ee-612: lecture 25: cmos circuits: part 2reza2/courses/491/slides/05-c... · 2008-01-21 ·...

36
Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 www.nanohub.org NCN

Upload: others

Post on 22-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 1

EE-612:Lecture 25:

CMOS Circuits: Part 2

Mark LundstromElectrical and Computer Engineering

Purdue UniversityWest Lafayette, IN USA

Fall 2006

www.nanohub.orgNCN

Page 2: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 2

Outline

1) Review

2) Speed (continued)

3) Power

4) Circuit performance

Page 3: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 3

CMOS inverter

VDD

VIN VOUT

PMOS

NMOS VDD

VDD

V--

>O

UT

VDD/2

VIN -->S B

D

S B

D

transfer characteristic

VDD/2

noise margins

Page 4: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 4

importance of gain

Vout

VinVDD

VDD

VDD 2Aυ = 1 must have gain to

have noise margins

dVout

dVin

= Aυ = gmn + gmp( ) ron || rop( )> 1

Page 5: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 5

outline

1) Review

2) Speed (continued)

3) Power

4) Circuit performance

Page 6: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 6

CMOS inverter speed

VDD

VIN

VOUT

S

D

D

S

+

-CTOT Rswn = kn

VDD

IN (on)kn >

12

τ =12

CTOTVDD

2IN (on)+

CTOTVDD

2IP (on)⎛⎝⎜

⎞⎠⎟

τ =RswN + RswP( )

2CTOT

τ = RswCTOT

Page 7: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 7

loaded propagation delay

VDD

VIN

CTOT

CinCout Cwire Cin

Cin

CTOT = Cout + CL + FO × Cin

Page 8: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 8

Miller C

VD0

p-Si

n+ n+

COV

+ -COV

VDD

0

VDD

0

Vc (t << 0) = −VDD

Vc (t >> 0) = +VDD

ΔVc = 2VDD

ΔQc = ΔVcCOV = 2VDDCOV = CMVDD

CM = 2COV

“feed forward”

Page 9: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 9

on-current determines circuit speed

VDD

VIN

VOUT

S

D

D

S

+

-CTOT

1) quasi-static assumption2) simplified ID - VDS

VDSVDSAT

IN on( )

IN

τ = RswCTOT Rsw ~ VDD / ID (ON)

Page 10: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 10

metrics for circuit speed

K.K. Ng, et al., “Effective On-Current of MOSFETs for Large-Signal Speed Consideration,” IEDM, Dec., 2001.

M.H. Na, et al., “The Effective Drive Current in CMOS Inverters,” IEDM, Dec., 2002.

J. Deng and H.S.P. Wong, “Metrics for Performance Benchmarking of Nanoscale Si and Carbon Nanotube FETs Including Device Nonidealities,”IEEE Trans. Electron Dev., 53, pp. 1317-1366, 2006.

R. Venugopal, et al., “Design of CMOS Transistors to Maximize Circuit FOM Using a Coupled Process and Mixed Mode Simulation Methodology,”IEEE Electron Dev. Lett., 53, pp. 1317-1366, 2006.

Page 11: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 11

outline

1) Review

2) Speed

3) Power

4) Circuit performance

Page 12: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 12

power

VDD

VIN+

-

t0

VDD

Vin (t)

CTOT12

CTOTVDD2T

Page 13: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 13

discharge cycle

+

-

t0

VDD

Vin (t)

CTOT12

CTOTVDD2

T / 2

EC (0) =12

CTOTVDD2

EC (T / 2) = 0

Pdynamic =ΔE

T / 2=

CTOTVDD2

T

Vin (t)

Pdynamic = α f CTOTVDD2

switching activity

Page 14: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 14

discharge through a resistor

+

-

t0

VDD

Vin (t)

CTOT Vc (t)

T / 2

VC (t) = Vc (0)e− t / RCTOT = VDD e− t /τ

Vin (t)

R +-

PR (t) = VC2 (t) R

PAVE =PR (t)dt

0

T /2

∫T / 2

=2T

VDD2

R0

T /2

∫ e−2t /τdt

= f CTOTVDD2

Page 15: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 15

charging cycle

VDD

VIN+

-CTOT

12

CTOTVDD2

does it take power to put energy in the capacitor?

Page 16: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 16

charging cycle (ii)

+

-

t

0

VDD

V (t)

CTOT Vc (t)

T / 2

V (t)

EC (T / 2) =12

CTOTVDD2

EC (0) = 0

EB = VDD0

T /2

∫ i(t)dt

EB = VDD i(t)0

T /2

∫ dt = VDD Q

EB = VDD Q = CTOTVDD2

Ediss =12

CTOTVDD2

Page 17: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 17

charging cycle (iii)

+

-

t

0

VDD

V (t)

CTOT Vc (t)

T / 2

V (t)

R +-

Vc (t) = VDD − i t( )R

i(t) = CTOTdVc

dt

i(t) = −RCTOTdidt

i(t) = i(0+ )e− t /τ = VDD R( )e− t /τ

EB = VDD i(t)dt0

T /2

∫ = CTOTVDD2

Ediss =12

CTOTVDD2

Page 18: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 18

adiabatic charging

+

-

t0

VDD

V (t)

CTOT Vc (t)

T

V (t)

R +- i(t) = CTOTdVdt

= CTOTVDD

T

PR = i2R =CTOTVDD

T⎛⎝⎜

⎞⎠⎟

2

R

Ediss = PRdt0

T

∫ =CTOT

2 VDD2

T 2 RT

Ediss = CTOTVDD2 RCTOT

T⎛⎝⎜

⎞⎠⎟

Page 19: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 19

outline

1) Review

2) Speed

3) Power

4) Circuit performance

5) CMOS circuit metrics

Page 20: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 20

device impact on circuit performace

Question:

Given a technology, how does circuit performance depend on transistor design (W, TOX, VDD, etc.)

