edge-plasmas for act-1 improved models for radiating · 2016. 11. 25. · dt, tbm 2020 2030 2040...

43
Fusion Nuclear Science Facility, Mo3va3on and the Program to Develop a Basis for Power Plants C. E. Kessel, PPPL J. Blanchard, A. Davis, L. El-Geubaly, L. Garrison, N. Ghoniem, P. Humrickhouse, Y. Huang, Y. Katoh, A. Khodak, E. MarrioL, S. Malang, N. Morley, G. H. Neilson, J. Rapp, M. Rensink, T. Rognlien, A. Rowcliffe, S. Smolentsev, L. Snead, M. Tillack, P. Titus, L. Waganer, G. Wallace, S. Wukitch, A. Ying, K. Young, and Y. Zhai 4 th IAEA DEMO Program Workshop, Karlsruhe, Germany, November 15-18, 2016 Fusion Energy Systems Studies

Upload: others

Post on 16-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

FusionNuclearScienceFacility,Mo3va3onandtheProgramtoDevelopaBasisforPowerPlants

C.E.Kessel,PPPL

J.Blanchard,A.Davis,L.El-Geubaly,L.Garrison,N.Ghoniem,P.Humrickhouse,Y.Huang,Y.Katoh,A.Khodak,E.MarrioL,S.Malang,N.Morley,G.H.Neilson,J.Rapp,M.

Rensink,T.Rognlien,A.Rowcliffe,S.Smolentsev,L.Snead,M.Tillack,P.Titus,L.Waganer,G.Wallace,S.Wukitch,A.Ying,K.Young,andY.Zhai

4thIAEADEMOProgramWorkshop,Karlsruhe,Germany,November15-18,2016

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-612712

M.E. Rensink and T.D. Rognlien ARIES Project Meeting

San Diego, CA Jan. 22-23, 2013

Improved models for radiating edge-plasmas for ACT-1

1. Kinetic Monte Carlo neutrals for pumping 2. Multi-charge-state impurities for radiation

Required functionality and R&D for breeder blanket systemssystems

Presented by Neil Morley & Mohamed Abdou, UCLAWith contributions from the FNST community

Fusion Nuclear Science Pathways AssessmentGaithersburg, MD, December 3, 2010

1

FusionEnergySystemsStudies

Page 2: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TheFusionEnergySystemsStudiesTeamisExaminingtheFusionNuclearScienceFacility

WhatdoesanFNSFhavetoaccomplish?HowdowemeasuretheFNSFprogressforfusiondevelopment?HowdoestheFNSFaccomplishitsmission?Whatisthepre-requisiteR&DneededforanFNSF?WhatdoestheFNSFrequirefromourprogramtosucceed?HowdoesanFNSFfitinthelargerfusiondevelopmentprogram?Whatcri3calinsightsaboutthisfacilitycanbeuncovered,impactsofassump3ons,technicalchoicesandphilosophies,…?

Page 3: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TheFNSFistheFirstStepinaTwo-StepPathwaytoCommercialFusionPowerPlants

ITER FNSF DEMO PowerPlant

3dpa 37-74dpa 100-150dpa 150+dpaMaxneutrondamage

Maxplasmapulse

500-3000s 1-15days 15-365days 365+days

TBR ~0 ~1.0 1.05+ 1.05

Tblanket,Tcool,exit 285C,150C 550C,650C 550C,650C 550C,650C

Firststronglyburningplasma

DemonstraterouMnepowerplantoperaMons

Notechnicalgaps

316SS,CuCrZr,Be,W,H2O,SS304,SS430

MaterialsRAFM,PbLi,He,SiC-c,Borated-RAFM,W,baini3csteel

Page 4: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TheFNSFistheFirstStepinaTwo-StepPathwaytoCommercialFusionPowerPlants

FNSF DEMO

min

mod

max

ITER PowerPlant

Largelythesamestar3ngpointbasedonproposedfacili3es

TohavenotechnicalgapsfromDEMOtoaPP

Fusionnuclearbreak-in Rou3neelectricityproduc3on

AddiMonalR&DonDEMO

Page 5: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

WhatisaPossibleTime-FrameandWhereDoestheFNSFReside*

DT,TBM

2020 2030 2040 2050

Non-DT,TBMITER

2060

DTHe/DDFNSFPresentandneartermconfinementdevices,shortpulseàtolongpulse

USDEMO

Pre-FNSFR&D ParallelFNSFR&Dandpre-DEMOR&D

Thisscheduleisusedforillustra3on

FNSFconstrucMon

FNSFdesignPre-CConcPrelimFinal

DEMOconstrucMon

Pre-CConcPrelimFinalDEMOdesign

*USdoesnotpresentlyhaveacommitmenttodesignandconstructtheFNSForDEMO

Page 6: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TheFNSFISNOTaPowerPlantBUT,itsprogramisdesignedtoestablishthe“database”forDEMOandsubsequentpowerplants…itcombinesresearch,development,anddemonstra3onsTheFNSFhasamul3-facetedpurposetobreak-intothefusionnuclearregime

1)  Performthematerialsresearchwithinthenuclearfusionin-serviceenvironment

2)  Establishtheopera3onoffusioncorecomponents(madeofthesematerials)overtheprototypicalrangeofenvironmentalparameters(T,pressure,hydrogen,etc.)withfusionneutrons

3)  Establishtheopera3onofmul3plesubsystems/func3onscri3caltofusion,suchastri3umbreeding,recovery,control,fueling,exhaust,andstorage…..othersincludepowerhandling,maintenance,measurements,fusionenablingtechnologies,etc.

