economic analysis of pressure management in …...journal of water and wastewater vol. 31, no. 2,...

18
dx.doi.org/10.22093/wwj.2019.163790.2794 100 Journal of Water and Wastewater Vol. 31, No. 2, 2020 Original Paper Journal of Water and Wastewater, Vol. 31, No.2, pp: 100-117 Economic Analysis of Pressure Management in Water Distribution Networks I. Moslehi 1 , M. R. Jalili Ghazizadeh 2 , E. Yousefie Khoshghalb 3 PhD Student in Civil Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran Assist Prof, Dept of Water and Wastewater, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran (Corresponding Author) m_jalili@sbuacir !! )Sc Student in Civil Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran (Received Dec. 22, 2018 Accepted May 20, 2019) To cite this article: Moslehi, I., Jalili Ghazizadeh, M. R., Yousefie Khoshghalb, E., 2020. “Economic analysis of pressure management in water distribution networks” Journal of Water and Wastewater, 31(2), 100-117. Doi: 10.22093/wwj.2019.163790.2794. (In Persian) Abstract Pressure management (PM) is one of the most effective methods of leakage management in water distribution networks (WDNs). In addition to reducing leakage, it provides many benefits for water utilities. The purpose of this paper is an economic analysis of the PM through a comprehensive cost-benefit analysis, taking into account the various aspects of the implementation of PM in WDNs. For this purpose, a mathematical model was developed for evaluating the benefits arising from implementing PM on the reduction of leakage, pipe breaks, active leakage control, water consumption, energy consumption, building damages and the increase of customer satisfaction and the costs of purchase, installation, operation and maintenance, and revenue reduction due to the reduction of water consumption. Using the developed model, the net benefit and benefit/cost ratio can be calculated for each PM scheme. As a case study, the advanced PM system was implemented through the installation of time modulated (TM) and flow modulated (FM) pressure reducing valves (PRVs) in a district metered area (DMA) located in Mashhad city. The net benefit and benefit/cost ration was then estimated by the developed mathematical model. The results showed that the net benefit of PM system through FM is greater than TM and the benefit/cost ratio was obtained 3.7 and 3.2 respectively. The developed mathematical model will assist water managers and practitioners in comprehensive understanding of the benefits and economic justification for implementing PM schemes. Keywords: Pressure Management, Economic Analysis, Financial Analysis, Leakage Management, Water Distribution Network.

Upload: others

Post on 08-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

dx.doi.org/10.22093/wwj.2019.163790.2794 100

����� ��� �� Journal of Water and Wastewater ��� ��� � ��� ���� ����� Vol. 31, No. 2, 2020

Original Paper

Journal of Water and Wastewater, Vol. 31, No.2, pp: 100-117

Economic Analysis of Pressure Management

in Water Distribution Networks

I. Moslehi1, M. R. Jalili Ghazizadeh2, E. Yousefie Khoshghalb3

1.PhDStudentinCivilEngineering,FacultyofCivil,WaterandEnvironmentalEngineering,ShahidBeheshtiUniversity,Tehran,Iran

2.Assist.Prof.,Dept.ofWaterandWastewater,FacultyofCivil,WaterandEnvironmentalEngineering,ShahidBeheshtiUniversity,Tehran,Iran

(CorrespondingAuthor) [email protected]. )ScStudentinCivilEngineering,FacultyofCivil,WaterandEnvironmental

Engineering,ShahidBeheshtiUniversity,Tehran,Iran

(Received Dec. 22, 2018 Accepted May 20, 2019)

To cite this article: Moslehi, I., Jalili Ghazizadeh, M. R., Yousefie Khoshghalb, E., 2020. “Economic analysis of

pressure management in water distribution networks” Journal of Water and Wastewater, 31(2), 100-117. Doi: 10.22093/wwj.2019.163790.2794. (In Persian)

Abstract Pressure management (PM) is one of the most effective methods of leakage management in water distribution networks (WDNs). In addition to reducing leakage, it provides many benefits for water utilities. The purpose of this paper is an economic analysis of the PM through a comprehensive cost-benefit analysis, taking into account the various aspects of the implementation of PM in WDNs. For this purpose, a mathematical model was developed for evaluating the benefits arising from implementing PM on the reduction of leakage, pipe breaks, active leakage control, water consumption, energy consumption, building damages and the increase of customer satisfaction and the costs of purchase, installation, operation and maintenance, and revenue reduction due to the reduction of water consumption. Using the developed model, the net benefit and benefit/cost ratio can be calculated for each PM scheme. As a case study, the advanced PM system was implemented through the installation of time modulated (TM) and flow modulated (FM) pressure reducing valves (PRVs) in a district metered area (DMA) located in Mashhad city. The net benefit and benefit/cost ration was then estimated by the developed mathematical model. The results showed that the net benefit of PM system through FM is greater than TM and the benefit/cost ratio was obtained 3.7 and 3.2 respectively. The developed mathematical model will assist water managers and practitioners in comprehensive understanding of the benefits and economic justification for implementing PM schemes.

Keywords: Pressure Management, Economic Analysis, Financial Analysis, Leakage Management, Water Distribution Network.

Page 2: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

dx.doi.org/10.22093/wwj.2019.163790.2794 101

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

مقاله پژوهشي

و فاضالب، دوره 100- 117، صفحه:2، شماره13مجله آب&%#� !� !��� ��)��� (��L�8� P�/0� J- >�1�� (�

�"b�� U[�v-P ���)�U� �%v��ev ��!0b�/1� �"Q�+v8+^ #e5

=> ���� ?��2A ?)����C����E >)���� 5�B��� ,78C6� � 78 ,����E�&#,;H �' 5�/��� ��2��*C��������#� ,

F> �2)�#��)���� 5�B��� C6� � 78 ,����E�&#,;H �' 5�/��� ��2��*C��������#� , �)#5��H (4 JH�[email protected]

K> ���� �)��'��AC)���� �'��C����E >5�) � 78 �?�!����BC,)���� 5�B��� C6� � 78 ,����E�&#,;H �' 5�/��� ��*2��C�����

������)�/��/ �������// �(

:�����)6 7��8� )�1 �!�� & &9��� :�� & ;�<!� (�) �87R� ���.�7�7G �= h (D� �� .E�.i�Z �T&�I �.� ��7h����" �0$.� �D � H% "I�I�� �D R#h� \�78� <5 JI �� � � "

�<*= % � <5 07>���)@�(��_C�jj.Doi: 10.22093/wwj.2019.163790.2794

����� a�� 8����I0 @# &1� ���� G���� �1H< � G�� G���� 6�5 LO ��@�� 6�5G/# GQ�� V5�Q7 �Q� )�MQ( �Q7.6�Q�#$

G7�< 6#�� 6��%�� 8�# @# U�5 .�# LMN�� � LO 6�5V5�WX �Q/ ��Q; Q%3D� F��E @# ���� G���� 6��9p# %3D��� ���$5�1H< � ���� G���� 6#�;# s39� q�#�; 89��� �^� � �LO ��@�� 6�5G/# .8�# �� 6#�Q� &QN��� :�Q J� ��^�

&-9�1< .G�� V5�7 �� ���� G���� 6#�;# @# [�" �/ &���@�# G�� .�5 �#��Q�T .64�Q�# U�� .LO U�� .:��� &�����>9T�/ �� )�#� �!>5 � ����9� G��N� V�#$�# � �5���$5 8% )��� .q�� .���T @# &<�� 6�5 V5�Q7 � 6�#�Q�-� � 6�#�Q�

LO U�� V5�7 @# [�" �O�.)�< )# ��/�� :� @# )�d9/# �� .�< )# ��/��.6#�Q� ���$5 �� �/ GH�� �{��T �/�� .G/# �H/�D ��p ���� G���� Z�E �5 9��Q�%X ��Q�� G���� ����/ .6�� ����S �#��( 6�5�%Q< qQ�� FQ��E @# �

#�;# ��� ��< � �p#� ���$�# �%"�� J� � ����; � ��@ �� &�9H ���� )��5�7�<�Q��$5 �Q� �Q/ GHQ�� � {��QT �/ ����� 8�# � )�< )# ��/�� &N��� :� Y/�� �O 6#�;# @# [�".@# Q[�" {��QT �/ �7 # ���� e��9� .�< )@ 8%>��

9H ����/ 6#�;# �9�%� ��@ �� &�9H ����/ @# ����; �� &�G/# ����/ 6#�� ���$5 �� �/ GH�� �&Q�9H ���� G���� 6�5�� ��@ � ����; �� q%���|/i�x/i��G��Q[ ��Q���9 � �#��� �� ����S 8�# � )�< )# ��/�� &N��� :� .�O G/

;# 6��9p# �%;�� � ��#$ @# &��; �� 6#�� LOZ�E 6#� �7 �5#�T J>7 ���� G���� 6�5.

