezz

    b zw z e x i y

    e

    cos sinx xe y i e y u iv

    (1 ) cos1 sin1f i e i e For example,

    EE2012 ~ Page 27 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    20/139

    Example:Example: eezz (cont.)(cont.)Example:Example: eezz (cont.)(cont.)

    In terms of polar coordinates

    ( ) i z x i y x i yw f z R e e e e e

    Therefore

    ,R e y

    Note that 0zw e z

    EE2012 ~ Page 28 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    21/139

    Example:Example: eezz (cont.)(cont.)Example:Example: eezz (cont.)(cont.)

    For , consider the images of:z

    w e y v

    1. Straight lines

    and

    0 constx x

    0 consty y u

    x0

    x

    x0e

    From , we see,xR e y y v

    circle and

    0

    0xw e 0y y

    u

    y0

    x

    y0

    0arg( )w y

    EE2012 ~ Page 29 / Part 2 ben m chen, nus ece

    ,x

    R e y

  • 8/12/2019 EE2012 Complex

    22/139

    x

    Example:Example: eezz (cont.)(cont.)Example:Example: eezz (cont.)(cont.)

    D / ,z x iy a x b 2. Rectangle { }:c y d

    ,

    rom a , we can conc u e a any rec ang e w s e para e o e

    coordinate axes is mapped onto a region bounded by portions of rays

    an c rc es. ere ore e mage o s

    D / ,i a bw Re e R e c d { }

    y v

    de d

    ea

    EE2012 ~ Page 30 / Part 2 ben m chen, nus ece

    xba u

  • 8/12/2019 EE2012 Complex

    23/139

    Example:Example: eezz (cont.)(cont.)Example:Example: eezz (cont.)(cont.)

    3. The fundamental region :

    -

    y

    ,

    origin. The strip is mapped onto the upper half-plane0 y

    -1

    x u

    1

    More generally, every horizontal strip is mapped onto the

    -

    2c y c

    EE2012 ~ Page 31 / Part 2 ben m chen, nus ece

    .

    ,

    x

    R e y

  • 8/12/2019 EE2012 Complex

    24/139

  • 8/12/2019 EE2012 Complex

    25/139

    More ExampleMore ExampleMore ExampleMore Example

    c) ( )

    iz ize e

    f z

    ( ) ( )

    2 2

    i x i y i x i y ix y ix ye e e e

    (cos sin ) (cos sin )2

    y y

    e x i x e x i x

    cos sin2 2

    cos cosh sin sinh

    e e e ex i x

    x y i x y

    u iv

    EE2012 ~ Page 33 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    26/139

    More ExampleMore ExampleMore ExampleMore Example

    Alternatively, ( ) cos cos( )

    cos( )cos( ) sin( )sin( )

    f z z x iy

    x iy x iy

    cos( )cosh( ) sin( )sinh( )x y i x yu iv

    sin( ) sinh( ), cos( ) cosh( ), tan( ) tanh( ).ix i x ix x ix i x since

    Keep in mind that

    sin cos2 2

    iz iz iz ize e e e

    z zi

    sinh cosh2 2

    z z z ze e e e

    z z

    EE2012 ~ Page 34 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    27/139

    ObservationsObservationsObservationsObservations

    Identities for trigonometric functions also hold for complex arguments, e.g.

    2 2

    1 2 1 2 1 2

    cos sin 1

    sin( ) sin cos cos sin

    z z

    z z z z z z

    1 2 1 2 1 2cos( ) cos cos sin sinsin( ) cos , cos( ) sin

    z z z z z zz z z z

    Also note that

    s n s n cos cos s n ,

    cos cos cosh sin sinh

    z x y x y

    z x y i x y

    EE2012 ~ Page 35 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    28/139

    ObservationsObservationsObservationsObservations

    is continuous at the point if and are( )f z w ( , )u x y ( , )v x y0 0z x i y

    .

    For example, is continuous everywhere, because

    0 0

    2( )f z z 2 2u x y

    and are continuous everywhere.

    It can be shown that the re ular rules of differentiation and inte ration

    2v xy

    are still valid, e.g.

    sin cosd z zdz

    1n ndz n zdz

    EE2012 ~ Page 36 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    29/139

    Complex IntegralComplex IntegralComplex IntegralComplex Integral

    Consider the curve and the complex function f which: ( ) , [ , ]C t z t t

    is continuous on C. The complex integral of f along Cis then defined as

    ( ) ( ) ( )C

    f z dz f z t z t dt

    EE2012 ~ Page 37 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    30/139

    Example 4Example 4Example 4Example 4

    a) Let b) Let Cbe a circle with radius r: ( ) 2 3 , 1 2C z t t i t t

    and2( )f z z

    2( ) 1/f z z

    1

    2

    2 3 2 3C

    z z t i t i t : ( ) , [0,2 ]

    it

    C z t re t

    1

    3 7

    (2 3)i t dt

    2

    0

    1/it

    it

    C

    irez dz dt

    re

    3

    3223 21i

    2

    0

    2i dt i

    EE2012 ~ Page 38 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    31/139

    Properties of Complex IntegralsProperties of Complex IntegralsProperties of Complex IntegralsProperties of Complex Integrals

    As for real integrals, the following rules apply:

    1. [ ( ) ( )] ( ) ( )f z g z dz f z dz g z dz C C C

    2. ( ) ( ) , complexC C

    k f z dz k f z dz k

    EE2012 ~ Page 39 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    32/139

    Properties of Complex IntegralsProperties of Complex IntegralsProperties of Complex IntegralsProperties of Complex Integrals

    3. 4.( ) ( ) ( )f z dz f z dz f z dz ( ) ( )f z dz f z dz 1 2 *C C

    C*C C2

    CC1

    EE2012 ~ Page 40 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    33/139

    Estimation of a Complex IntegralEstimation of a Complex IntegralEstimation of a Complex IntegralEstimation of a Complex Integral

    Letf (z) be continuous on . If on C, then: ( ) , [ , ]C t z t t ( )f z M

    ( )f z dz M LC

    , . .