4)  Establishtheultra-longplasmapulses,withhighperformance,sustainedbyarangeofplasmaenablingtechnologies

PowerPlantRelevanceiscri3caltotheFNSF,toprepareforfuturedevice’sopera3ngregimesandtoprovideacomprehensiveexperimentonthefusioncoreandex-core

Page 7: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Thepre-FNSFComponentDevelopmentandPhasedOpera3onontheFNSFareEssen3alforSuccess

Wewilluseahighlevelofpre-qualifica3onofmaterialsandcomponents

Wewilltestallmaterialsinthefusioncoreuptothean3cipateddpalevelbeforeopera3ngtothatdpalevelontheFNSF,withfissionandfusionrelevantneutronexposuresWewilltestthemostintegratedprototypepossibleofblanket,divertor,andlaunchercomponentsbeforeinstalla3on,inanon-nuclearintegratedfacility

OntheFNSF,thephasesrampuptheopera3ngparametersslowlytoprovidemonitoring

Theplasmadura3ons,dutycycles,dpa’s,andopera3ngtemperaturesareadvancedthroughthe1DD,and5DTprogramphasesInspec3onsandautopsyofcomponentsisusedtomonitorevolu3onofmaterials,requiringhighlyefficienthotcellturn-around,duringanygivenphaseandattheendofaphaseTestblanketmoduleswillbeusedfora“lookforward”,engineeringtes3ng,backupblanketconcepts,andmaterialsampletes3ng

OntheFNSFwewillhavesomefailures,butthepresenceofconstantfailuresareincompa3blewiththeplasma-vacuumsystemsandtheneedforradioac3vematerials

remotehandling

Page 8: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

MissionsoftheFNSF,UsingMetricstoShowHowMuchProgressWeAreMakingtoAddressThem

Stronglyadvancefusionneutronexposureoffusioncore(ex-core)componentstowardpowerplantlevelsU3lizeandadvancepowerplantrelevantmaterialsOperateinpowerplantrelevantfusioncoreenvironment(T,p,v,B,etc.)Producetri3uminrequiredquan33es,compensa3ngconsump3on,decayandlossesExtract,process,inject,andexhausttri3uminmannerthatmeetsallsafetycriteria,andhighlevelofpredic3on,controlandaccountancyRou3nelyoperateverylongpulseplasmas,longerorlongenoughtoaccessrequiredphenomena,withsufficientplasmaperformanceAdvanceanddemonstrateenablingtechnologiesDemonstratesafeandenvironmentallyfriendlyplantopera3ons(tri3umleakage,hotcellopera3ons,radioac3vematerialhandling,etc.)Developpowerplantrelevantsubsystemsforrobustandhighefficiencyopera3onsAdvancetowardhighavailability,reliability,efficientmaintenanceopera3ons,etc.

Page 9: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

SamplingofMetricsforSomeMissions ITER FNSF DEMO Power Plant

ARIES-ACT1/2 1. Strongly advance the fusion neutron exposure…..

Life of plant peak FW fluence, MW-yr/m2 (life of plant)

0.3 12.6 (8.4 FPY)

88 (40 FPY)

Peak FW fluence to replace blanket, MW-yr/m2 (dpa) (replacements)

0.3 (3) (0)

0.7, 1.9, 2.6, 3.7, 7.4 (7, 19, 27, 37, 74) (5)

15-20 (150-200) (4-6)

Peak FW neutron wall load, MW/m2 (average)

0.76 (0.56)

1.75 (1.18)

2.2 (1.46)

4. Produce tritium in quantities that….. TBR - total 1.06* 1.05 Tritium produced per year, kg

0.004 10.7 101-146

Li-6 enrichment 90% 40% OB FW hole/loss fraction

7-9% 4%

6. Routinely operate very long plasma durations…. Plasma on-time per year (ave)

5% 35% 85%

Plasma pulse duration, s

500-3000 1.2x106 2.7x107

Plasma duty cycle 25% 95% 100% βN H98 / q95 0.6 0.4 0.4-2.1 Q 5-10 4-6 25-48 fBS 0.25-0.5 0.52 0.77-0.91 Pcore,rad / (Palpha + Paux)

0.27 0.24 0.28-0.46

Pdiv,rad / PSOL 0.7 0.75-1.0 0.75-1.0 *depending on assumed H/CD systems

Page 10: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

WhyPursueaSmallerFirstStep,liketheFNSF?Untestedregimeoffusionneutronsonmul3-materialsundermul3-factor

environment

Fissionexperiencewithmaterials(learnedfromPWRandbreederdevelopmentprograms)

-  Extremesensi3vityofswellingwithtemperature-  Impactsofirradia3ondoserateincreasedhardeningandthresholdforswelling-  Impactsofsmallercons3tuents~0.5wt%canleadtoposi3veandnega3veeffects-  Surfacecondi3ons,welds,andmetallurgicvariabilityprovidedwidevaria3onsin

irradia3onbehavior-  Incuba3onperiodsthatdelaytheemergenceofaphenomena-  Simultaneousmul3plevariablegradients(neutronfluence,temperature,stress)on

crackbehavior-  Radia3oninducedsegrega3on,precipita3on,modifiedthermalprecipita3on-  …....