=F�� ,�� ,��$G :(+ X���8 24�� I6Y� 6����� I)��� V�$"8 I,��-*;� V�$"8 I��Y3 6�����

�6�)7� !��% �/�N� �?��G� ;� �! �@� ������� �) :� C�;�� ���"

� ¨��� ��&$ 5��� + ���� � ��#�=� ��t� �) :� ;� �&$��� 4���1 �) )�$�� �@��� ��) ;� !�% !�% �@� ��#=� .) � C;�� ��"

d��0�� � ��A�� ������ p/�V� ��"��@+ �) :� ��� ¨���� I#�% d��0� *� ��3�� G��� ��"��@+ �) <�" ;� ��@� ��#=� �J�l���

j!�% � �) � :� #N�) D�� �� G��� .���) ��"��@+ �)

;�QR��� ����^� �) � :� #N�) #�3+)Puust et al., 2010(�) .���� 0�� !��% �) ��@� ���� ��0�� ��&�% :� C�;�� ���" �)

.����MlmQ <) #����Mf������ I#��% d��0���� #��N�).(Jalili

Ghazizade and Moslehi, 2017) .��� !��% �) ��@� <�B��� �)�`�1� ��"��u �� I ?9 #�����

!��% �� ��)��B� ) � �n��� �J��#" <:� ���$ C'1 � �73�

Page 3: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

102

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

)�%)Mutikanga et al., 2012(�+�% *����3� . :� ���" ������� I����" ��&$ ������ �) + .���)!�% �) �@� D"�+ .��3 ��"

*��� �/��N� p>���| ;� ���! ��� /����� *��� #3����" :� C��;���+�% I�&� I;�� �) �" !�% ;� ���)�� :� C�;�� ��" I#�% 4#���.���

!�% �) �@� <.��=��� r��'( ;� ��@� 4���% :� C�;�� ��"�@� d��0� ��" d��0� I#% �/N� r�'( ;� 3��; �@� <I#@�G@�� ���� I���(T �;��V� ;� ��@� !�% ����.(Fanner et al.,

2007) .�2�������� ����#��1� ��9��7� ��� ���@� ��#��� ���A� ����"

�� :��+�% �" ��� + )�% ��@� ]'�� ��� I#�% T��V�� ������@� �)�`�1� ]'� � �� )�$��M#�����.(Yousefi Khoshqalb

et al., 2018) .���!"�� ��&F <�L3� *� ;� �2������� ��@� ��#�� �/�N�

������G� ��A�+ �9�� <�@� .�GJ .��3+ <��@J ��#� 4��%�#� ���) ����� !��% �;����� �;���;�� 4���% ��" #3�%��

)Lambert, 2002(�2������� *�� ;� . ��#�� ��&3� <)��$�� ���"�� ��@J �� �@� AB�� � �" �� #���� z�� �3��; ��@� a��`( ��t

#�") D"��+ �� �&�� #%�� �%�))Vicente et al., 2015(��L� ;� . �2������� �0�$ ��@J ��#� <����; ����� ���" �#��#3/� �#��

��� I��� *#�3F �� ��� I)�� C�� �� ���� �@�;�� I� ) +�� �" #��), Pearson and Trow, 2005Fanner et al., 2007(.

�� ��@J ��#� < �3� ;� ��0��� \� �#��/+ �AB�� \� ����39#����+ 5�� �)�`�1� J�N �� �t�� I#�% �(�3% �@� ��#� �)

���(Martinez-Codina et al., 2015, Lambert, 2003). .����3+ �����/�9 <����@J ��#��� ;� ����L3� ���/+ ���B�� �)

�3�&� ]'�� ��� !�% ��"��@J ��#� ���� ����� :� �� �) �++��@���Y�`� *��z�� #�����+ �J��+ I;�#��� �� ;��7� ���#33+)���%�B�����) < ���J� D"���+ S;5����� �J���u� ��"����@J ��+

�) ���@J ������� #� �� !�% #���% YZ�� ���!��.(Thornton

and Lambert, 2005) .����B�GJ 4����% ����@J ��#��� ;� I)�A����� ����L� ���A/�V� ����"

��H <��@J I#3"�+ ��"��% �) :� ���A��� ���L3� ���^�� � ) ��"

1 Economic Level of Leakage (ELL)

I��(T �;�V� ���� )Vicente et al., 2015(;� I)�A���� <4��9 �) .��@J I#3"�+ ��"��%e�� ���9��� �) �J��u� ���@J D"��+ ���L3�

�� �J�����H�� ����) {���3� �) U�N�`V� ; � ;� �`V@� ����NI)���� �+�% ��� �� :� ��" � p/�V� ����� ��#�� ���L3�

�� ��+ � ��@J ��3+ ��� ) ����) ��@J I#3"�+ ��"��% .) �.I#33+ .#3��" �!�� ��!B� � �!�B �#�"

��#1 I)�A����H *�� ��"���% <���@J I#�3"�+ ��"���% *����% + #3��" �!�B �#�" ���t �$ �( �� ��@J I#3"�+ ��"l)FO (

. �#�� .#3��" �&�� *��L3�����H ��@J*� � ���) *� �% �����"�� ;� 4=��� !�% ��)5�� ��@J<J�� �L� �) ���t�� � ���� )��%�

^���L3� ��� ��@J �$ �(<��/��H �%����#� �� ���) ����N�L3���.)�% ��!�� ��!B� ��0��&7� �J��@�H ��� ���(� ") ) ��

�������bB� �����3�� ����� �����@J I#���3"�+ ��"�����% <����B��3+ �����" .���3+ I#�33+ �����1 I)�A���� )���� ���J� G���� ��!�� ��!B� ����"�J�� �� ;� �+ #��� ��� �/�$ *��� ���@J I#�3"�+ ��"���% �� �����.��3+ I#33+ ���; �� �3��� ���L3� ��"f(TM) ����$ ��� ��3��� <Q

(FM) � ) I�� ;� .����3+ I���� ���� ���3��� i(RNM) )���_ I����%� .%��"��TM <;�\.��3+ ��\����� �/(�)�!�@�4� I#�%� ��� ��L3���������; I� ) ��" �) �+ #���%�J� )���� ���@ ;���

�� ���)5��z�*�)��% )Awad et al., 2008(�% ���� .��"�� FM /��1��L3����@J�� ��) � $�� ������9����& ���+ #�;�� *����+ ;� I)�A��� �� �)���#����� �3������ L3�����) ���@J '����

� ���N��;� �)�#G� .)�����b@" 2H I#�3"�+ ��"��% ;� I)�A��� � �� �!�� ��!B� ��@J d � ����39 �J��@�H ���@J ��#�� ���"j

I)��� �J�G� #��(Lambert and Fantozzi, 2010) .d � *���t��� *��#����+ ;� �! ��@J ��#� F��� ��"

��� <��� �@� D"�+ .��3+ ���� �/�$ ;� ���b) I#�9 ���0� D"�+)�#G� �b��!% � <�@� .�GJ .��3+ 30" D"�+ <�"z��( �)

�B�B  �G <�"�0J�D��9B�B ���u� D�0�J� <��" ��_���@� :� Y���`� ��0��$� ;� ���(�� D"���+ ��)��).(Lambert and

Thornton, 2012, Moslehi and Jalili Ghazizadeh, 2016).

2 Pressure Reducing Valves (PRVs) 3 Fixed Outlet (FO) PRVs 4 Time-Modulated (TM) PRVs 5 Flow-Modulated (FM) PRVs 6 Remote Node-based Modulation (RNM) PRVS 7 Advanced Pressure Control (APC)

Page 4: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

����R� � +6�h� ���#� dx.doi.org/10.22093/wwj.2019.163790.2794 103

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

�3$ ��#�� 6�� \ ���$� ;� 4N�� �)�`�1� p/�V� ��"�� �� ��@J )��� C���$ 4��/O� \ ,B�1 �) ����x����;�� �30"

$ .)��� .�� �) ������� )������� ��#�� ;� 4�N�� ���0� ���+#/� �&�% :� C�;�� !��% �) �� ��@� .��GJ .��3+ ��@J 4N�� �)�`�1� )�� =J GB�'� *� �) �&�� .#�)�+ ����� ��B�����

�b���!% D"�+ �@� D"�+ ;� �� ���@J ��#�� ;� 4�N�� ��"�) ��@� GB�'� *� ���� .#�)��� ���;�� ��#�� �2������� �+ )

�+ <�@� .�GJ .��3+ ��@J 30" �)�`�1� *�� �) �30� *�����30� *���� ����+#/� �&��% :� *��z��� ������ )���$�� ����"�����

)Girard and Stewart, 2007(..���� �) ������!�" )� ����� ��GB�'� �) )���� 4���/O� ��x

�) ��B 0� ������ ) �) �� ����@J ��#��� �����$� ;� 4��N�� ��30" ��7�� 4��/O� �) .#��)�) ����1 ������ )��� ����/b�� )��� <��J�� S

�b��!% <�@� D"�+ ;� 4N�� Y��`� <��@� .��GJ .���3+ <��" ���O� ����@� ��u� �n��� Y�`� <:� �% D"��+ ��#�=� .#

����% .#��� ;� I)�A����� ���� ����@J ��#��� ;� 4��N�� ���@� ;���� #�% I); *���V� �!�B �#��")Awad et al., 2008(�) .D" 2�H

<��@� ��+ ;� 4�N�� )��� *��V� ���� �b���!% D" �'��� ;� ��"����@Jx����@J ��'��� ��� ����% �b����!%xI)�A����� ���@�#��% ��+

'��� *�3F �#G� ��GB�'� )�+ )� �� ��#�.#�� 4���+ ���" ���� �>��� #��)�).(Lambert et al., 2013, Lambert and Thornton,

2012).����/�9 ����; /N�J �� ��@J ��#� ��tz� !3� �� I ?9�@� �� ��@� .��GJ .��3+ ;� 4N�� )�� *��V� �) �0��� ��L� �)

)�� I#@� �J��.(Fantozzi and Lambert, 2007, Lambert and

Lalonde, 2005)..�� �) ����!�" 0�����yy �)��`�1� ����0� �@" 2H �)

!��% �) ��@J ��#� ;� 4N�� ;� I)�A���� ��� �� :� C�;�� ���" ���% !��% �!�B �#��" �;��� ���@� ��0��� ��&�� .#��); *����V�

���% .#� ;� I)�A��� �� �� ��@J � ���� Y��`� B �#��" ;�����!�� ��u�J �)���� GB�'� \ ����;� 4�N�� )��� I)� � ���)

*����V� �� ����@J ��� ������ Y����`� D"���+ ���@� D"���+#�);)Gomes et al., 2011(.