    2 2 ( )L z t dt dtdt dt

    EE2012 ~ Page 41 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    34/139

    Estimation of Complex IntegralEstimation of Complex Integral An IllustrationAn IllustrationEstimation of Complex IntegralEstimation of Complex Integral An IllustrationAn Illustration

    Graphically, take real integration as an example,

    f(t)

    M

    t

    L = b a

    ( )b

    a

    f t dt L shaded area with red lines

    EE2012 ~ Page 42 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    35/139

    Estimation of Complex IntegralEstimation of Complex Integral An IllustrationAn IllustrationEstimation of Complex IntegralEstimation of Complex Integral An IllustrationAn Illustration

    For complex cases, for example, we takef(z) =z3 and Cto be a unit circle

    1

    0.8

    1

    ( )f z z ( )

    1

    f z z

    M

    -0.5

    0

    .5

    0.4

    0.6

    .

    0.5

    1

    0

    0.5

    1

    -1

    0.5

    1

    0

    0.5

    1

    0

    .

    -1

    -0.5

    0

    -1

    -0.5

    -1

    -0.5

    -1

    -0.5

    ( ) 2f z dz M L

    EE2012 ~ Page 43 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    36/139

    Example 5Example 5Example 5Example 5 4 6i

    Find the upper bound for the absolute value of z

    C

    e dz

    2 3i L

    w ere s e ne connec ng e po n s an2 3i 4 6i

    ( ) (2 3) (2 3), [0,1]z t i t i t 1

    2 22 3 13L dt , ,

    (( ))

    t i t

    x ti yt

    t

    0

    60 M

    z x y x y x y xe e e e e e e

    40

    50

    ( )z te

    2 2 4

    54.5982x t

    e e eM

    Thus,413 196.8566ze dz M L e 10

    20

    largest 1x t

    EE2012 ~ Page 44 / Part 2 ben m chen, nus ece

    C

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    t

  • 8/12/2019 EE2012 Complex

    37/139

    Example 6Example 6Example 6Example 6 a b a b

    Show that2

    | | 2

    1 4

    31zdz

    z

    4

    6 f(z)

    Noting that-4

    -2

    0

    =

    2 2 2 2

    ( 1) ( 1) 1 1 1 1z z z z -2

    -1

    0

    12

    -2

    -1

    0

    1

    2

    -6

    L

    0.3

    0.32

    0.34

    ,

    2 2 1 1

    1 1 3z z M ( ) itf z

    M

    0.24

    0.26

    0.28

    2| | 2

    1 4

    31z

    z

    dz MLz

    EE2012 ~ Page 45 / Part 2 ben m chen, nus ece

    0 1 2 3 4 5 6

    0.2

    0.22

    t

  • 8/12/2019 EE2012 Complex

    38/139

    Analytical FunctionsAnalytical FunctionsAnalytical FunctionsAnalytical Functions

    A functionf (z) defined in domainD is said to be an analytic function

    points ofD. The functionf (z) is said to be analytic at a pointz0 inD if

    z0.

    nei hborhood onnei hborhood on

    D z0

    a complex planea complex plane

    is a discis a disc

    EE2012 ~ Page 46 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    39/139

    Analytical FunctionsAnalytical FunctionsAnalytical FunctionsAnalytical Functions

    Discrepancy of Definitions of Analytic FunctionsDiscrepancy of Definitions of Analytic Functions

    e n on g ven y mos popu ar ex s e.g., e re erence ex :e n on g ven y mos popu ar ex s e.g., e re erence ex :

    A functionf (z) defined in domainD is said to be analytic if it is differentiable

    at every point ofD.

    Definition given in some odd books or the text by Garg et al.:Definition given in some odd books or the text by Garg et al.:

    A functionf (z) defined in domainD is said to be analytic if it is differentiable

    with a continuous first order derivative at ever all oint ofD.

    Nevertheless, we will use the definition given by Garg et al. throughout

    EE2012 ~ Page 47 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    40/139

    SingularitiesSingularitiesSingularitiesSingularities

    Points where a function is not analytic are called singular pointssingular points or

    .

    Example:

    is analytic everywhere

    inD exceptz = 0, which is thus X

    1

    ( )f z z

    the singular point or pole of the

    .

    Note that a function is either analytic or singular at any given pointNote that a function is either analytic or singular at any given point

    EE2012 ~ Page 48 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    41/139

    Analytical FunctionsAnalytical FunctionsAnalytical FunctionsAnalytical Functions

    Observations:Observations:

    It can be shown that the existence of continuous first derivatives implies

    the existence of a continuous second derivative, etc. This also implies

    e ex s ence o a ay or ser es.

    20( )z z

    An analytic function can thus also be defined as a function for which a

    2!

    Taylor series expansion exists.

    EE2012 ~ Page 49 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    42/139

    TheoremTheoremTheoremTheorem

    If a functionf (z) = u + i v is analytic inD, then the following Cauchy-Riemann

    , . .

    andx y y x

    Alternatively, if the Cauchy-Riemann equations hold for a functionf (z) = u + i v

    ,

    analytic inD.

    EE2012 ~ Page 50 / Part 2 ben m chen, nus ece

    Proof.Proof.Proof.Proof.

  • 8/12/2019 EE2012 Complex

    43/139

    ( )f z

    EE2012 ~ Page 51 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    44/139

    ExampleExampleExampleExample

    2 2 2

    u v u v ,x y y x

    an t e part a er vat ves are cont nuous .z

    , .

    EE2012 ~ Page 52 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    45/139

  • 8/12/2019 EE2012 Complex

    46/139

    ExampleExampleExampleExample

    *

    f z z x iy u iv

    u v u v , ,

    x y y x

    ( )f z is not analytic anywhere

    EE2012 ~ Page 54 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    47/139

    ExampleExampleExampleExample

    2 2 2 2( ) 2f z x y i x y u iv

    2 2 2 22 , 4 , 2 , 4u v u v

    xy x y x y xyx x

    The Cauchy-Riemann equations only

    hold forx = 0 and/ory = 0. Since the

    function is not analytic in ay = 0 x = 0

    neighbourhood ofx = 0 ory = 0,f (z) is

    not analytic anywhere.

    EE2012 ~ Page 55 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    48/139

  • 8/12/2019 EE2012 Complex

    49/139

    Cauchys Integral TheoremCauchys Integral TheoremCauchys Integral TheoremCauchys Integral Theorem

    A domainD in the complex plane is called simply connectedsimply connected if every closed

    .

    called multiply connectedmultiply connected.