Goalistoestablishtheactualfusionin-servicematerialandscien3fic/engineeringdatabaseonallcomponentsinthefusionneutronenvironmentandintheoverallenvironmentbeforemovingtolargersizeandelectricityproduc3onThisisNOTthesamedatabasethatweusedtopursuetheFNSF,itreplaces/augmentsit

Page 11: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Thesmallerintermediatestep(FNSF)onapathtopowerplantsàwhatcomesbeforeFNSF

Neutronirradia3onofindividualmaterialsin1)fusionrelevantneutronsource,2)fissionreactoranddoping,3)ionbombardmentTri3umscience(LiPb)Liquidmetalscience

Integratedblanketcomponenttes3ng&ITERTBMprogress(weaknuclear)

Prototypicalparameters&integra3on

Enablingtechnologies

MagnetsHeliumcoolingDiagnos3csFueling/exhaustHeatexchangerTri3umprocessingHea3ng&currentdrive…...

Plasmafacingcomponents/plasmamaterialinterac3onsin1)tokamaks,2)linearplasmadevices,3)offline(e.g.HHF,liquidmetal)integratedPFCtes3ng

Plasmadevelopmentin1)shortpulsetokamaks,2)longpulsetokamaks(EAST,KSTAR,JT-60SA),3)ITER

Integratedlauncher/guidetes3ng

Integrateddiagnos3ctes3ng

Page 12: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Thesmallerintermediatestep(FNSF)onapathtopowerplantsàwhatis

uniqueabouttheFNSFTheenvironmentintheFNSFwillnothavebeenseenbefore,thecombina3onoffusionneutronsandthemul3-physicsnon-nuclearenvironment

40 20 100 8060

dpa

50mm 25mm 0mm

Helium production (appm) for 100 dpa at plasma facing side

15001000500 25

PLAS

MA

VonMisesstress

Temperature.DegC

plasma

94MPa0.6MPa

LiPb,~3MPa

He,8MPa

543C

350C

plasma

Y.Huang,N.Ghoniem,UCLA

DCLLBlanketexample

appmHe

H. Tanigawa, E.Wakai 2012

0.6MPa

94MPa

Page 13: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

“SeveralcriMcalmaterialsbehaviorsledtomajordisturbancesinthe

developmentprogramfortheliquidmetalfast

breeder”(Bloometal,JNM2007&Was,JNM2007)

200.0954.5e-42.1e-61.0e-8

Dpa/FPY

Environment:TemperatureStressDamageandHe/Hgenera3onHydrogeninmatrix(HandT)LiPb/RAFMinterface(T,v),chemicalLiPb/SiC-cFCIinterface(T,v),chemicalB-fieldfrom5-12T,OBtoIBforLiPbHea3ng(surfaceandvolumetric)GRADIENTSinalloftheaboveparameters

LMesMmatedcorrosionforaDCLL

Smolentsev,UCLA

Davis,UW

Page 14: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Pulselength,s

100 101 106 107103 104 105102

βN

5

4

3

2

6

PowerPlant

Presentfacili7es

ITER

ACT1

ACT2

Rangeofpowerplants

DEMOJT-60SA

KSTAR

EAST

1day 2weeks 1year

NowallβNlimit

WithwallβNlimit

FNSF

ThePlasmaDura3onsRequiredintheFNSFisaLargeLeapComparedtoPresent/PlannedTokamaks

BeforetheFNSF,mustcombineultra-longpulselinearplasmafacili3estokamakconfinementexperimentsatshorterpulseshighheatfluxfacili3esadvancedpredic3vesimula3oncapability

TakeadvantageoftheDDphaseofFNSFtoextendpulselengths

Page 15: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

PhysicsStrategyfortheFNSFRegimeoflongpulse,100%non-induc3ve,burningplasma

PursueβN<nowalllimittoaccomplishmission,butinstallappropriatefeedbackorothercapabilitytoexceednowalllimitàbyhowmuch?

Installpassivestabilizersandfeedbackcoilstoprovidehigherplasmaelonga3on,significantlyexpandingopera3ngspace,andA=4

OperatebelowtheGreenwalddensitylimitn/nGr<1,butnotrelyonlowvaluestoenhanceCD

Plasmacurrentisdriven100%non-induc3velyinflaLop,however,asolenoidprovidesrampupassistanceandflaLopfeedback…examiningNB,LH,ICandEC

Peakheatfluxtoleratedinthedivertor<10MW/m2,whilepursuinghighheatfluxdesign/materialsolu3onsand2DSOL/divertorplasmasimula3ons