.���� �) [B������ [)�+�����+��y~��GB�'� �) <4���/O� �� 6��� ����$� p/�V� ��"���3� �)�`�1� �) ���@J ��#�� ���"

&�� .#�)�) S�7�� �� ���� ���;�+ �&% oB��( ��/GJ d;�� d � ;� �

M)NPV ;� 4�N�� ����0� #��)�+ I)�A��� �)�`�1� 4�/O� ���� (�b��!% �@� D"�+ I� ) \ ���� �� �"y~#��); *��V� B��

)(Kanakoudis and Gonelas, 2016 . .���� �) �!���B� ���!�+��y� �)���@" 2H )���� 4���/O�x

�) ���@J ����� \� ����� ���@J ��#�� ���$� ;� 4N�� 30" ��B��� �� �) .#�)�) S�7��D" 2H �&�� ��@� D"�+ ;� 4N�� )��

�b��!% D"�+ D"��+ ��0��� *�� ��� I ?9 .#% �J�� �L� �) �" ���% .#� ;� I)�A��� �� �@� ��� !��% \� ����� �!�B �#��" ;���

#�% I); *���V� �+ ���� <)�; �@�.(Creaco and Walski,

2017) .�P+� �)D" 2H ��" ��#�� ����$� ;� 4�N�� )��� I#�% )�

�b���!% D"��+ ��� I����" � ��&3� � �@� D"�+ �) ��@J ��" ) #��G� I#��% ���J�� ���L� �) ����@J ��� ������ Y����`� D"���+

�GB�'� �� ���@J ��#�� ���$� ;� 4N�� �)�`�1� �b) ���0� ��I)�) ���1 ����� )��� D" 2�H *� ,/�� �) *� �� I ?9 .#�� ;� ��"

��% .#� D�H ���� �!�B �#�" ;�� I)�A���� !�% �@� ��0�� �3����@J '��� ���� I#%x����) �@�N1��/�1 ���GB�'� k��� �� (

.��� I#% :�V��� ;� Y#" ;� ���@J ��#�� �)�`�1� 4�/O� D" 2H *� ���$�

)�� C��$ 4�/O� {��x�3$ *�J�� �L� �) �� 30" p�/�V� ���" !��% �) ��@J ��#� ���$� ;� 4N�� �)�`�1� :� C�;�� ���"

)�� .*� � oB��( )��� ����;�� ����� ��u�� .#�� \� ���L3� �b���!% <��@� D"��+ ��� ���@J ��#�� ����$� ;� 4N�� <��"

�@� ���/�9 ������( <�n���� Y��`� <:� Y��`� <.��GJ ���� ����(���� ��� I)�� *���3E�" ������@� ����u� D�0��J� ���"

30" I�&� <,`� #�( ;� 4N�� ��" D"�+ ���#&b� ���)�� G���� .#�� �) .#% I)�) G��� :� Y�`� D"�+ ;� 4N�� #���)

I#% I)�) �� ����$� ;� 4N�� #��J �(��6�<���@J ��#�� ���" ��J� *��(� k���� �� <�b��!% D"�+ ;� 4N�� )�� ��L� ���"

*���� *���7�� ����A/� I ���� ����@J ��'��� ���� r������� �) :� ���//�B�x������ D"�+ ;� 4N�� )�� *� �� I ?9 ¨#% I)�) G��� �b��!%

�@� ���/�9 )��� �)��`�1� �����; /�N�J *�J�� �L� �) �� ����+ ;� 4N������(�� �� I)�� �����( D" �) ���� *��B � ����� ��"

1 Net Present Value (NPV)

Page 5: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

104

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

*�D" 2H .#� �;��#%.0��� I#�% I)�) G���� ��u�� .#�� �) \�G1� �)��� GB�'� �&% �)#&@� ��#�� ������ ����$� ��

������; ����@J I#��3"�+ ��"����% ,��`� {���� ;� �J���@�H ����@J V� � *��� ;� .���J�� �����1 I)�A����� )����� <������$ <���@� *����

�b��!% ��#�� ����$� ;� 4�N�� �)��`�1� ,����$ ��b) �"I)�) ;� I)�A��� �� ��@J C�$ �G1� ��" I#% �� �<�) .��J�� S��7��

DV� 4��`A� �� I#�% I)�) G��� �u�� .#� �#��� B�=� *� �#G�� ���� [q� >��� )���� �)���� �GB�'� \� ����� I#��� ��)

���;�� 4�/O�.��� �J�� ���1

�6��q� =",")� 9��[>e� Z%UD �)D" 2H 4��/O� {��� ;� ��@J ��#� �)�`�1� 4�/O� <�u��

)��x!��% �) ���@J ��#�� ���$� ;� 4N�� 30" C�;�� ���" S�7�� :�%.#*� � ��� ��@J ��#� ���$� ;� 4N�� )�� ��L3�

�b��!% <�@� D"�+ ��@� ���/�9 <�" .��GJ ���� <:� Y��`� <����(�� � ����( <�n��� Y�`� �����@� ��u� D�0J� �"

30" ,�`� #��( 4���% ���@J ��#� ���$� ;� 4N�� ��"I�&� <��@J I#3"�+ ��"��% ��� #����) D"��+ ���#�&b� ���)���

.#� �� � ;� I)�A��� I); *��V� �u�� ��" #�% ��u�� .#�� . oB�( )�� ���O� ���� �) ��@J ��#� ���$� ;� 4N�� �B)�G�

M��� I#% >���)Awad et al., 2008(

)M(CPRVCIECIWCCCCDECBDCALCDRCBRCLWF

−++++++++=

�� �) + FoB������( )������� ;� 4�����N�� ��������$��������@J ��#������<

CLW :���@� D"��+ ;� ��%�� )��� ,��� ��� .���� �) .���<CBR D"�+ ;� 4N�� )��)�#G� B�B �b��!% ��" ,����� .���

.���� �)<CDR ;� 4��N�� )���� D"���+Y���`� ������ ����@J ��� ,����.�� �) .��<CAL )��;� 4N�� D"��+ ����/�9 ������

�@� �.��GJ ��� ,��� ��� .��� �) .���<CBD ;� 4�N�� )��� �b���!% ����� .;�3� ����( ����( ��� D"�+ ��" ,��� ���

.�� �) .��<CDE J��N ;� 4�N�� )��� ���$ �n���� ,�����.���� �) .����<CCC +����@� k����� D"���+ ;� 4��N�� )���������

+��@� ��u� D�0J���,����.�� �) .��<CIW 4N�� )��J�N ;� �A`� �) :� ��=������ ��$ ��( ,����.�� �) .��<

CIE J�N ;� 4N�� )�� �A`� �) �n��� ��=������ ��$ ��( ��� ,��� .��� �) .��� CPRV 5��� ��30" � I�� ,�`� �;�#����

� I ?9 30"���#&b� ���G� ����� ��@J ��#� ��" ���. ���� � ����� *�����V� ������ I#��% I)�) G����� ���u�� .#��� �) �� I)�� ������( ��� D"�+ ;� 4N�� )�� ���O� �&$ �u��

����(�� �b��!% ���� �" �b���!% D"�+ ;� 4N�� )�� <�" ��"�� )�� ��@� ����/�9 ������ D"��+ ;� 4N k���� ��� .��GJ ����

���� *�(�D" 2H ��" ���@J �'��� ��� r������ �) I#�% S��7��x�@� ���/�9 ����� �� ��@J ��#� ��tz� �b��!% � .�GJ ���

.#% I)�) G��� J�u� .#� *�

�6�6�� =q* F �K !� ZB�1 �+� ;� 4N�� )�� :� �@� D"�+)CLW�) ( C;�� !�% �� �� ����

;� I)�A��� ��B)�G� e)��� ���O�)Awad et al., 2008(

)e(( ) CWPWLWLCLW 10 ×−=

<�J�� ;� ���$� ;� [H �@� D"�+�� �� ��@J ��#� �� ����A��� ;� I)�B)�G� ��@J x�@� S�&A� k��� ��FAVAD )B)�G� l(); *��V� )Lambert, 2001(