    Simply connected Doubly connected Triply connected

    EE2012 ~ Page 57 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    50/139

    Cauchys Integral TheoremCauchys Integral TheoremCauchys Integral TheoremCauchys Integral Theorem

    Iff (z) is analytic in a simply connected domainD, then for every closed path

    CinD

    ( ) 0C

    f z dz Fundamental Theorem of CalculusFundamental Theorem of Calculus

    D

    If F(z) is an analytic function with a

    continuous derivativef (z) = F'(z) in a

    Creg onD con a n ng a p ecew se

    smooth (pws) arc :z =z(t), t

    ( ) ( ( )) ( ( ))f z dz F z F z

    z

    EE2012 ~ Page 58 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    51/139

    Applications of Cauchys TheoremApplications of Cauchys TheoremApplications of Cauchys TheoremApplications of Cauchys Theorem

    ApplicationsApplications:: z2

    1. Iff (z) is analytic in a simply connected

    domainD, then the integral off (z) isC1

    *C2

    independent of path inD.

    2

    z1*

    1 2

    ( ) ( ) 0C C

    f z dz f z dz

    *1 22

    ( ) ( ) ( )C CC

    f z dz f z dz f z dz

    EE2012 ~ Page 59 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    52/139

  • 8/12/2019 EE2012 Complex

    53/139

    Applications (cont.)Applications (cont.)Applications (cont.)Applications (cont.)

    3. The integral along a closed path C1 of the functionf (z) which is analytic

    in the multiply connected domainD, is given by the sum of the integrals

    around paths which encircle all openings within the region bounded by

    C1, e.g.

    C1* *( ) ( ) ( ) 0

    C C C

    f z dz f z dz f z dz

    *C2 *C3

    * *

    Thus ( ) ( ) ( )f z dz f z dz f z dz C2 C3

    1 2 3

    2 3

    ( ) ( )C C

    f z dz f z dz

    EE2012 ~ Page 61 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    54/139

    Applications (cont.)Applications (cont.)Applications (cont.)Applications (cont.)

    4. In general, it can be shown that if the path Cencloses the pointz0, then

    0( )2 1

    n

    C

    z z dzi n

    Proof. Without loss of any generality, we assumez0 = 0. For n 0,zn is

    analytic anywhere on the whole complex plane. By Cauchys theorem, its

    integration over any closed curve is 0. For n = 1, By Application 2, the

    integration over any path enclosedz0 is the same. It was shown earlier

    : ( ) , [0,2 ]tC z t re t a e n egra on o z over a c rc e

    2 2

    1itire

    EE2012 ~ Page 62 / Part 2 ben m chen, nus ece

    0 0it

    Cz re

  • 8/12/2019 EE2012 Complex

    55/139

    Proof of Application 4 (cont.)Proof of Application 4 (cont.)Proof of Application 4 (cont.)Proof of Application 4 (cont.)

    For n < 1, let m = n > 1 and integrate over . We have: ( ) , [0,2 ]itC z t re t

    ( 1)1

    0 0

    1 i m tm m imt m

    C

    ire idz dt e dt

    z r e r

    1

    0

    2( 1)

    ( 1)1

    m t

    m

    i m

    e

    i mr

    1

    1

    ( 1)

    1cos 2( 1) sin 2( 1) 1

    m

    m

    m r

    m i m

    11

    1 0 1 01 m

    m r

    m r

    EE2012 ~ Page 63 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    56/139

    ExampleExampleExampleExample

    (a) with Cthe ellipse1/

    C

    z dz 2 24 1x y

    The equation of the ellipse is given by2 2

    0 02 2

    ( ) ( )1

    x x y y

    a b

    2 a

    (x 0 , y 0)2 b

    EE2012 ~ Page 64 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    57/139

    Example (cont.)Example (cont.)Example (cont.)Example (cont.)

    Consequently, the ellipse is centred at the origin. The function

    = =

    2 24 1x y

    .

    is therefore the same for any path which encloses the origin. Cmay thus

    be re laced with a circular ath of radius 1 i.e. it , ,

    1

    C2

    12

    it

    it

    iedz dt i

    z e

    EE2012 ~ Page 65 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    58/139

    ExampleExampleExampleExample

    22

    2

    09

    z

    z

    edz

    z

    The function is2( ) /( 9)zf z e z

    analytic inside the region enclosed

    by the curve.

    -3 3

    EE2012 ~ Page 66 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    59/139

    ExampleExampleExampleExample

    1 1 1/ 2 1/ 2

    1 ( 1 )z z

    z i z i

    The function is analytic inside

    1

    the region enclosed by the path

    -1

    EE2012 ~ Page 67 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    60/139

  • 8/12/2019 EE2012 Complex

    61/139

    Cauchys Integral FormulaCauchys Integral FormulaCauchys Integral FormulaCauchys Integral Formula

    0 , [0, 2 ]it

    z z Re t 0zConsider a circle with centre . Then

    2

    0

    0

    ( )itdt i f z Re dt

    0

    ( )

    C

    f zdz

    z z

    2

    0

    0

    ( )it itit

    f z ReiR e

    Re

    Sincef (z) is continuous and the integral will have the same value for all

    values ofR, it follows that

    2 2 2

    0 0 0 00

    0 0 0 0

    lim ( ) ( ) ( ) 2 ( )R

    C

    dz i f z Re dt i f z dt i f z dt i f zz z

    EE2012 ~ Page 69 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    62/139

    Cauchys Integral FormulaCauchys Integral FormulaCauchys Integral FormulaCauchys Integral Formula

    This leads to Cauchy's integral formulaCauchy's integral formula, stating the following:

    Letf (z) be analytic inD. Let Cbe a closed curve inD which encloses

    z0. en

    00

    ( )2 ( )

    C

    f zdz i f z

    z z

    EE2012 ~ Page 70 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    63/139

  • 8/12/2019 EE2012 Complex

    64/139

    Power Series as Analytic FunctionPower Series as Analytic FunctionPower Series as Analytic FunctionPower Series as Analytic Function

    A power series is of the form

    2 0( )c z z

    n

    0 0 1 00

    ( ) ( )nn

    c z z c c z z

    convergence r* such that the series is absolutely convergent for

    00

    n

    n

    c z z

    and divergent for .*0z z r *

    0z z r

    * =

    21 1

    EE2012 ~ Page 72 / Part 2 ben m chen, nus ece

    1 z

  • 8/12/2019 EE2012 Complex

    65/139

    Power Series as Analytic FunctionsPower Series as Analytic FunctionsPower Series as Analytic FunctionsPower Series as Analytic Functions

    The radius of convergence is

    r*

    z0

    Convergent

    *

    1

    lim nn

    n

    r

    c

    Divergent Each power series defines a

    the radius of convergence.