Pursuinghightoroidalfieldintheplasma,targe3ngLTSCadvances

NATIONAL FUSION FACILITY

DIII–D

!"#$%&'()%%&'!*+,+-)./,0"'1%#23#2'4.5,"0"-'6,/5'!!'!'7

8' 9,:5'/$,#+:)%#$,/&'-*);%"'+)%%' *<"$#/,*+'#%%*62'*<"$#/,*+'=>?' #;*0"'+*@6#%%'%,3,/

8' ()/)$"'#0#,%#;,%,/&'*A'5,:5"$'BCCD' <*6"$'25*)%-'#%%*6'A)%%&'+*+@' ,+-)./,0"'*<"$#/,*+

157-06/MW/jy

0.0 0.2 0.4 0.6 0.8 1.0Normalized Radius

0.2

0.0

0.2

0.4

0.6

JOHM

Jtot0.8

1.0

(MA

/m2 )

0

1

24!i

!N3

4

0.50.4

0.3

0.2

0.1

0.012.5

10.0

7.5

5.0

2.5

0.00 1 2

Time (s)

3 4

PNBI (MW)

G = !NH89/q95

PECCD (MW)

2

fNI = 90%ITER Q=5 steady-state target

Greenfield, EX/1-2, Mon. p.m.

fNI~90%

DIII-Dexpt

DNdivertorHighradia3ondivertorsolnsMi3gateddisrup3ons

110

500100

ELECTRONTEMPERATURE(eV)

Ver3calPosi3on

(m)

2.5

2.0

1.0

0.5Flat-plate

Page 16: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

PlasmaPerformanceandDura5oninDIII-DandJT-60ULookingatExperimentsforGuidance

JT-60U JT-60U DIII-D DIII-D DIII-D DIII-D

βN 2.4 1.7 3.5* >3.5 2.0 3.1-3.4*

τflaLop/τCR 2.8 2.7 2.0 ~1.5 >2 ~0.4-1.0

q95 4.5 ~8 6.7 5.5-6.5 4.7 5.0-5.5

fBS 45% 80% 40-50% 50-60% ~60%

fNI 90% 100% 75% ~100% 80-100%

H98 1.0 1.7 1.0 1.6 1.3 >1.2-1.3

qmin ~1.5 1.5 ~1.0 1.4

~steadystate

steadystate

à  steadystate,off-axisNB

à SShybrid,hirot

QH-mode,noELMs

steadystate

*u3lizeac3veerrorfieldcorrec3on,plasmarota3on,βN~1.15xβNnowall

Addi3onalexperimentsonJT-60U,DIII-D,AUGhave1)approachedandexceededdensitylimit,2)highradiatedpowerintheplasmaanddivertor,3)avoidingorac3velysuppressedNTMs,4)lowplasmarotaMon,and5)PFCmaterials

EASTandKSTARwillsooncontribute

Page 17: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

A=4R,m 4.80

κX,δX 2.2,0.63

IP,MA 7.87

BT,BTcoil,T 7.5,15.85

<jTF>,MA/m2 15MA/m2

βNth,βNfast 2.2,0.23

q95 6.0

H98 0.99

fBS 0.52

Zeff 2.43

n/nGr 0.90

n(0)/<n>,T(0)/<T> 1.4,2.6

Pfusion,Prad,core,Prad,div,Paux,MW

517,60,160,130

Q,Qengr 4.0,0.86

ηCD,A-m2/W 0.2(assumed)

<Nw>,Nwpeak,MW/m2 1.18,1.75

qdivpeak(OB,IB),MW/m2 10.7,3.9

SystemsCodeIden3fica3on

LargescansoverR,BT,q95,βN,Q,Zeff,n/nGr

<jTF>=15MA/m2

fdiv,rad=90%(λpowFundamenski)Filtersforsolu3ons

βN<2.6*qdivpeak<10MW/m2

Nwpeak>1.5MW/m2

BTcoil<16T(adv-LTSC)

IBRadialbuildfromneutronics:ΔFW/blkt=50cmΔSR=20cmΔVV=10cmΔLTshield=23cmΔgaps=20cm

*examiningbenefitsoffeedbacktoraisethistoward3.0-3.2

Page 18: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Whatisthereliablyachievableradiatedpowerfrac3oninthedivertor?

peak

div

erto

r hea

t flux

, MW

/m2

ave neutron wall load at plasma, MW/m2

βN < 2.6BT

coil < 16 Tqdiv

peak < 10 MW/m2

fdiv,rad = 0.95 0.90 (ref ) 0.85 0.80 0.75

<Nw

> <

1.15

MW

/m2

0.85

MW

/m2

H98

(y,2

) ene

rgy

confi

nem

ent m

ultip

lier

Greenwald density ratio, n/nGr

fusio

n po

wer

, MW

auxiliary power, MW

Weassumearadiatedpowerfrac3onPdiv,rad/PSOLof90%insystemsanalysis

Fullydetachedradiates~100%ITER-likedivertorradiates~75%

Page 19: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

SeveralEngineeringDecisions

Lowtemperaturesuperconduc3ngcoils,advancedNb3Sn,withdesignupgradestowindingpack,awatchonHTSC,probablyusingHTSCforCS

Heliumcoolinginblanket,shield,divertor,andvacuumvessel,NOWATERinsideorinVV,onlyoutsideVV