)l(1N

0

1

0

1

PP

WLWL

=

_ �)�5)�G� e lWL0��0���� ���@�:�;� 4���1����@J ��#��� �����$� ,���� ����

,G!����.�� ��<WL1 ��0�� ;� [�H :� �@� ��#�� ����$� ��@J ,�� �� .��� ��� ,G!����<CWP :� I#�% S���� ���&� ���

,����� �� .�� ,G!�<P0����� *�b���� '=� �) ��@J ����M

)AZP(;� 4�1��@J ��#� ���$� ,�������<P1��@J ���� ) ������ *�b������ ��'=� �)AZP(#��G� ;��#��� �����$�����@J �

,�������< N1����� ���@J �'���x;� �+ ��@�Q/R���Q/M

1 Average Zone Pressure

Page 6: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

����R� � +6�h� ���#� dx.doi.org/10.22093/wwj.2019.163790.2794 105

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

� ��� ��^��[3$ ��!% ��� B�B )��) �b���� .(Van Zyl

and Clayton, 2007, Puust et al., 2010) .*� �)D" 2H <���� N1;� I)�A���� ��� ����;� ����!/H D"��+

��@JM#% )� ��� )AWWA, 2009(.���L3� *��V� ��@� ��0�� <��@J ��#� ;� #G� 4�1 !�%��+ �� ��#=� ;�7� ���% Y��`�

) ��+���@�LNC() ����% 41�#�� ����$ ;� �����MNF ��#�=� <() ���% oB�( ���$NNF� ( ����) ;� ��3��V� ��#�=� *�� .#�

��� �>��� �� ����% 41�#�� ����$ I� ) .��� �) ��@� ��#=� #�") .(Hamilton and McKenzie, 2014).

���% �@� ��� 4#�� ���� ,���� �9��� ��� ,�G!����<�����% �@� ���� ��� ; � ,�� �� �� $�� �� <; � �) ,G!����.�� �) ��@J �����^� ) )� ��J S��&A� ; � ���%FAVAD #��� (

; � ���+�Jx) ,%NDF ;� I)�A��� �� ( �B)�G� f����O� )��% �) .; � ���+�J ���O�x;� ,%��#=� LOB ��@J �'=� �) I#% ��t ��

) ���� *�b����AZP I)�A���� ����% 41�#�� ���$ ��1 I� ) �) ( ��� )��%.(AL-Washali et al., 2016, Amoatey et al., 2018,

Amoatey et al., 2014)

)f(∑∑=

= −

+=

=

+

=

=

23i

0i

N

43

1i,i23i

0i

N1i,i

11

AZPAZP

AZNPAZP

NDF

*� �) + B)�G� N1���@J '��� ����x���� ��@�<AZNP AZPi,i+1 �� ,�����

�9��� �" �) ���� ��@J ��#=� ���� ���% ���� ��@J ��#=� ���� *�b���� '=� �).��� � ]�u�� � S;5 �30" 4���% :� I#�% S���� ����1 �� ���"

{� �(�)�H S�( :� #�( �� :� I#�33+ *��z�� � I��L3B� I ?�9 4�(�) �J��`� ���� ������% )��� 30" 4��% :� �A`� 30"

�A`� :�,G!���� \ #�B�� ���� :� ��(.���

�6�6G:>/J� ,D�+D F �K !� ZB�1 �+� 8��Yg 9� )��8��Yg � )q*

�� ��� �u������ )��N��+ ;� 4�D"��������b��!%�B�B ��"�b��!%)d��0� ��" d��0�� I#% (I#�@� *��(� ;� I)�A���� ���

*�� *�7�� :� ��A/� I �� ��� �J�� S�7�� ��=�=O� :� ��//�B�

1 Pressure Step Test

)IWA-WLTF ��� �+ #% )�) G��� GB�'� *� �) ��� *�B � ���� ( ;� I)�A����5)�G� Q��j�� ���O� )�%

)Q(URLRL CBRCBRCBR +=

)i(( ) CBBFBFCBR 1RL0RLRL ×−=

)j(( ) CBBFBFCBR 1URL0URLURL ×−=

_ �)�5)�G� *�

RLCBR ;� 4N�� )�� �b���!% ������ D"�+ d��0�� ���" I#�% ,���� .��� ��� .���<URLCBR ������ D"��+ ;� 4�N�� )����b��!% d��0� ��" I#@� ,�� �� .��� ��� .��<0RLBF )�#�G� �b��!% �"d��0� �I#% ;� 4�1 ��#�� ���$� ���@J ,��� ���

� �) �b��!%.�<1RLBF )�#G� �b��!% �"d��0� �I#�% ;�[�H��#� ���$� ��@J ,�� �� .��� �) �b��!%<0URLBF )�#�G�

�b��!% �"d��0�� �I#�@� ;� 4��1 ��#�� ����$� ���@J �) �+�@� ���/�9 *�(� I#�% p�@+ ��� #��� ,��� ��� �) �b���!%

.��<1URLBF =)�#G� �b��!% �"d��0�� �I#�@� ;� [�H ����$���#� ��@J ��@� ���/�9 S�7�� �� + ��� p�@+ ���� #���% ���

,��.�� �) �b��!%< CB !% ���G� ���� 30"��b���" �d��0� d��0�� I#% I#�@� ,����� .��� ��" ��;� �� �b���!% ���.

�� �b���!% ��" ���� 30" �B�B ���� �� ����G�@��) �( )��) �b����� ��B�B [3��$ ��B�B ���'1 <(�/��N�.D"���+�������

�b��!% �"d��0� �d��0� I#% I#@� �� ���@J ��#�� ��t� �)���� ;� I)�A����� ���� ��������B)�G� v���)� � ����) (Lambert and

Thornton, 2012, Lambert et al., 2013).

)v(( ) ( ) PP1BFBFBFBF

2N

0

1npd010

−×−=−

+ �� �) npdBF )�#G� �b��!% ��" ��@J ;� 4=��� + ��� *� � B�B <��"

�'�O� ��% B�B [3$ )��) �b��� ))�#G� (.��� �) �b��!%

Page 7: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

106

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

N2������@J '���x��� �b��!% +�� ��#�=� �� \�)0�l��� I#% )� ��� .(Lambert and Thornton, 2012) .

4!%M�b��!% D"�+ #N�) ��)��� <�� ����� �� ��" #�N�)D"�+ ��@J3�@�� )�#�G� ����� ,��� �� ���� *�b���� '=� �)

�b��!% �b���!% 4�+ )�#�G� �� ���@J ;� 4=��� ��" ;� 4��1 ��"�� >��� ��@J ��#� ���$� #") ¨*��� ����� *�� ������^� 3��)

MxR���)Lambert et al., 2013(�/+ ��� � . �)!�% ���" ��� ��9 B�B ��" �+)!�% ���$ ( ��@J �P_�#�<*��H #N�) �5��� ;� �b��!% �"r���� �� �b���!% ���" 4=���� ;����@J ����

���� )�#G� �b��!% ��" 4=��� ;���@J �)�#G� 4+�b��!% �"5�� ���� .�)4���=� �)!��% ���" ��� ���9 �B�B ���" 5��� )!��%

I)���J ( ��#=� ���@J �P_�#�� 5��� )�#���� �� �P+�#�� ���J�| ���@J !�%(<�P+� �b��!% �"�)�t� ��@J �,�+�� ����� ��b) 4���9 ; ��� %�b���! ����� #�") ����� ��+Z�� *���H ����

.(Thornton and Lambert, 2007, Lambert et al., 2013, Creaco and Walski, 2017).

Reductoin in maximum AZP pressure (%)

Fig. 1. The percentage reduction in reported and unreported leakage versus percentage reduction in

maximum pressure at the AZP (Lambert et al., 2013) ZJ�-x�b��!% D"�+ #N�) d��0� ��" d��0� I#% �) I#@�

+�� ��@J D"�+ #N�) 4��=������� *�b���� '=� �) ��

�+�% + ����N �) :?�u�J :� ��" I)�) �� r����� ���"�b��!% d��0� ��" d��0� I#% �� �� ��&�� ���1 4�/9 I#�@�

%�� I)�+ ��t �1)3�� <# �b��!% )�#G� ���� ���@J ;� 4=��� ��" )npdBF <(I���� ��)���( <*��; D��� <\�J��� ��� ;� �%�� ;� ��

I)�) ��" �� �+��% ���� I#�% ���t�)�����+ d � .)� � ���)

C�� *��V� ���� ��b)npdBF 4���% �+ ���� I#�% �>��� 0��� 4����yxC�$ I)�) �� � �/�N� r��'( ������G� �� r����� ��"

D�� ��"��% �"��% ���G� 0$ �);� D��� ��� �=���3� ;� (����@�y� ¨.�� �) ���G� �x)�) ������I4���=� �) �b���!% ������ ���"

���� �" �) ='3� ���% ���� ��@J�xr��=� *��H #� *��V��� + ��� I#% ��� ;� ��B � *��V� ���39 � #����npdBF ��L� �)

�� ����G�@�� �/N� r�'( ���� #�� 4���� *� ��B� .)�% �J�� )��% ��� �����#$ ���N)Lambert et al., 2013(�� �$�� ��� .