    EE2012 ~ Page 73 / Part 2 ben m chen, nus ece

    Example:Example: 1

    1

    z zz

  • 8/12/2019 EE2012 Complex

    66/139

    Power SeriesPower Series

    Power SeriesPower Series

    Inside the radius of convergence, the power series

    00

    ( ) ( )nnn

    f z c z z

    2 2z z

    can be integrated and differentiated on a term-by-term basis, i.e.

    1 1

    00

    ( ) ( )nnnz z

    f z dz c z z dz

    1 *0 0

    0

    ( ) ,nnn

    nc z z z z r

    ( )d f zdz

    EE2012 ~ Page 74 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    67/139

  • 8/12/2019 EE2012 Complex

    68/139

  • 8/12/2019 EE2012 Complex

    69/139

    ExamplesExamplesExamplesExamples

    3(a)4 3 0

    1

    sin3! z

    z

    dz zz dz

    6

    z 3

    42( 1)

    z

    dzz

    3 13!

    z

    zz e

    dz 13

    3 3ze ze

    (b)

    EE2012 ~ Page 77 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    70/139

    of Complex Functionsof Complex Functionsof Complex Functionsof Complex Functions

    If a functionf (z) is analytic for 0 ,z z R

    thenf (z) has a Taylor seriesTaylor series expansion

    R

    where

    00

    n

    n

    z a z z

    z0

    10

    1 ( )

    2 ( )n n

    C

    f za dz

    i z z

    ( )0( )

    !

    nf z

    n

    EE2012 ~ Page 78 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    71/139

    of Complex Functionsof Complex Functionsof Complex Functionsof Complex Functions

    If a functionf(z) is analytic in

    ,thenf (z) has a Laurent seriesLaurent series

    ex ansion

    1 0 22

    z0R1

    C

    nz a z z

    where

    n

    10

    1 ( )

    2 ( )n n

    C

    f za dz

    i z z

    Points where a function is not analytic

    are called singularities.

    EE2012 ~ Page 79 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    72/139

    Example 10Example 10Example 10Example 10z

    e sinz cosz(a) The functions , and are analytic functions, and have

    0

    2 3

    1z z z

    e z *1 nc

    3 5 7

    2! 3!

    z z z

    1!

    1

    nn

    nn c

    s n3! 5! 7!

    z z m1

    ( 1)!

    n

    n

    cos 12! 4! 6!

    z z zz lim!

    lim( 1)

    n

    nn

    n

    EE2012 ~ Page 80 / Part 2 ben m chen, nus ece

    n

  • 8/12/2019 EE2012 Complex

    73/139

  • 8/12/2019 EE2012 Complex

    74/139

    Example 10 (cont.)Example 10 (cont.)Example 10 (cont.)Example 10 (cont.)

    (c) The function is analytic for . The Taylor series expansion with1

    1 z1z

    z0 = , . .,

    21 1 z z

    (d)* Find Taylor series expansion of atz0 = 3 & its convergence radius.

    1 z

    1( )f zz

    2 3

    2

    2 3

    3 4

    11 1 3 3 33( ) 1

    3 3 3 3

    1 3 ( 3) ( 3)

    3 3 3 33 z

    zz z z zz

    z

    zf

    The series converges for all Thus, its

    3

    | 3 .3

    313

    zz

    * 3.r

    EE2012 ~ Page 82 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    75/139

  • 8/12/2019 EE2012 Complex

    76/139

  • 8/12/2019 EE2012 Complex

    77/139

    Example 11Example 11Example 11Example 11

    cos 1z

    2 4 61

    1 1

    z z z

    3 5z z z

    a z 2! 4! 6!z 2! 4! 6!

    e unc on z as a remova e a z0 = 0.

    (b) 5sin

    ( ) z

    f zz

    3 5 7

    5

    1

    3! 5! 7!

    z z zz

    z

    2

    4 2

    1 1 1

    5! 7!3!

    z

    z z

    The functionf (z) has a 4th order pole atz0 = 0.

    EE2012 ~ Page 85 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    78/139

    Example 11 (cont.)Example 11 (cont.)Example 11 (cont.)Example 11 (cont.)

    2 1/

    ( )

    z

    f z z e2 1 1 1

    1z

    (c) 2 1 1

    z z 2! 3!z z z

    The function z has an essential sin ularit atz = 0.

    2! 3!z

    2 2 2 (d)

    2 2 2( )

    ( 1) ( 1) ( 1)

    1 2

    f zz z z

    Thus, z has 2nd order ole atz = 1.

    2 ( 1)( 1) zz

    EE2012 ~ Page 86 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    79/139

  • 8/12/2019 EE2012 Complex

    80/139

    Example 11 (cont.)Example 11 (cont.)Example 11 (cont.)Example 11 (cont.)

    Forz0 = 1, we have the following Laurent series off(z) centered atz0 = 1

    1 ( 1)( ) 1

    ( 1) 1

    1

    11

    z

    zf z

    z z zzz

    2 31

    1

    1 3 2( 1) 2( 1) 2( 1)

    z z zz

    z z z

    Thus, the order of singularity off (z) atz0 = 1 is again equal to 1.

    1st order poles are also called simple poles or simple singularities.

    EE2012 ~ Page 88 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    81/139

    ZerosZerosZerosZeros

    If , then the function g (z) is said to have a zero or root in z =z0.0( ) 0g z

    If and , then the function( )

    0( ) 0ng z ( 1)0 0 0 0( ) ( ) ( ) ( ) 0

    ng z g z g z g z

    n z =z0.

    If the function g (z) has an nth order zero inz =z0, then has an1

    ( )f z

    n-th order pole inz =z0.

    EE2012 ~ Page 89 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    82/139

    Example 12Example 12Example 12Example 12

    a) Consider the function , which has a singularity at1

    ( )( 1)( )z

    f zz e e

    0 1z

    Let ( ) ( 1)( )zg z z e e

    Then ( ) ( 1) (1) 0z z

    g z e e z e g

    Therefore has a 2nd order zero in = 1 and has a 2nd order

    ( ) ( 1) (1) 2 0z z zg z e z e e g e

    pole inz0 = 1.