FocusonDCLLblanketconceptwithbackupconcepts(HCLL,HCCB/PB)

NetelectricityisNOTafacilitytarget,butelectricitygenera3oncanbedemonstratedWCusedasshieldingfilleronIBinstructuralring,VVandlowtemperatureshield,B-FSusedforOB,LOCAanalysisshowedthatWCwasOKHorizontalmaintenanceisadopted,singlesectorsareremovedandreplaced(1/16th),superstructuresupportonTFcoillargeouterlegUsedlowerirradia3onlimitsonTFcoilthantypicalforpowerplantstudiesPlaced200micrometersofWontheFWforerosionandtransients(ELMs&disrup3on),whiletryingtoop3mizedesignformaximumheatfluxAssumeconcentricHeandLiPbpipingfromfusioncoretoHXPlatedivertorconceptistungsten(something)structuralandarmormaterial,adv-RAFMforcoldlegstructure,uncertaintyontheformofW

Page 20: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Phase 1 2 3 4 5 6 7 He/H DD DT DT DT DT DT PP years 1-2 2-3 2.75 4.5 5.0 6.5 6.5 40 FPY Nw

peak,MW/m2

1.75 1.75 1.75 1.75 1.75 2.25

Plasmaon-time,%/year

15-50 15 55 d

25 91 d

35 128 d

35 128 d

35 128 d

85 310 d

Plasmadutycycle,%(pulse/dwell)

33 (1d/2d)

67 (2d/1d)

91 (5d/.5d)

95 (10d/.5d)

95 (10d/.5d)

100%

Totalmaintenancetime,days

550 d 200 d/yr

1131 d 229 d/yr

1120 d 224 d/yr

1495 d 230 d/yr

1495 d 230 d/yr

2585 d 55 d/yr

Peakdpa 7.2 19.7 30.6 39.8 79.6 150-200 Max/minblanketstructureoptemp,oC

>400 >400 550/400 550/400 600/450 650/500 650/500 600-650

BlanketStructurematerial

RAFM RAFM RAFM RAFM RAFM-ODS

RAFM-ODS(NS)

RAFM-ODS(NS)

RAFM-ODS(NS)

ProgramontheFNSF–whatisthisdeviceactuallydoing?

Page 21: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TheFNSFProgramisbeingstudiedfurthertoaddressarangeofissues

1)  CantheDDPhaseprovideenoughdischarge3merangingfrom1hrto10daypulse

lengths,likelywillu3lizehigherdiagnos3ccoverage

2)  Providehigherorlowerneutronwallloadswouldresultinshortorlonger3metoreachadpalevel,e.g.operateabovetheno-wallbetalimit

3)  Varyingopera3ngtemperaturesoftheDTphasesmayrequireBOTHfastercoolantflowandlowerfusionpower,longer3metoreachdpatarget,constrainedbyblanketdesignthermo-mechanics

4)  Desiretoreachlongestplasmadura3onsearlyintheprogram,ratherthanspendthewholeprogramprogressivelyextendingtheplasmapulselength…appearsadischargesequencecanachievethis,ands3llarriveat~7dpaattheendofthephase

5)  Examinemaintenance3mesassociatedwithspecifictasks(plannedmaintenance)Ex-vesselinspec3onIn-vesselinspec3onMinormaintenanceex-vesselMinormaintenancein-vesselMajorex-vesselMajorin-vesselmaintenance(sectorremovalor16sectorremoval)

Con3ngencyforunplannedmaintenance

Page 22: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

ChallengesinCrea3ngaProgramontheFNSFFlexibilityinadjus3ngenvironmentalparametersliketemperature,forexample

WanttoexaminearangeoftemperaturestouncoverphenomenaBlanketdesignsaregenerallyop3mizedandthereforeconstrainedUsefusionpower,flowspeedandinlettemperature(forexample),butrangeislikelylimitedSimilarforLaunchersanddivertorsWhatistheflexibilitytoexploretheopera5ngregime?

Howisinforma3onobtainedfromfailures,materialinspec3ons,andopera3ons,usedtocorrect,re-design,andre-manufacturecomponentsorothersystemsforthenext(?)phase….can3me-scalesbeminimizedTheproceduresofstoppingtheplasma,1)butmaintainingcomponentsattemperature,2)removingasinglesectorwhileothersarewarm,....ul3matelyfordescribingmaterialhistoryDoweneedallocatelarger3me,moreintheinspec3on/maintenancecategory,toautopsyandprocessresults,thesamplesarehighlyradioac3ve,butwecannotwaityearstofindoutwhathappenedTheHotCellbecomesacriMcalpartoftheFNSFfacility,wheresectorsareinspected,decontaminated,dismantledandulMmatelyturnedintosamplesforexaminaMon

Page 23: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

ComponentsinfusioncorewouldbeevolvedandtestedintheFNSF

IBandOBBlankets

RFLaunchers,TBMs,DiagnosMcsDivertor

Weconcentrateontheblankets,butthereareothersthatmayhaveates3ngsequence…..materials,temperatures,design,etc.