I)�) �b��!% ���� <I#% ��t ¦)��� ��" �� ��@J ;� 4=��� ��"�b��!% 4+ d��0� ��" ���� �) ��@J ��#� ���$� ;� 4�1 I#%

=� GB�'� )��� U����/����9?�� *�3F + �7�� ;� .#% I); *��V��b��!% ���� d��0� ��" <)���� )�$�� GB�'� )��� !�% �) I#@�

*� �) ���� *� ��#=�D" 2H �b��!% ;� ��� *� ���� �A�N �" ��� 4��9 �) ���B� ¨#% �J�� �L� �) )��$ S#�9 ����N �) �����

�b���!% ��#=� <��9?�� ;� 4=���� ���" d��0�� ���@J I#�@� ���b��!% ���� #3���" d��0�� ��" ��L� �) ���@J ;� 4=���� I#�%

.�J��

�6�6=q* ?�%�3 F �K !� ZB�1 �+� ��.� G(�" 4!%e��@� ��� ���@J ��#�� ��tz�� ;� ��/+ ��)���� \� < ��"

�b��!% ��@� ����/�9 ) *�� ����; /N�J *�3E�" �" �� ������ ��@� ��b���" .#") <���@J D"��+ �� <��� oV@� 4!% �) +

�@� ���/�9 ) *�� �)�`�1� ����; /N�J ��� D�0�J� ��� .#��� � r���� �u�� �� � D"�+ ;� 4N�� )�� ��@� ����/�9 ����

.�GJ (CAL) ���/�9 ����� �� ��@J ��#� ��tz� *�J�� �L� �) ���@� �b��!% p@+ )�#G� ��� d��0� ��" �) I#@� ����/�9 �t��@� /�N�J *�J�� �L� �) �� D" 2H *� �) ��� *���V� ���� ���

�@� ���/�9 ) *�� �)�`�1� ����; ���(EIF)M+ #% I)�) G��� ;� I�A��� ���5)�G� m��MQ�� I); *��V� )�%

)m(VarCons CALCALCAL +=

)MR(ConsCAL

10Cons C

EIF12

EIF12CAL ×

−=

1 Economic Intervention Frequency (EIF)

Page 8: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

����R� � +6�h� ���#� dx.doi.org/10.22093/wwj.2019.163790.2794 107

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

Fig. 2. The effects of the pressure management on the reduction of reported, unreported and background leakages and also the economic intervention

frequency between two active leakage surveys ZJ��x�@� D"�+ �� ��@J ��#� ��tz� d��0� ��" d��0� <I#% I#@�

�@� ���/�9 ) *�� �)�`�1� ����; /N�J *�3E�" 3��; �@� .�GJ ���

)MM(CNMLCAL NCLCCCMCons×+×=

)Me(1Var0VarVar CALCALCAL −=

)Ml(( )0URLCD0URLMD0Var BFCBFCCAL ×+×=

)Mf(( )1URLCD1URLMD1Var BFCBFCCAL ×+×=

)MQ(5.0

CAL

RRCV

C789.0EIF Cons

×

×=

�5)�G� *� �) _

ConsCAL ���t ���/�9 D"�+ ;� 4N�� )�� ��@� .��GJ .���3+ ,�� �� .��.�� ��<VarCAL D"��+ ;� 4�N�� )��� ����/�9�����^�� ����@� .����GJ .�����3+ ,����� ����� .����� ����� .�����<

ConsCALC�@� ���/�9 ���t 30" ���� ,��� ��� .��� ��" ������/�9<

MLC���t 30"B�B D���H ��@� ����/�9 �) �" ���� ,�� ��.�� �" �� ����/�+<LM!�% 4+ .�� ,�� �� �����/�+<

CNC����t 30" ��@� ����/�9 �) ����G�@�� D����H ���� ��� ,��.�� :�G�@�� ��" ���<CN����G�@�� )�#�G� !��%<0EIF

��@� ����/�9 ) *��� �)�`�1� ����; /N�J ���$� ;� 4��1 ���� ���@J ��#� )���% I��(<1EIF ) *��� �)��`�1� �����; /�N�J�@� ���/�9 ��@J ��#� ���$� ;� #G� ��� )(����% I���<CV

�%�� 30" :� C;�� #�B�� �� ,�� �� �+ ,�G!���� ��� .�� )����� <S���( :� s��V����� ��� #���( ������ ����(�)�H ��30" 4����%

<�J�`� �����% #��B�� ����� ������� � ���� �n���� <��+ � ��� 30" *� .��� :� ,G!���� \ � ��A�� �+�% �" ���� ����

)���� ���1 ���O� 4�/O� )��� ����#$ #�� ¨RR D�0�J� �����b��!% �t� �) �@� d��0� ��" I#@� ,�� �� ; � �) ,�G!����

.�� �)<CMD 30" �/�N� r�'( � � �@� �" p@+ ��,��� �.�� p@+ �" ��<CCD 30" ����G�@�� � � ��@� ��" p�@+ ���

,��.�� .��� p@+ �" �� ���� ]��u�� �� S;5 �+ Y?��(�

0URLBF 1URLBF �) +B)�G� Me�� �"�| ���+) )��% �B)�G� Mf ;�B)�G� Ml�� �� ( ;� I)�A��� �� ���� B)�G� v���O� )���.

�6E6��q� ( >/(�� c��[� F �K !� ZB�1 �+� D"�+ ;� �%�� oB�( )������ :� Y�`� ���@J �)CDR(���

;� I)�A����5)�G� Mi��eRI); *��V� ��� )��% (Awad et al.,

2008).

)Mi(( )ba CDRCDRCDR −=

)Mj(( ) CWPWDWDCDR *1

*0a ×−=

)Mv(( ) CWTWDWDPMDCDR *1

*0b ×−×=

Page 9: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

108

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

)Mm(( ) 0*0 WDPSRRTF1WD ××−=

)eR(3N

0

1*0

*1 P

PWDWD

×=

_ �)�5)�G� *�

aCDR )�� ;� 4N�� D"�+Y�`� :�,�� �� .��� .�� �

bCDR D"�+ �/9 � �+�% #���) D"�+ Y�`� :�,��� ��

.��� ��� .��<*0WD *

1WD Y��`� �5��� ����� ���@J �� � ��@J ��#� ���$� ;� #G� 4�1 ,���� ,�� �� �) ,�G!����

.���� <PMD 4��+ #��N�)Y���`� ��+ �+���% ����� I;�#���� �������� )�%<CWT ���1:� d �J ,�� �� .���" �� ,�G!����<

PSR 4+ #N�)Y�`� WD0��� +���� ���� ���@J �� ���)��) �b��� Y�`� ��¨���7� ����N � Y��`� + �)���� �)

Y��| *�%�� ��� :� I��(T #3��� #3��" ��%d?�J <� \���� ��B���<�) ���B ���%�) #��"��V� Y���`� ��� ���t���� ����@J D"���+

� Y �| ��@��% S��O��� #3��� �J��`�D"�+ <���) ���N � {��1) *��G� ���� .��� ��Z���tz� Y�`� �� ��@J ����� Y���`

<:��% Y���`� #�N�) {��1) *��G� ���#�� ��GB�'� � <��@J �0H �VH <��%�#&� \� �) *�� ��� I ?�9 ¨���� ;���� �@��%

�� ��G3N Y��`� ���� .#3�%�� ���@J ;� 4=���� #�3���� N3�������@J '���x+ ��� Y�`�;�M/R��Q/R��� ��^�� ����� *� .

� �/(�) Y��`� ���� *��� Y �| ��@��% S��O��� #3��M/RxRf/R��( 0�� ���J ������ #3��� �$��( Y��`� ���� *��� �"Q/Rxf/Rd��0� ���� I#�%¨RTF �+ ������@� #�N�) �0�V�

:� I��(T � � �� )��( ����(�� r��� � p=� �+ #����) *�� �)���� ��#=� ���N N3�� ���� �"�AN ����� #"��( #%.(Lambert

and Fantozzi, 2010) .