    EE2012 ~ Page 90 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    83/139

  • 8/12/2019 EE2012 Complex

    84/139

  • 8/12/2019 EE2012 Complex

    85/139

    ExampleExampleExampleExampleAn alternative solution to Q.2.2.1 in Tutorial 2.2, i.e., finding the order of

    oles for

    2

    ( ) sin 1( )

    ( )

    zh z e z

    f zg z z

    1. It is obvious that g (z) has a zero of order 2 atz = 0, i.e., n = 2.

    2. Noting , we have m = 2.0

    0(0) cos 0

    z

    z

    z

    e z

    h e z

    3. The order of the pole off(z) atz0 = 0 is given n m = 0. It is removable.

    0s n ze z

    EE2012 ~ Page 93 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    86/139

    ResiduesResiduesResiduesResidues

    We know that iff (z) is analytic in domainD except at the pointz0, it has a

    n

    Laurent series expansion of

    n

    n

    with

    10

    1 ( )

    2 ( )n n

    C

    f za dz

    i z z

    and Cany closed curve inD which enclosesz0.

    EE2012 ~ Page 94 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    87/139

    idididid

  • 8/12/2019 EE2012 Complex

    88/139

    ResiduesResiduesResiduesResidues1 2, , nz z zIff (z) is not analytic in several points , then

    1

    ( ) ( )C C

    f z dz f z dz 2

    ( ) ( )

    nC C

    f z dz f z dz

    1 2es , es , es ,

    2 Res( , )

    n

    n

    i

    z z z

    i f z

    C

    C

    1i

    C1 z2

    z3C3

    z1

    EE2012 ~ Page 96 / Part 2 ben m chen, nus ece

    C l l ti f R idC l l ti f R idC l l ti f R idC l l ti f R id

  • 8/12/2019 EE2012 Complex

    89/139

    Calculation of ResiduesCalculation of ResiduesCalculation of ResiduesCalculation of Residues

    1. f(z) has a simple pole atz =z0:0

    0 0Res( , ) lim ( ) ( )z z

    f z z z f z

    2. f (z) has an nth order pole atz =z0:

    0

    1

    0 01lim1

    Res( , ) ( ) ( )( 1)!z z

    nn

    n

    df z z z f zn d z

    3. where has a simple zero at , while0z z( )

    ( )( )

    A zf z

    B z

    0( ) 0A z ( )B z

    and bothA andB are differentiable atz =z0: 000

    ( )Res( , )

    ( )

    A zf z

    B z

    EE2012 ~ Page 97 / Part 2 ben m chen, nus ece

    C l l i f R idC l l i f R idC l l i f R idC l l i f R id

  • 8/12/2019 EE2012 Complex

    90/139

    Calculation of ResiduesCalculation of ResiduesCalculation of ResiduesCalculation of Residues

    2'. The 2nd formula of the previous page can be modified as follows:

    - = ,

    11 md

    00 01

    es , m( 1)! mz z

    z z z zdm z

    where m is any integer with mn.

    This formula was proposed and derived by Phang Swee King, a

    student taking EE2012 in Semester 2 of Year 2007/08. It may yield

    a simpler way in computing the residue for certain situations.

    EE2012 ~ Page 98 / Part 2 ben m chen, nus ece

    E l i F l 2E l i F l 2''E l i F l 2E l i F l 2''

  • 8/12/2019 EE2012 Complex

    91/139

    Example using Formula 2Example using Formula 2''Example using Formula 2Example using Formula 2''Example: The extra freedom in selecting m in Formula 2' can simplify

    some problems in computing residues and thus complex integrals. We

    consider the following example (which was solved earlier),

    sinz

    It was shown that the function has a 3rd order pole atz0 = 0. However, if

    4

    | | 1z

    zz

    we use m = 4 instead of 3, it is much easier to compute the associated

    residue compared with that using the original formula 2, i.e.,

    3 3

    4

    4 3 4 30 0| | 1

    sin 1 sin 1 12 lim 2 lim sin 2 cos 0

    3! 3! 3! 3z zz

    z d z d idz i z i z i

    z dz z dz

    EE2012 ~ Page 99 / Part 2 ben m chen, nus ece

    E l 13E l 13E l 13E l 13

  • 8/12/2019 EE2012 Complex

    92/139

    Example 13Example 13Example 13Example 13

    22

    4 3.

    z

    zdz

    z z

    (a) Calculate 00 0

    Res( , ) lim ( ) ( )z z

    f z z z f z

    2

    4 3 4 3( )

    1

    z zf z

    z zz z

    has simple poles inz0 = 0 andz0 = 1.

    4 32 Res 0 Res 1

    zdz i

    C

    2

    4 3 4 32 lim lim

    z z z

    z zi

    1 200 1

    2 [ 4 1] 6

    z zz z

    i i

    EE2012 ~ Page 100 / Part 2 ben m chen, nus ece

    E l 13E l 13E l 13E l 13

  • 8/12/2019 EE2012 Complex

    93/139

    Example 13Example 13Example 13Example 13

    (b) Compute

    C1z

    e dzz

    1

    2 Res( ,0)z

    z

    edz i f

    z

    100

    2 lim zz

    i e

    EE2012 ~ Page 101 / Part 2 ben m chen, nus ece

    00 0,

    z zz z z z

    E l 13E l 13E l 13E l 13

  • 8/12/2019 EE2012 Complex

    94/139

    Example 13Example 13Example 13Example 13

    2

    sinzdz(c) Compute

    1z

    sinz has a sim le ole at = 0.