Page 24: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

BlanketLayoutandTes3ng

DCLL550/400CRAFM(somearetakenforautopsy) 4DCLL550/400CRAFM/LH 1DCLL550/400CRAFM/EC 1DCLL550/400CRAFM/NB 1DCLL550/400CRAFM/IC 1DCLL600/450CRAFMODS(nextphaseTandRAFM) 2DCLL550/400CRAFM/MTM 1DCLL550/400CRAFM/TBM-HCLL 1DCLL550/400CRAFM/TBM-HCCB(PB) 1DCLL550/400CRAFM/DiagnosMc 3

Step 9 4 TBM added, 4

sectors

Step 10 3 Diagnostics added, 3

sectors

Step 11 2 NBI added, 4

sectors

Step 12 1 IC added, 1

sector

Step 13 1 LH added, 1

sector

Step 14 1 EC added, 1

sector

Nuclearanalysisofdifferentsectors

A.Davis,UW

ThereareseveralDIFFERENTblanketgeometriesduetomul3plefunc3onsintheFNSF

Topview

Page 25: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

DivertorTes3ng,mustfitintotheallocatedenvelope

ITER-like3ltedplateFdiv,rad~75%

FlatplatfullydetachFdiv,rad~100%

WhatwillbethepreferredWorotherdivertormaterial?

WorW-alloyW/XcompositesWf/Wmcomposites???

WilltherebevariantslikeRAFM?Structure&armordesignMagne3cgeometriesTemperatureranges

W/RAFlaminate(Garrison) FZJ

WCinFematrix(Álvarezetal.,2015)

X-divertor,KDEMOCovelle,UnivTexasTakenfromSnead,2016

Page 26: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

WhatdowedowiththeSectors:Blankets,Divertors,LaunchersintheHotCells?

InspectDecontaminate(cleanoff)InspectDismantleInspectExamineuntreatedsurfacesExaminemounts/connectorsCutsamples

FWSidewallGridplatesMoun3nghardwareSRDivarmorDivstructureFCIWstabilizer…...

MaterialexaminaMons(PIE,mechproptests,Hebubbles,etc.)

Alsoexaminethetestspecimensinthematerialtestmodule&surveillencesamples

Page 27: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

HotCellWearean3cipa3ngahotcellsequencefromlargeintactsectorsprogressivelydowntosmallmaterialsamples,requiringatransferfromhotcell1tohotcell2,etc.Robo3candcomputercontrolledsystemswouldlikelydominatetheprocessingIssuesinclude1)highdoseandhardenedequipment,2)complexprocessing(triMum,surfacematerials),3)decayheat,and4)needforrapidturnaround

Page 28: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Fusionneutronmaterialscience

TriMumscience

Plasma-materialscience

Liquidmetalbreederscience

FusionNuclearScienceFacility

2015 2025 2035

LinearPlasma&Tokamaks&Offline

single-feweffects maximumintegra3onexpts

EarlyDDphaseofFNSF

par3alintegra3onexpts

PredicMveSimulaMonDevelopment

AcceleratorbasedfaciliMes

FusionneutronandintegratedcomponenttesMngfaciliMesconMnuetooperateinparallelwithFNSF

IntegraMonofFW/blanket

Enablingtechnologies(H/CD,fueling,pumping,…..

Pre-FNSFR&DMajorTopicsandEvolu3onTowardFNSF

Page 29: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Fusionneutronmaterialscience

TriMumscience

Plasma-materialscience

Liquidmetalbreederscience

FusionNuclearScienceFacility

2015 2025 2035

LinearPlasma&Tokamaks&Offline

single-feweffects maximumintegra3onexpts

EarlyDDphaseofFNSF

par3alintegra3onexpts

PredicMveSimulaMonDevelopment

AcceleratorbasedfaciliMes

FusionneutronandintegratedcomponenttesMngfaciliMesconMnuetooperateinparallelwithFNSF

IntegraMonofFW/blanket

Enablingtechnologies(H/CD,fueling,pumping,…..

Pre-FNSFR&DMajorTopicsandEvolu3onTowardFNSF

HowdoIturntheseTOPICSintoaconcretesetofexperimentsthatgetmetotheFNSF?Integrateandmakeprototypical

Page 30: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TriMumscience FusionNuclearScienceFacility

2015 2025 2035single-feweffects maximumintegra3onexptspar3alintegra3onexpts

PredicMveSimulaMonDevelopment

IntegraMonofFW/blanket

Plasmatri3umimplanta3on/permea3on/reten3on

Tri3umbehaviorinmaterialsandmul3-materials

Tri3umextrac3onfromLiPbbreeder

Tri3umbreeding/extrac3onfissionintegratedexpt

Zoom–In:Tri5umScienceBreakdown

Page 31: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Plasmatri3umimplanta3on/permea3on/reten3on

-  PISCESatUCSDandTPEatINL,exis3ngexpts-  Characterizeitsparametersrela3vetoaFNSForDEMO(par3cle

energies,fluxes,par3clespeciesandmixtures,opera3ngtemperatures,tes3ngdura3on,in-situsurfacediagnos3cs,etc.)