06n6�+� ZB�1 !�c,[� F �K 9\,*� !�% �(�� �) ;��� )��� ��@J �� :� *���� �n���� *��z�� #3�;��� �"

n��q�H {��� ;� ;���� )��� ���� D"��+ ;� 4�N�� )��� ��3� ;� . I#�% I)�) G���� �� ��u�� '��� GB�'� *� �) + �n��� Y�`�

�� �� ;� I)�A��� �� ����B)�G� eM*��V�);

)eM(( ) EED10 CCDDCDE ××−=

)ee(000 WLWDD +=

)el(111 WLWDD +=

�) + ��

0D 1D� � �@�) �u�=� 4+ ,���� #�G� 4��1 (Y��`� I ?9 �����@J ��#���� ������$� ;� ,����� ����������� <.����� ����� ,���G!�

EDC�) :� ,�G!���� \ C;�� ���� �J�`� ��� �n��� ��0�� !�% ,�� �� ,�G!���� �� �9�� �� �/�+EC�n���� ����1

�J�`� ,�� �� �9��� �� �/�+ �� .�� ���� ]��u�� �� S;5 .��� <�5)�G� �) _ �) :� C�;�� ���L3� �� �n���� �30" ��&3�!�% n�q�H {�� ;� ���O� #��)�% <���; �J��`� �n���� �30"

���O� �@� D"�+ ;� 4N�� )�� �) :� .�=��� #�B�� ���� I#�% ,�G!���� \ C;�� ���� �J�`� ��� �n��� Y�`� ��0�� .���

!��% ���`V@� �� �b��� !�% �) :�)��) !��% ����� ���"�� �J�� �L� �) �AN U���=� �/=t .)�%

�6N6�+� ZB�1 !�F �K �,* ?���/^ b��>^�� �� =�(�( G:>/J� �

�) ��@� �?!�@� ;� �! !��% ��" I)�� ������( ��&�% �������(���� ;� 4��N�� ���@� ���t� �) I����� �����7� <���!���� ����"�b��!% d��0� ��" d��0� I#% �/N� r�'( I#@���� �t� �) .

B�B �������1 ;��� � $�� �� �@� *��;��; �� �J� �@� :� <�"����(�� �����#3J � ���� �� ���@� ,�$�� ��J� T��A� ��"

� ����( �#�� )�� ����(����(�� �"��)��% *�� ;� . ��P+� ��+�% :� ��" 5��� #��� �������30" 4���1 ���" ����� �&$���

����(�� � I)�� �����( ����$ �) .#�33+ ��(�)�H ���!B�� �� �"�+�% �J�@�H ��"��@+ �P+� :� ��" ������( )� ���� �� �����

�b���!% ;� �%�� I)�� t)���� *��3F ������ �) �� )��( <��" ���� ���� ���@J �'��� �� �$�� ��� .#�33+x�b���!%.(Lambert and

Thornton, 2012) <!����% \��� �) �����@J ��#���� ������$� b��!%��"d��0� �d��0� I#% 0��� I#@� D"��+ ��� .#�3���)

Page 10: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

����R� � +6�h� ���#� dx.doi.org/10.22093/wwj.2019.163790.2794 109

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

���7������( �����(�����(�� �"����b��!%��"�� �73� )��� ����O� ���� �u�� '��� .�J� #3"��( D"�+ 0�� ����(

����(�� ����( �����( ��� D"�+ ;� 4N�� �"(CBD) �4��B)�b��!% #�% I)�) G���� �GB�'� *� �) ��� *���V� ���� �"I��� ;� I)�A����5)�G� ef��ei�� I); *��V� �� ��#=� )�%

)ef(( ) BD1BD0BD CBFBFCBD ×−=

)eQ(( )0URL0RLT0BD BFBFCBF +×=

)ei(( )1URL1RLT1BD BFBFCBF +×=

�5)�G� *� �) _

0BDBF )�#G� 4+�b��!% �"�73� �;� 4��1 �����( � ����( �������@J ��#����� �������$� ,������ ������.������ �) �b������!%<

1BDBF)�#G� 4+�b��!% �";� #�G� �����( �� ����( � �73� ����@J ��#� ���$� ,��� ��� .��� �) �b���!%<BDC�30"

����( � ����( \ *�b���� ,�� �� .��� �����( ���TC

�b��!% ;� �#N�) ��� �����( � ����( � 4#�� + �" .#���% [3�$ ���L� !�% ��% � �b��� I)�� ���7� #N�) *� ��#=�

I;�B <��( ��� ��L� �'�O� ��% B�B �'1 <B�B �='3� �0�(� ���� *� .)��) I��� �GB�'� )���� �='3� ����� ����7� ����e

)�� ��#=� + ��� I#% )� ��� #N�Re/R.���

�6R6�+� F �K !� ZB�1 d��D 9� K,>�q�b�F"�Y��� ��"b�",>q� ="���

!�% �(�� �) +���@� k��� <:� C;�� ��"��Y��`� ���#�33+30" �� 4��O� �+�% �� �� ��" k���� *�� .#3+ ��� ��" �� #����� �/9Mx<�@� � �b��!%ex<:� ��G'1lx�� *���H ���@J

<:� �5��fx :� �)��� ��)��� �#+ ��L� :� :�/'��� ��A�+Qxk���� D"��+ ;� 4�N�� )�� .#%�� I#% �)�N  �1 ;� ��!%

+���@���Y��`� ��� �� ���#�33+ ;� I)�A���� ��� �������B)�G� ej); *��V� )Awad et al., 2008(

)ej(( )3322114 cncncnNCCC ×+×+××=

�� �) +

4Nk����� D"���+ #��N�) <���"1c<2c<3c��� ��30" ,������k��� �� ;��� �� �3A/� ���b�H � ;��� �� <���b�H � ;��� � #� ��"

�� ����� ���b�H #3%��1n<2n<3nk��� )�#G� � #� ��" ����b�H �� ;���� ��� ��3A/� ����b�H �� ;���� ��� <����b�H � ;���

��� ������ k����� D"��+ ;� 4��N�� )��� ������� ����� .#3��%��+��@���k��� I)�) I�b�H � <a��`( �) I#�% S�7�� ����#1� �"

��� k��� �".��� ;

�6T6�+� ZB�1 !��,B G"+P 4%7>/�,%u ����#�� ���$� �t� �) Y�`� D"�+ :� �@� D"�+ � $�� ��

�� D"�+ 0�� !�% � �) � :� ��0�� <��@J :� �7��� �) #�� ��� I)�) .��=��� �A`� ����+ *�� ;� .)��% :����A/� ��0��� �

�A`� 4(�) .�=��� r�'( �) ��( )��� .��J� #�"��( D"�+ 0��J�N ;� 4N�� �� �� :� ��=������ ��$ ;� I)�A��� �� ����B)�G�

ev ); *��V�)Awad et al., 2008(

)ev(( ) CWPDDACIW 10 ×−×=

�� �) + A�A`� �) :� �J��#" D"�+ ���� (�� :� .��=��� �( ��

�� �@�) !�% � �) � 4+ ���$ D"�+ (Y��`� I ?�9 ���� .#��N�)A�) I)�A����� )����� �n���B�3!� .���=��� ��( ����% ����A��`� .)���G� ������ *��� )��) �b����� :� ����(y�#��N�)d��0� I#% + ��� �� ��#�=�M/R��� ���Z�b�$ �'��� �) )��%

)Awad et al., 2008(.

�6�6�+� ZB�1 !��,B G"+P ,%u 4%7>/� 9\,*� J�N ;� 4N�� )�� J��N 4��% �n��� ��=������ ��$ �) ���$

��B�B �) ���J� D"���+ ������ �n����� �A��`� <!���% ����" :� ����(� �@�) �u�=� D"�+ ;� �%�� :?u�J !��% �� (Y��`� I ?�9

��� ;� I)�A��� �� + <��B)�G em��� ����O� )��%(Awad et al.,

2008) .

)em(( ) ( )[ ]

CDEBCWDWDCDDCBCIE EWWT10EWT10E

×+×−+×−××=

Page 11: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

110

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

�� �) + B�� �����!��!B� �n��" ���J��#�%�� �+�!'N� �J� ;� ���) �B�B��� !�% ��"��A`� <C;� ��(�J :� ��� 4+ � :?u���n�

�� I#% #�B�� #%��¨EWTC,�� �� �J�`� �!��!B� �n��� ��0�� :� ,�G!���� \ �A`� ���� �9�� �� �/�+ EWWTC��0���

\� �A�`� ����� �9�� �� �/�+ ,�� �J�`� �!��!B� �n���:?u�J ,G!���� ��#=� .BB�B [3$ � .��=��� �( !�% ��"

�A`� ��% *�3E�" :� ��( ��#�=� )��) �b���� :?u�J ) #� ��y�/���� I#% I); *��V� )Awad et al., 2008(.