    C

    z

    Thus 10

    sin

    2

    sin sin2 lim 2

    zzz zdz dz i i

    1 1z z

    EE2012 ~ Page 102 / Part 2 ben m chen, nus ece

    00 0,

    z zz z z z

  • 8/12/2019 EE2012 Complex

    95/139

  • 8/12/2019 EE2012 Complex

    96/139

    Example 13Example 13Example 13Example 13

  • 8/12/2019 EE2012 Complex

    97/139

    Example 13Example 13Example 13Example 13

    2

    2 4

    6

    zdz

    (f) Compute C.z

    2 4z 2 4z 2.5-3 22 6

    zz z

    ( 3)( 2)z z

    as a s mp e po e a z0 = enc ose y . us,

    2 4 2 4 16z z i 2 2

    2.5 , 3 56 zz zz z

    EE2012 ~ Page 105 / Part 2 ben m chen, nus ece

    00 0Res( , ) lim ( ) ( )

    z zf z z z f z

  • 8/12/2019 EE2012 Complex

    98/139

  • 8/12/2019 EE2012 Complex

    99/139

    Example 14Example 14Example 14Example 14

  • 8/12/2019 EE2012 Complex

    100/139

    Example 14Example 14Example 14Example 14

    C(a) Evaluate

    21

    d

    21 1 1

    1-2+ 3-2- 3

    0

    1 120 1

    2

    cos 2 2

    12

    zz z i z

    i dz

    1

    1

    12

    2 3 2 3

    z

    i dzz z

    22 2 Res( , 2 3)

    3i i f

    EE2012 ~ Page 108 / Part 2 ben m chen, nus ece

    00 0Res( , ) lim ( ) ( )

    z zf z z z f z

  • 8/12/2019 EE2012 Complex

    101/139

    FunctionsFunctions

    FunctionsFunctions

  • 8/12/2019 EE2012 Complex

    102/139

    FunctionsFunctionsFunctionsFunctionsWe now consider real integrals for which the interval of integration is not

    finite. These are called improper integrals, and are defined by

    ( ) lim ( )R

    f x dx f x dx

    Assume that the is a real rational function with

    R

    ( )( ) P xf x

    for all realx (i.e. no real poles)( ) 0Q x

    degree[ ( )] degree[ ] 2( )Q x P x

    EE2012 ~ Page 110 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    103/139

    S

    Improper IntegralsImproper IntegralsImproper IntegralsImproper Integrals-R R

  • 8/12/2019 EE2012 Complex

    104/139

    R

    Then

    ( ) ( )R

    f z dz f z dz ( )f z dz (*)

    The 2nd condition, i.e., degree [Q(x)] degree [P(x)] + 2, implies if

    C R S

    1 11 1 1 1( ) , ( )

    n mn mn n m mQ z q z q z q P z p z p z p

    122 1

    2( ) 1( ) ( )

    mm

    mm mp pz p zz P z K K Kz f z K f z

    , . ,

    1 nn nz z q z zqq zz

    ( ) 0 asK K

    f z dz M L R R

    (Result S)(Result S)

    EE2012 ~ Page 112 / Part 2 ben m chen, nus ece

    S

  • 8/12/2019 EE2012 Complex

    105/139

  • 8/12/2019 EE2012 Complex

    106/139

    Example 15Example 15Example 15Example 15

  • 8/12/2019 EE2012 Complex

    107/139

    2 3

    1

    1dx

    x

    (b) Calculate +i C

    2 3

    1( )f z

    3 3

    1

    Let

    -i

    2 3

    12 Res( , )

    (1 )dx i f i

    x

    5

    12 6 3lim

    16 8( )z i

    ii i

    z i

    11 nd

    EE2012 ~ Page 115 / Part 2 ben m chen, nus ece

    00 01

    mes ,( 1)!z z n

    z z z zn d z

    Example 15Example 15Example 15Example 15

  • 8/12/2019 EE2012 Complex

    108/139

    4

    1

    4dx

    x

    (c) Calculate . Let and its poles are given by41

    ( )4

    f zz

    (2 1)14 4 (2 1) 444 0 4 4 4

    i ni n

    z z e z e

    4

    (2 0 1)4 4

    2 , 0, 1, 2, 3,n

    i i

    z e n

    C1

    (2 1 1) 34 4

    2

    ,

    2 2 1 , 1i i

    z e e i n

    -1+i 1+i

    54 4

    3

    (2 3 1) 74 4

    2 2 1 , 2i i

    i i

    z e e i n

    EE2012 ~ Page 116 / Part 2 ben m chen, nus ece

    4 ,

    Example 15Example 15Example 15Example 15

  • 8/12/2019 EE2012 Complex

    109/139

    Then

    41

    2 Res( ,1 ) Res( , 1 )4

    dx i f i f ix

    -C

    3 31 1

    1 12

    4 4z i z ii

    z z

    1 1

    2 (1 ) (1 )16 16

    i i i

    2 8 4i

    0( )A z

    EE2012 ~ Page 117 / Part 2 ben m chen, nus ece

    00

    ,( )B z

    Improper Integrals of FourierImproper Integrals of Fourier--typetypeImproper Integrals of FourierImproper Integrals of Fourier--typetype

  • 8/12/2019 EE2012 Complex

    110/139

    Consider integrals of the form

    or

    mxdxxf cos

    mxdxxf sin

    Assume thatf (x) = P(x) / Q(x) is a real rational function with

    Q(x) 0 for all realx (i.e. no real poles)

    m > 0

    EE2012 ~ Page 118 / Part 2 ben m chen, nus ece

    Improper Integrals of FourierImproper Integrals of Fourier--typetypeImproper Integrals of FourierImproper Integrals of Fourier--typetype

  • 8/12/2019 EE2012 Complex

    111/139

    Consider the complex integral

    Rimz imz imz imz

    We will show (i.e., Theorem X next page) that under the conditionsm > 0 and

    ,jjC R S

    egree [Q x ] egree [P x ] + 1, we ave . o ng

    that , it can be showncos sinimz

    e mz i mz

    ( ) 0 asmz

    S

    f z e dz R

    ( )cos Re 2 Res( , )imz jj

    f x mx dx i f e a

    S

    ( )sin Im 2 Res( , )imz jf x mx dx i f e a

    -R R

    EE2012 ~ Page 119 / Part 2 ben m chen, nus ece

    Theorem XTheorem XTheorem XTheorem X

  • 8/12/2019 EE2012 Complex

    112/139

    If with and m > 0, then( )

    ( ) P z

    g z degree[ ( )] degree[ ( )] 1Q x P x

    S

    lim ( ) 0mzR

    S

    g z e dz

    -R R

    There is no name for this theorem. As such, for easy references, we call it

    Theorem X. The result has been used earlier in deriving improper integrals

    of Fourier-type. It will be used later few more times.