-  CapabilitytotestHecooledcomponentgeometry,tes3ngirradiatedsamples

-  In-situmeasurementsinlongpulsetokamaks

Tri3umextrac3onfromLiPbbreeder

-  Nofacilityatpresent(dowithdeuteriumasmuchaspossible?)-  RequiresaLiPbloop,runningthroughatubulartestremovalapparatus-  Ar3ficiallyintroducedeuterium,andcontrol/characterizeLiPbmaterial-  Musttestdifferentpermea3onwindowmaterials(group5,modified

group5asnotedbyINL)-  Parametersincludeopera3ngtemperature,flowrates,hydrogen

concentra3ons,impuri3esinLiPb,etc.-  Scale-uptomul3-tube

Page 32: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Tri3umbreeding/extrac3onfissionintegratedexpt

Usingfissionfacilitytoaccesslargervolumefortes3ngCreateaseriesoftestar3clesthatincludeRAFMsteel,SiC-c,flowingHe,andLiPb

Sta3onaryLiPbFlowingLiPb

Testsofdpa(exposure),Li6fortri3umbehavior,temperature,flowratesforLiPb

Tri3umbehaviorinmaterialsandmul3-materials

-  Tes3ngapparatusforsinglematerials(solids)characterizingwithHeat8MPa,vacuum,LiPbat~3MPa

-  LiPbpris3ne,andLiPbwithHebubbles,intermetallics,corrosionproducts-  atrepresenta3vetri3um/deuteriumconcentra3ons-  attemperatures,tendingtowardserviceenvironment-  accuratesurfacecondi3oncharacteriza3on-  irradiatedmaterials-  RAFM/LiPb,RAFM/SiC-c/LiPbmul3-materialtests

Theseexperimentsleadintotheintegratedblankettes3ngfacility

Page 33: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

FusionNuclearScienceFacility

2015 2025 2035single-feweffects maximumintegra3onexptspar3alintegra3onexpts

PredicMveSimulaMonDevelopment

Zoom-In:FusionNeutronMaterialScience

Non-nuclearmaterialcharacteriza3onandindustrialproduc3on

Fissionneutron,ionanddopingmaterialexposure

Fusionrelevantneutronmaterialexposure

Fusionneutronsmaterialsscience AcceleratorbasedfaciliMes

Mul3-material/environmentfissionneutronexposure

ThisR&DgenerallydoesNOTintegratesignificantly

HFIR,ATR

SNS,LANSCE,USSINQ,DONES,EUA-FNS,JA

HFIR,ATR

Page 34: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Pre-FNSF:FusionNuclearMaterialsScience,howdoweseeprovidingtestedmaterialsintheformofcomponentstotheFNSF

2020 2030 2040 2050 2060

FNSFUSDEMO

PreFNSFRAFM-1development

PreFNSFFCI/SiC-c-1development

PreFNSFbaini3cdevelopment(VV)

PreFNSFtungsten-1development

He/DD DT

7dpa 19dpa 30dpa 40dpa 40-80dpa

PreFNSFRAFM-2development

PreFNSFRAFM-3development

PreFNSFRAFM-4develop

PreFNSFtungsten-2development

#ofsamplesofmechtype#temperatures#materialsTestvolDpa/FPYAvailabilityàWhattypeofdatabaseisrequiredforFNSF?ScienMficorengineering?

Aquan3ta3veanalysisofasingleblanketconceptcouldmaketheurgencycaseforge~ngtofusionrelevantneutronsNOW

PreFNSFFCI/SiC-c-2development

Non-nuclearcharacteriza3onFission,ionanddopingirradia3onsFusionrelevantneutronirradia3onsIndustrial/manufacturingMaterial/environmentmatch

Page 35: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

SOLplasmaexperiments/diagnos3cs

Divertorplasmaexperiments/corecoupling

Plasmamaterialinterac3on/linear/ultra-longdura3on

Highheatfluxsimulators(ebeams,lasers,flashlamps,etc.)

tokamaks

Solidmaterialsscience,PFCcomponentdesignandfabrica3on

LoadingcondiMons

Liquidmetalteststands,plasma/vacuum,LMproper3es,flow,geometry,LMspecies,substratedesignandfabrica3on,etc

TesMngofPFCcandidatesinlinearandtokamakfaciliMes

Establish“transla3on”oflinearresultstotokamaks

Star3ngpointfororganizingthepre-FNSF:PFC/PMIscienceareafromtheFNSFperspec3ve

SOL/divertorplasmasimula3ons

MaterialsscienceandPFCcomponentdevelopment

Plasmascience

PMIscience

Page 36: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

FusionNuclearScienceFacility

2015 2025 2035single-feweffects maximumintegra3onexptspar3alintegra3onexpts

PredicMveSimulaMonDevelopment

LTSCadvance/op3mize,HTSCdevelopment

Pelletfueling,exhaustandcon3nuousvacuumpumping

Heatexchangerdevelopment

Zoom–In:EnablingTechnologyBreakdown

Enablingtechnologies

Hea3ngandcurrentdrivesources,launchers,transmission,coupling

Diagnos3csforFNregime,physicsandengineering

Tri3umprocessingforbreedingandfuelingcycles,storage

HotCellhandling,processes,PIE

…..........