Taur and Ning assume a 250nm technology and explore this question by Spice simulation (see pp. 264 - 279). Can we understand the major trends simply?

Page 21: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 21

effect of transistor W on delay

τ =Rswn + Rswp( )

2CTOT = RswCTOT

CTOT = Cout + Cwire + FO × Cin Rsw = kVDD ID (on)

Cout ~ W

Cin ~ W

I(on) ~ W

Rsw ~ 1 / W

Page 22: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 22

loaded vs. unloaded delay

τ = RswCTOT = Rsw Cout + FO × Cin + Cwire( )

i) unloaded:Cin and Cout dominate, CTOT ~ W--> τ independent of W

ii) loaded:CL dominates, CTOT ~ independent of W--> τ ~1/ W

Page 23: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 23

effect of TOX on delay

τ = RswCTOT = Rsw Cout + FO × Cin + CL( )

i) intrinsic delay (CL = 0)

Rsw = kVDD / ID (ON) ~ TOX

Cin ~ 1 / TOX

Cout constant

τ int ~ constant

ii) loaded delay (CL > 0)

τ loaded ≈ RswCLτ loaded ↑ as TOX ↑

(see Fig. 5.32 of Taur and Ning)

Page 24: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 24

effect of L on delay

τ = RswCTOT = Rsw Cout + FO × Cin + CL( )

Rsw = kVDD / ID (ON)

Cin ~ LCout ,CL constant

τ ↑ as L ↑

(see Fig. 5.31 of Taur and Ning)

ID (ON ) =W COXυ(0) VGS −VT( )↓ as L ↑

Rsw ↑ as L ↑

Page 25: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 25

effect of VDD on delay

Rsw = kVDD / ID (ON)

τ ~1

1−VT VDD

ID (ON ) =W COXυ(0) VGS −VT( )Rsw ~ VDD VDD −VT( )

Rsw ~ 1 1−VT VDD( )

τ = RswCTOT = Rsw Cout + FO × Cin + CL( )

Cout = εSi WD ~ 1 VDD +Vbi

Page 26: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 26

delay vs. VDD

τ ~1

1−VT VDD

(see Fig. 5.33 of Taur and Ning)

VDDVT

τ

fixed VT

VT VDD = 0.2

ID (off) ~ e−qVT /mkBT

Page 27: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 27

power-delay trade-off

τ ~ VDD VDD −VT( ) f ~ 1−VT VDD( )

Pstatic ~ ID (OFF)VDD ~ e−qVT /mkBTVDD

Pdynamic = α fCTOTVDD2 ~ VDD

2 1−VT VDD( )

circuit speed:

dynamic (switching) power:

static (leakage) power:

Page 28: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 28

power-delay trade-off

VDD

VT

Pdynamic ~ VDD2 1−VT VDD( )

(see Fig. 5.34 of Taur and Ning)

Pstatic ~ e−qVT /mkBTVDD

speed ~ 1−VT VDD( )

increasing speed

decreasing active power

decreasing leakage power

HP

LSP

Page 29: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 29

Outline

1) Review

2) Speed

3) Power

4) Circuit performance

5) CMOS circuit metrics

Page 30: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 30

key metrics

1) Switching energy: ES =12

CVDD2

2) Switching delay: τ S =CVDD

ID (ON)

3) Dynamic power: PD = α f CVDD2

4) Energy-delay product: ESτ =12

C 2VDD3

ID (on)

Page 31: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 31

the energy-delay metric

Energy-delay product:

ESτ =12

C 2VDD3

ID (on)~

VDD3

VDD −VT( )

Minimum energy-delay product:

( ) 0 1.5S optDD T

DD

EV V

Vτ∂

= ⇒ =∂

Page 32: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 32

device metrics for 65 nm technology node

1) Switching energy: ES =12

CVDD2 ≈ 21 aJ

2) Switching delay: τ S =CVDD

ID (ON)= 0.64 ps

3) Dynamic power: PD = α f CVDD2

4) Energy-delay product: ESτ =12

C 2VDD3

ID (on)= 1.4 ×10−29 J-s

Page 33: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 33

circuit performance (high-speed logic)

Typical power dissipation of a logic chip: 100 W

Dissipation of logic core: ≈ 20 W

Pcore = NcoreCSVDD

2

2fα = 107 ×

CS ×12

2× 4 ×109( )×10−1

Energy-delay product: ESτ ≈ 1.5 ×10−24 J-s

ES ≈CSVDD

2

2

CS ≈ 10 fF/node

Average switching energy: = 6,000 aJ

Page 34: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 34

device circuit increase

delay:

switching energy:

energy-delay:

from device to circuit

0.64 ps 250 ps ~ 400 ×

21 aJ 6000 aJ ~300 ×

~ 10−29 J-s ~ 10−24 J-s ~100,000 ×

Page 35: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 35

Outline

1) Review

2) Speed

3) Power

4) Circuit performance

5) CMOS circuit metrics

Page 36: EE-612: Lecture 25: CMOS Circuits: Part 2reza2/courses/491/Slides/05-C... · 2008-01-21 · Lundstrom EE-612 F06 1 EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical

Lundstrom EE-612 F06 36

conclusions / questions

1) Device metrics aren’t enough; the circuit is critical.

2) How close is CMOS to fundamental limits?