    EE2012 ~ Page 120 / Part 2 ben m chen, nus ece

    Proof of Theorem XProof of Theorem X (self(self--study)study)Proof of Theorem XProof of Theorem X (self(self--study)study)

  • 8/12/2019 EE2012 Complex

    113/139

    S

    iYObserving the curves on the right, if we let

    X Y andR , the inte ral

    of the function along Sis the same as it

    along the blue straight lines. Under that

    -R RX Xdegree [Q(x)] degree [P(x)] + 1

    ,

    ( ) ( ) ,| | | |

    K K Kzg z K g z

    z X iy X

    ( )| | | | | |imz im X iy imX my mye e e e e

    and thus

    1

    ( ) 1 0 asX iY Y

    imz my mY K K Kg z e dz e dy e X

    EE2012 ~ Page 121 / Part 2 ben m chen, nus ece

    0 0X i

    Proof of Theorem X (cont.)Proof of Theorem X (cont.) (self(self--study)study)Proof of Theorem X (cont.)Proof of Theorem X (cont.) (self(self--study)study)

  • 8/12/2019 EE2012 Complex

    114/139

    S

    iYSimilarly, we can show the integral along

    the strai ht line from X+ iYto X+ i0 has

    a same bound, i.e.,

    0X i

    -R RX X

    The integral along the line fromX+ iYto X+ iY, we have

    ( ) 0 asimz

    X iY

    g z e dz X mX

    ( ) ( ) ,| | | |

    K K Kzg z K g z

    z x iY Y

    ( )| | | | | |imz im x iY imx mY mY e e e e e

    and thus

    ( ) 2 0 as ,X iY XmY

    imz mY Ke Xg z e dz dx K e X Y

    EE2012 ~ Page 122 / Part 2 ben m chen, nus ece

    X iY X QEDQED

  • 8/12/2019 EE2012 Complex

    115/139

    Example 16Example 16Example 16Example 16

  • 8/12/2019 EE2012 Complex

    116/139

    (b) 2 2sin Im 2 Res ,

    1 1

    izx x z edx i ix z

    +i C

    Im 2

    2

    z

    z i

    zei

    z

    Im

    /

    e

    e

    -i

    0( )A z

    EE2012 ~ Page 124 / Part 2 ben m chen, nus ece

    00

    ,( )B z

    Example 16Example 16Example 16Example 16

  • 8/12/2019 EE2012 Complex

    117/139

    2i z

    c 2 2Re 2 Res ,39 9dx i ix z +i

    C3i

    3

    Re 2

    2 z i

    ei

    z

    6 6

    Re3 3

    e e

    -i3i

    0( )A z

    EE2012 ~ Page 125 / Part 2 ben m chen, nus ece

    00

    ,( )B z

  • 8/12/2019 EE2012 Complex

    118/139

  • 8/12/2019 EE2012 Complex

    119/139

  • 8/12/2019 EE2012 Complex

    120/139

    Simple Poles on the Real AxisSimple Poles on the Real AxisSimple Poles on the Real AxisSimple Poles on the Real Axis

  • 8/12/2019 EE2012 Complex

    121/139

    Since g (z) is differentiable, it is continuous and bounded, and therefore

    ( )

    ( )C

    g z dz M L

    0( ) 0M C()

    This results in Jordan's lemma, stating that

    a

    lim ( )f z dz 1 Res( , )i a i f a

    ( )C

    EE2012 ~ Page 129 / Part 2 ben m chen, nus ece

    Example 17Example 17Example 17Example 17

    i

  • 8/12/2019 EE2012 Complex

    122/139

    sinxdx

    x(a) Calculate

    Consider , with Cthe path as indicated in the illustration.

    iz

    C

    edz

    zBecause the function is analytic in

    the domain enclosed by C, and according to

    ( ) e

    f zz

    Cauchy's integral theorem, the integral must

    be zero, i.e.,S

    i z

    C

    edz

    z

    ( )

    R

    R C S

    0

    i zedz

    z

    R

    -R -

    EE2012 ~ Page 130 / Part 2 ben m chen, nus ece

    Example 17Example 17Example 17Example 17

  • 8/12/2019 EE2012 Complex

    123/139

    Let and . Then, by Jordans lemma0 R

    0 0( )

    lim ( ) Res( ,0)= lim izz

    C

    f z dz i f i e i

    By Theorem X, we have .lim ( ) 0R S

    f z dz

    i z

    edz

    z

    R

    ize

    dz

    0

    ( )iz

    edz i 0 0

    ize

    dz

    0

    ize

    d i

    sinx

    cosx

    EE2012 ~ Page 131 / Part 2 ben m chen, nus ece

    z

    xx

    Example 17Example 17Example 17Example 17

  • 8/12/2019 EE2012 Complex

    124/139

    Si 2

    2

    1

    ( 1)( 2)dx

    x x

    (b) Calculate C()

    -

    Consider

    -

    -1- -1+

    -i 2

    2

    1dx

    1 R 2

    1dz 2 Res 2i i

    C ( ) 1R C S

    EE2012 ~ Page 132 / Part 2 ben m chen, nus ece

    Exam le 17Exam le 17Exam le 17Exam le 17

    Note

    2 Res( , 2) 2 lim3

    i f i i

  • 8/12/2019 EE2012 Complex

    125/139

    2( , )

    3( 1)( 2) 2

    1

    z if

    z z i

    i

    20 1( )

    m es , = m 32

    lim 0

    zC

    z z z

    z dz

    Result S

    S

    C

    i 2

    and

    RS

    R-R

    -1- -1+

    -1

    2

    1

    ( 1)( 2)C

    dxz z

    ( ) 1R C S

    21

    ( 1)( 2)dz

    z z -i 2

    2 Res( , 2)i f i 1 1 2 1i i

    d dx

    EE2012 ~ Page 133 / Part 2 ben m chen, nus ece

    3 3( 1)( 2) ( 1)( 2)2 3 2z z x x

    TransformsTransforms

    TransformsTransforms yC

    L l t f f f ti i d fi d

  • 8/12/2019 EE2012 Complex

    126/139

    Laplace transform of a functionf (t) is defined as

    c x

    0( ) ( ) ( )

    st

    F s L f t e f t dt

    Inverse transform: 1( ) ( ) ( )2

    st

    C

    f t L F s e F s dsi

    Conditions for the existence of an inverse Laplace transform ofConditions for the existence of an inverse Laplace transform ofFF((ss):):

    lim 0 lim finiand teF s s F s

    In terms of the complex variablez:1

    ( ) ( ) Res[ ( ) , ]zt zt if t e F z dz F z e s

    s s

    EE2012 ~ Page 134 / Part 2 ben m chen, nus ece

    iC

    Example 18Example 18Example 18Example 18

    1

  • 8/12/2019 EE2012 Complex

    127/139

    Find the inverse Laplace transform of2 2

    1( )F s

    s

    Solution:

    zt ztC

    y

    2 2 2 2( ) Res , Res ,

    zt zt

    f t i iz z

    z i z i

    i t i t

    z i z i

    c

    2i

    EE2012 ~ Page 135 / Part 2 ben m chen, nus ece

    00 0es , m

    z zz z z z

  • 8/12/2019 EE2012 Complex

    128/139

    Example 19Example 19Example 19Example 19

    y

  • 8/12/2019 EE2012 Complex

    129/139

    Calculate cotz dz C

    Note that with( )

    cot f z

    zz

    ( ) sinf z z

    33 0 22 x

    2 0 2 , .