Page 37: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

DetailedAnalysisinEngineeringandPhysicsoftheFNSF

Neutronics,1Dthisyeartodevelopbuildsandhea3ng,3Dnextyearformoreaccuracy,streamingandotherissues(A>Davis,L.El-Guebaly,UW)

LiquidmetalMHDanalysisbySmolentsev(UCLA)onIBandOBLiPbflow

Thermo-mechanicsofblanket,FWanddivertorbyY.Huang/N.Ghoniem(UCLA),J.BlanchardatUW,S.Malang(re3red),M.Tillack(UCSD)

TFcoil(andPF)coilsstressanalysisandwindingpackdesignbyY.Zhai,P.Titus(PPPL)

Tri3uminventory,extrac3onanalysis(andaccident)byP.Humrickhouse(INL)

MaterialssciencedevelopmentandassessmentsbyFusMatgroupatORNL(A.Rowcliffe,L.Garrison,andY.Katoh)

CAD,establishinglayoutsforFNSFfromsystemscodeanddesignac3vi3es(E.MarrioL)Maintenance,hotcell,layout(L.Waganer)

Coreplasmaequilibrium,idealstability,3me-dependenttransportevolu3on,H/CD(C.Kessel,PPPL)

SOL/divertoranalysis,(RognlienandRensink,LLNL)RFrequirements(G.WallaceandS.Wukitch,MIT/PSFC)

Page 38: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

TheFNSFHasaUniqueRoletoPlayinBreakingintotheFusionNuclearRegime

Introducesthecombinedfusionnuclearandmul3-physicsnon-nuclearenvironmentonfusioncorenotseenbeforeAdvancesthemul3plemissionsrequiredtoreachapowerplantopera3ngspaceOperatesawiderangeofenablingtechnologies(in-VV,ex-VV…)Developstheultra-longplasmadura3ons,plasmasupporttechnologies,andplasmaperformanceforthestrongfusionnuclearregimeAcarefulanddeliberatestepisrequiredforthischallengingleapTheFNSFisacombina3onofdiscoveryanddemonstraMon,andul3matelyprovidesthedatabaserequiredtopursuefusionenergybasedpowerplants

Page 39: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

BACKUPSLIDES

Page 40: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Dpa/fpy

NWLmap

3DCAD,LHlauncher

TBRwithallpenetra3ons

TBRwitheachpenetra3ontype

1.067NuclearAnalysis A.Davis,UW

Neutronhea3ng

Page 41: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

minimal moderate maximal Power plant Plant DT operations

~ 15 yr ~ 25 yr ~ 35 yr 47 yr (40 FPY)

Peak neutron wall load, MW/m2

1.0 1.5 2.25 2.25

Plasma on-time per year

10-35% 10-35% 10-45% 85%

Max dpa on first wall (or max dpa to replace)

5 -18,36 7 - 37,74 10 - 70,140 150-200

Qengr << 1 < 1 > 1 4 Tritium breeding ratio

< 1 ~ 1 > 1 1.05

Plant life, peak dpa

50 126 274 765

TF/PF magnet Cu LTSC or HTSC LTSC or HTSC LTSC or HTSC Vacuum vessel material

SS Baintic steel Bainitic steel Bainitic steel

Divertor W/CuCrZr/H2O W/W/He W/W/He W/W/He

LargedeparturefromPP

Somedeparture

Smalldeparture

Page 42: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

SystemsanalysisofMinandMaxFNSF

FNSF Min Mod Max

R,m 3.5 4.8 5.8

Ip,MA 6.38 7.87 8.04

BT,BTcoil,<jTF>

5.75,13.5,14.7

7.5,15.9,15.0

8.0,15.7,15.0

βNth,βNfast 2.3,0.1 2.2,0.23 2.3,0.36

q95 5.5 6.0 7.5

H98 0.95 0.99 1.13

fBS 0.53 0.52 0.66

n/nGr 0.9 0.9 1.0

Pfusion,Paux,MW

185,92.5 518,129 754,116

Q,Qengr 2.0,0.51 4.0,0.86 7.0,1.11

<Nw>pl,Nw

peak,FW0.71,1.0 1.19,1.67 1.21,1.7

qdivpeak 6.0 10.7 9.88

ΔIBtoTFcoil,cm

87(includesCS)

123 129

CuTF/CS/PF ηth=0.35

qdivpeak<10MW/m2βNtotal<0.026BTcoil<16TηCD=0.2A/W-m2Sameplasmashapefdiv,rad=0.9SmallestradiuswitharobustopspaceMinR=3.5mModR=4.8mMaxR=5.8m

Page 43: edge-plasmas for ACT-1 Improved models for radiating · 2016. 11. 25. · DT, TBM 2020 2030 2040 2050 ITER Non-DT, TBM 2060 FNSF He/DD DT Present and near term confinement devices,

Fusionneutronsmaterialscience

Tri3umscience

Plasma-materialscience

Integratedblankettes3ngLiquidmetalbreederscience

Enablingtechnologies(H/CD,fueling,pumping,diagnos3cs,magnets,BOP)

DEMOFNSF

DT DT DT DT DTDD

Predic3vesimula3on

Zoom-Out:ExaminetheR&DFlowOverPre-FNSF,FNSF,andintoDEMO