�6�f6$"Y ,%� ,( G$>2� ��q� =",")� *���� 9� 9� ��q� )$ �K

5��� �30" #��� �)��`�1� 4��/O� S��7�� ��L3� �������� ���"0" 4��% ��@J I#3"�+ ��"��% �� �3��� ��@J ��#� ,�`� �3

I�� � �;�#�� 30" I ?9 I��&� ��" ���#�&b� ���)��� ���� ��� �+ ;� I)�A���B)�G� lR�� ���O� )�% )Awad et al., 2008(

)lR(( ) MCCRFCCPRV CPRVCPRVN

1jjjj

N

1jj ∑∑

==

+×==

+ �� �)

jCCPRV 30" I�� ,�`� <#�( 30" 4��% �B � ���% �;�#��� ��@J I#3"�+jS� ,�� ��.��<MC 5��� 30" #N�)�/�9 ����

�G�����#&b� ) �O & M���@J I#3"�+ ��"��% (<CRF ,��u ���� ���� �@�;��*��V� 30" 5�� ��"�I��&� ���� k���� ��

5��) �i��9 .�� (����� ��� �3��� ��@J ��#� ��" ��"���% ��@J I#3"�+)n(�� + I)�A��� ;�B)�G� lM�� ���O� )�%

)lM(( )( ) 1i1

i1iCRF n

n

−++

=

_ *� �) B)�G� ���� 30" I�&� 30" ��@J ��#� 6�� ���$� ���Z� ���)��

������ ���#&b� ,��u ����O� {��� ;� ���@J ��#�� ���"�30" #N�) ���� �@�;� I�&� ��" #�N�)) ���#&b� ���)��

����� ��0�&7� �?&��� �� (���@J ��#�� ��"5��� ����N �.��� I#% ���O�

�69��+� .��O� G���� �)��`�1� .#�� ;� I)�A��� �� ��@J ��#� �)�`�1� 4�/O�

B 0� ���� \ �) <I#% I)�)M��J�� S��7�� #&@� �&% �) ������ .�� �3��� ���� *� ��@J ��#� ��% ��@J I#3"�+ �( ��$����t �

)FO(U?�1 + )�� �) � �) ����I#% ,`� 4��/O� ��L3� � .)�� {��� ;� �#���� ����@J ����� *� ��@J �J�@�H ��#� �)�`�1�

.��3+ ,`� ���@J ���L3� ���@J I#�3"�+ ��% �$ �( �) ��@J ��� �$ �( N���; ��� ���@J ��bB��3+ �����^� k��� �� I#% �#3�

) ���; �� �3��� ��@J I#3"�+��% �TM 4#�� (%{�� ;� [q� .#.��3+ ,`� ���@J ��L3� ��% �$ �( �) ���$ �� �3��� ��@J ��

���@J I#3"�+��% � ��@J ���$ ��0�� �����^� k��� �� �$ �() ���$ �� �3���FM.#% 4#�� (

�� ) #��� I)���� �) � \�� ����) ��+Z��� ����lR������/�+r�'( �/N�fiRj :�G@�� _ )��) mR#N�) ����3+ ��&�� #����).

���� *� � �) � ���$ 4+fvmi ;� + ��� ; � �) ,G!���� ������ ��#�=� *� ��� lfQl ���� ,�G!� �); � )jM��0��� (#�N�)

Y�`�Mfef ) ; � �) ,G!����em� (#N�) ���� ��@� ��0� .I;�#�� ���� <�='3� ����� ��@J ���� �#���� ����� *�b����� �'=�

)AZP) ���J��^$ ��9?�� ����� ��0�� ;� I)�A��� �� (GIS ����� ( *��G� GB�'� )��� ���� �%#.�) ���@J ����t I�b���) \� [q��

���� �)�&3@�H '=�AZP ,`� ���@J �LOB ����� �����; ������ MQ t =�1) ��%���) I�b���) \ .#�� �) � �'=� �) 0��� �3��

LOB ��) ,`� GB�'� )��� ���� ����� �� ��MQ.#�% ��t =�1) �� �����O� r��=� �) ���@J ����t I�b���) �� *� �� I ?9 ���L3�

� ,`� ��@J 41�#� *��z� ;� ��3���� ����$ 4�/O� S�7�� ��L3�) ���% 41�#�MNF<(I;�#�� ����� ����O� r��=� �) ���@J��'=�

�*�b��� ��� �� I;�#��� ����� ��)�) � �'=� �)������ S�#�+�"%��"�� ��@J I#3"�+��#� \I�� S�7�� �J�� .�!3� � $�� ��

Y�`� ����J� ��)�9 ���^� �) ���^� � �73� .�� .�� �) ���#33+`� ��bB��`J �) :� Y���� p/�V� .� ���� ���� )�%�u�=� <

1 District Metered Area (DMA)

Page 12: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

����R� � +6�h� ���#� dx.doi.org/10.22093/wwj.2019.163790.2794 111

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

��)P-6���% 4+ �@� B 0� ���� �) ���% 41�#� ���$ 4�/O� ���� I#% I); *��V� ���B�� ; �

����� ���$� ���� ��@J ��#� ��" Table 1. The results of the minimum night flow analysis in the DMA and the estimated total annual

and daily leakage for implementation of the pressure management systems

Annual leakage

(m3/year)

Daily leakage (m3/day)

Average pressure

(m)

Night-Day

Factor (NDF)

Leakage (L/h)

MNF (L/h)

Night consumption

(L/h)Type of PM

system

5197641424 41.9 22.463706 86741 23035Fixed Outlet (FO)

449854 1232.5 38.03 21.2 58237 76665 18428 Time-Modulated (TM)

435592 1193.4 36.47 20.8 57436 75864 18428 Flow-Modulated (FM)

��� D�0�J� )��� .��`J �� ����� <S�� .�`J �) ����� <#������% Y�`� ;�7�M.��� )��� S��� .��`J �) :�G�@�� �" ����

� � ����#$ ���N ,����Q f����B �) :�G�@�� ��� �9��� �)#% �J�� �L� .(Fantozzi and Lambert, 2012) .

��@J '��� ����x) �@�N1����!/H D"�+ D��;� ���$� �� ( #��% I); *����V� ����@J)AWWA, 2016(�� ��#��=� ¨�~/y

� #�� ��) ���+�J [q� .; �x,�% )NDF ( ��@� 4#��� �������B) ���%� (�9�� �) �� ���% 41�#� ���$ 4�/O� ;� I#�� ��)

���% 4+ �@� (; � �) ,G!����) ; �I)�) ;� I)�A��� �� ���@J ��" I#�% ��t ����� N1#�% ����O�)AL-Washali et al., 2016(.. #��$y4���/O� ;� 4��N�� �����������% 41�#��� �����$ ����@� ��

�� .#") . #$ + ��b���"y�� ��@� I#�3"�+ ���% 4#��� ��� <#") ��� ��3��� ����; ��� ��3��� ��@J ��#� ����� � ���t �$ �(

�� ����� *�b���� '=� �) ���� ��@J <���$ ,������ #�N�)y� �� �5��� ��@� ���� D"��+ #N�) ,�����~/y� #�N�)�/y�. #��$ .���%�) D"���+ #��N�)� ���"������H �)���=� ���/+

���1 �� ��@J ��#� ��#� �)�`�1� 4�/O� �) �J� ��+ � ��"�� >��� C�$��� ;� ��&�� ��#�=� �+ #�") I)�) p�/�V� ����7� ���" C����$ .����� �) �� � �����"y��� y��� ���� I#����� �����)

����.(Sajjadifar et al., 2017, Tabesh and Beigi, 2017,

MOE, 2018).,��u ��#�=� <��� ]�u�� � S;5RTF *�� �) D" 2�H ���

�GB�'� )��� ���� ;� ���#�� ��#"�@� � $��QR��L� �) #�N�) 1 Legitimate Night Consumption (LNC)

?9 .#% �J�� ,��u *� �� I PSR PMD ��I)�) �� $�� ���" ������ ,����� �� #&�@� :?�u�J :� �+�% ;� I#% Z(�i/R

m/R�) ��)��� ����� :� d �J ���1 *� �� I ?9 .#% I)�) ���1� �����O��+�/� � �'( ���Nx.#�% ��J�� ��L� �) �)�GN

�u�� '��� 4�/O� *� �)���� �� )��� ����O� D�0�J� ;� 4�NI)�) )�$ S#9 �/9 � ����@� ��u� ����O� �J��+ ���" #�@� .

5�� 30" #N�) ���G� ���/�9 � ����� ���#&b� ��#�� ���" ��@JMR����� *� ,`� #�( 30" #N�) .#% �J�� �L� �) �"

�6��� ����� I��&� ���� .���G� ��� ����� ���" .)��G� <���Z��� ��� �P+�#� �#��#3/� I)�q�� )��� ���� #�3��� \��� � #�� )�

� �!��� ����� \��� D�%�H ����� #�N�) #�3F I ?�9 ���Z�� :�V�����)�%In �H ,/�� �) F��� . I��&� ��� ;� �����9 ��"y�

�� I)�A��� #N�) )��%<����J �) 4�03� ���� *�� ;� I)�A���� ���� <����� ��G1� ���� �)�`�1� ���; �)��`�1� S���� *�� ;� ���@��

��0����� ���� �) ���Z� ����� ��$�� 4���1 ��N�`( ���")Tabesh and Beigi, 2017(�!���� �#�#3/� )�� ��� � $�� �� .