    Then, according to the argument theorem,

    ( )cot 2 (5 0) 10( )C C

    f zz dz dz i if z

    EE2012 ~ Page 137 / Part 2 ben m chen, nus ece

    Application of Argument PrincipleApplication of Argument PrincipleApplication of Argument PrincipleApplication of Argument Principle

    Let us focus on the case when f (z) is a rational function which is analytic

  • 8/12/2019 EE2012 Complex

    130/139

    Let us focus on the case whenf (z) is a rational function, which is analytic

    except at possibly a finite number of points. The argument principle implies

    1 ( ) 1 1

    ln ( ) ln ( ) arg[ ( )]f z

    dz d f z d f z i f z

    2 2

    1 ln ( ) arg[ ( )]

    C C C

    z z

    d f z d i f z

    2

    2

    1 1

    1ar

    10 ar

    z z

    z

    z

    i z z n

    1

    1

    22

    z

    zi

    . 1z Note that the ln is a real function.EE2012 ~ Page 138 / Part 2 ben m chen, nus ece

    21 arg[ ( )]

    z

    f z n p

    Case 1: If there is one zero and no pole of f ( ) encircled1z

  • 8/12/2019 EE2012 Complex

    131/139

    Case 1: If there is one zero and no pole off (z) encircled

    - ,

    2

    1

    arg[ ( )] 2 ( ) 2 (1 0) 2z

    zf z n p

    i.e.,f (C) will encircle the origin on the image plane once anti-clockwise.

    C

    C f(z)

    . .

    EE2012 ~ Page 139 / Part 2 ben m chen, nus ece

    2z1z 1( )f z

    2

    21 ar [ ( ]

    z

    f z n p

    Case 2: If there is no zero and one pole of f (z) encircled1z

  • 8/12/2019 EE2012 Complex

    132/139

    Case 2: If there is no zero and one pole off (z) encircled

    - ,

    2

    1

    arg[ ( )] 2 ( ) 2 (0 1) 2z

    zf z n p

    i.e.,f (C) will encircle the origin on the image plane once clockwise.

    C

    C f(z)

    . .x

    EE2012 ~ Page 140 / Part 2 ben m chen, nus ece

    2z1z 2( )f z

    1

    21 ar [ ( ]

    z

    f z n p

    Case 3: If there is no zero and no pole (or equal numbers1z

  • 8/12/2019 EE2012 Complex

    133/139

    Case 3: If there is no zero and no pole (or equal numbers

    - ,

    2

    1

    arg[ ( )] 2 ( ) 2 0 0z

    zf z n p

    i.e.,f (C) will not encircle the origin on the image plane at all.

    C

    f(C)f(z)

    . .EE2012 ~ Page 141 / Part 2 ben m chen, nus ece

    2z1z 1( )f z

    2

    ''''

    Let functionsf (z) and g (z) be analytic everywhere on and inside C. If

  • 8/12/2019 EE2012 Complex

    134/139

    ( ) ( )f z g z

    on C, then the total number of zeros ofp (z) =f (z) + g (z) inside Cis

    .

    C

    f(z)

    C

    EE2012 ~ Page 142 / Part 2 ben m chen, nus ece

    g (z)

    Proof of Rouche's TheoremProof of Rouche's Theorem (self(self--study)study)Proof of Rouche's TheoremProof of Rouche's Theorem (self(self--study)study)

    Let t [0, 1]. Sincef (z) and g (z) are analytic everywhere on and inside C

  • 8/12/2019 EE2012 Complex

    135/139

    and since on C, we havef (z) + t g (z) 0 for anyzC(why?).z z

    Let

    1 ( ) ( )f z tg z

    =

    2 ( ) ( )Ci f z tg z

    i.e., (t) is integer-valued. It can also be shown (pretty complicated!) that (t)

    is a continuous function of t. Thus, t can onl be a constant, which im lies

    that the number of zeros off (z)+ t g (z) inside Cis constant for all t [0, 1].

    The result of Rouches theorem follows by letting t = 0 and t= 1, respectively.

    EE2012 ~ Page 143 / Part 2 ben m chen, nus ece

  • 8/12/2019 EE2012 Complex

    136/139

  • 8/12/2019 EE2012 Complex

    137/139

    Example 21Example 21Example 21Example 21

    Show that all the roots (zeros) of ,6 5 4 2( ) 0.1 0.2 0.3 0.1p z z az z z z

  • 8/12/2019 EE2012 Complex

    138/139

    where a is unknown, lie within the unit circle, i.e., , if a < 0.3.

    Let 6 5 4 2( ) , ( ) 0.1 0.2 0.3 0.1f z z g z az z z z . Then on the unit circle:

    5 4 2 5 4 2

    6( ) 1f z z

    . . . . . . . .

    | | 0.1 0.2 0.3 0.1 | | 0.7 1a a

    Thus, on Candf (z) and g (z) are analytic on and inside C. As

    f (z) has 66 roots inside C,p (z) =f (z) + g (z) also has its 66 roots inside C.

    ( ) ( )f z g z

    EE2012 ~ Page 146 / Part 2 ben m chen, nus ece

    Example 21 (cont.)Example 21 (cont.)Example 21 (cont.)Example 21 (cont.)

    a = 0 295 a = 0 1 + i 0 28

  • 8/12/2019 EE2012 Complex

    139/139

    1

    a = 0.295

    1

    a = 0.1 + i 0.28

    0.5 0.5

    0 0

    -0.5 -0.5

    -1 -0.5 0 0.5 1-1 -1 -0.5 0 0.5 1-1

    EE2012 ~ Page 147 / Part 2 ben m chen, nus ece