���� \�� D%�H #N�) ���Z�<�B�=� *�� �) I��&� �����5�� #N�)�.#�% ��J�� �L� �) *�� ��� I ?�9<#��A� ���9 .���

����� ��@J ��#� ��"MR}�J .��%.#

E6� V"�>* WU( ���� )��� 4�/O�x)���� ����� �) ���@J ��#�� ����$� �30"

<GB�'� #$ �)�. �<� ~.��� I#% >��� . #$��� ��@� <#")�$ +�� C���#� ����� ���� ��@J ��#� ���$� ;� 4N�� )�

Page 13: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

112

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

��)P0x��@J ��#� �)�`�1� 4�/O� �) I#% I)�A��� ��"������H �)�=� Table 2. The parameter values used in the economic analysis of pressure management

Unit Value TermParameter Rial / m310434 CWP Unit cost of water production Rial / m34500 CWT Water price paid by the customer Rial / m36260CV Marginal cost of water

Million Rials / Break0.86 CB Average cost of repairing a break at connections Million Rials / Break89.4 CBAverage cost of repairing a break at mains

Million Rials / km of main 1CLM Constant leakage monitoring (mains) Million Rials / connection 0.05 CNC Constant leakage monitoring (connections)

Million Rials / Break2.5 CMD Variable cost of unreported leakage detection (mains) Million Rials / Break1.8CCD Variable cost of unreported leakage detection (connections)

KWh / m31CEDValue of consumed energy to distribute 1m3 of waterRial / KWh657CED Cost of energy consumed KWh / m30.4CEWT Value of consumed energy to produce 1m3 of waterKWh / m30.75CEWWT Value of consumed energy to treat 1m3 of wastewater

Million Rials886.5 CCPRV Cost of purchase and installation of PM system through FO-PRVs

Million Rials 1108 CCPRV Cost of purchase and installation of PM system through TM-PRVs

Million Rials1152 CCPRV Cost of purchase and installation of PM system through FM-PRVs

��)P5x���$� ;� 4N�� ��")�� ���� ��@J �J�@�H ��#� �����

(.�� �) .�� ���/��) B 0� ���� Table 3. Benefits arising from implementing advanced

pressure management system in the DMA (Million Rials per year)

Type of pressure management

systemComponents of the developed

mathematical model FM TM

878.3 729.4 Leakage reduction (CLW) 303.6224.7Break frequency reduction (CBR)

264.8186.6Pressure-sensitive demand reduction (CDRa)

167.7 119.7 Active leakage control effort reduction (CALC)

15.711.7 Building damages reduction (CBD)

72.057.7Direct energy reduction (CDE)26.116.6Indirect energy reduction (CIE)

114.3 1842.5

91.6 1438

Indirect water reduction (CIW) Total benefits

�GB�'� )���� In ��H ����� ����$ ��� �3��� ���; �� �3��� ��@J� ,����y��� ~/y��� ���V� .��� ����/�� .���� I#�% I); *

4!%�� )�� #N�) \�!A� � ���@J ��#� ���$� ;� I#�� ��)

. #$�x30" ���@J �J��@�H ��#�� ������ ����$� ;� 4�N�� ��"(.�� �) .�� ���/��) B 0� ���� ����

Table 4. The costs of implementing advanced pressure management system in the DMA (Million Rials per year)

Type of pressure management system

Components of the developed mathematical

model FM TM

102.8 72.4 Revenue reduction due to Pressure-sensitive demand reduction (CDRb)

390.1375.1Annual cost of PM system492.9447.5 Total costs

�� ��@� I#% I)�) G��� �u�� .#� ��0$� ;� \ �" ���� �� .#")�� I#"�@� ��)��� *� �) + ��b���" *��@�� �@� D"�+ <)�%

a�`�(� )�( � ��@J ��#� ����� ) �" ���� �� )�� #N�) :� I#% S��� ���1 �) �J� D"�+ �@� ��#=� :�u ;� + I)�)

� ����) � .#� ,���� ) #� ��@J ���� D"�+ ��� y������ ;� I)�A��� �� �#N�) ���; �� �3��� ��@J ��#� ��"

� �@� ��� <���$ ���� ���~/y� �/y�D"�+ #N�) ) #� �@� D"�+ ;� 4N�� )�� �J�~y ��4N�� #N�)

� .#% D"�+ #N�) \ �" ��;� � D" 2H *� �) �b) ����9

Page 14: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

+6�h� ���#�����R� �dx.doi.org/10.22093/wwj.2019.163790.2794 113

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

��)Pn6��#� ���$� ;� 4N�� 30" � )�� ���� oB�( )��

(.�� �) .�� ���/��) B 0� ���� ���� ��@J �J�@�H Table 5. The obtained net benefit and the benefit-cost ratio for implementing advanced pressure management

system in the DMA (Million Rials per year) Type of pressure

management systemComponents of the

developed mathematical model FM TM

1349.6 990.5 Net benefit (Million

Rials / year) 3.7 3.2Benefit-cost ratio (B/C)

� ��@J ����� ��� ,���� ����; ��� ��3��� ���@J ��#� ��"� ���$ ���� ���Q/M eQ/M�� ��@� ���� D"�+ #N�) �� .���)j/Q j/l4�N�� ��@� D"��+ ;� 4�N�� )��� #N�)

�� *� �) �3� ;� .)�%D" 2H ��tz�� ��@� D"��+ ;� 4N�� )�� ���&� .)��) 4�+ )���� D�0�J� �) ��0��� 4���B) *��� ��#�=� �5����

���� � ��" ��u�� D" 2�H �) I#��� ��)<�J��u� ���@J )��$ � !�% �) )�$�� GB�'� )����� �J��@�H ��#�� {��� ;� �+

�'��� ����� *�� �� I ?9 .��� I#% I)�) D"�+ ��!�� #� �� ��@J��@JxB�B [3$ � + �@� D���;� ;� �� ��#=� )��) �b��� �"

��@J ���!/H D"�+lQ/M���@� ��� ��@�� D"�+ �� <#�� ��) ������H .����� �t���� �� ;� 4��N�� )���� D�0��J� �) ���b) ���&� ��

+ ��� :� I#% S��� ���1 <�@� D"�+ ;� 4N�� )�� D�0J�

Fig. 3. Percentage of benefits arising from implementing advanced pressure management system for the

components of the developed mathematical model ZJ�5x����� ���$� ;� 4N�� )�� #N�) ��@J �J�@�H ��#�

I#% I)�) G��� �u�� .#� ��0$� ����

30" 4��% GB�'� *� �) �� :� C;�� #�B�� ��" ����O� .)�%30" ��; �9���$� ��" )��� <:� I#�% S��� ���1 �) �'�O�

�� �� �@� D"�+ ;� 4N�� D�0�J� 0��� ����@�� ��#�=� �� #�����.#")

4!�% {��'�l��@� ;� [�H �b���!% D"��+ <Y���`� <��"�@� ���/�9 ��@J � ���� � .�GJ ��� �&�� *���@�� ,�����

I)�) a�`�(� )�( � �� )�� #N�) �� .#�� ��&�� ����7� �+ ������ ���$ �� �3��� ���; �� �3��� ����� ���� ) #�� ,�����lj

fR � #N�) "��+ <��u�� �GB�'� �) *�����3� .���� I#�� ��) D�b��!% <�@� ��@� ����/�9 ���@J � ���� Y��`� <�" ����

) #��� .���GJvv��#��� �����$� ;� 4��N�� )���� 4��+ ;� #��N�) I)�) a��`�(� )�( � �� ��@J �J�@�H D"��+ ;� 4�N�� )��� .#���

'( �) �@���A`� .�=��� r� =� D"�+ ;� �%�� :� ��(��u����� �@�) 4+ ) #� 0�� (Y�`� I ?9i)������ ) ��" ����� #N�

0��� )���� *�� �) .���� I#�% I); *���V� ���@J ��#�� I#% )� Y���`� �@� D"�+ � + ����� �) )�$�� �J�u� ��@J D"�+

�73� ��@J � ���� <I#% � )�� �) ��0�� ��tz� .)��) I#��� ���)� �n��� Y�`� D"�+ ;� 4N�� )�� ��=������ ��=��� ���N

#� 0�� )QI); *���V� ���@J ��#�� ������ ) ��" ���� #N�) <#��B�� �) �J��`� �n���� ��0�� �J�`� �n��� ���1 .��� I#% (n��q�H �O� � �/=t) !�% ��� � + :?u�J �A`� :� C;�� ;� 4�N�� )��� <)��) �b���� :?�u�J :� �A�`� �n�B�3!�

���1 ��tz�� �O� U?��+ �� �n��� Y�`� D"�+ ��� �#�").. #�$f30" �30" 4��% <��@J ��#� ����� ���$� ;� 4N�� ��" ���" <#�( I�&� <,`� #&b� ���)�� #����) D"�+ ;� �%�� 30" ���

�� >��� �� ��@J � ���� Y��`� D"�+ ;� 4N�� ���b���" .#�") �30" C�$ <��� oV@� . #$ *� �) + ����$� ;� 4�N�� ���"

����� �� ����$ ���; �� �3��� ��@J ��#� ,�����Q/ffj m/fme 4!�% .���� I#�% I); *���V� .�� ���/��f\��!A� �� <

30" #N�) ;� \� �" ���� �� ��@J ��#� ���$� ;� 4N�� ��"�0$���� ��@� I#% I)�) G��� �u�� .#� #").*�� �� �$�� ���4!%<30" 5��� ���" � <,�`� <#��( � I��& ���#�&b� ���)���<

����� �+ I)�) a��`�(� )��( �� �� 4�+ �30" ;� #�N�) *��@�� �� ����$ ����; �� �3��� ����� ) #�� ,�����vf jm#�N�)

� �� ��)�! .��� I#�5) ;� ��� ��"#N�) 4*� �) I#�� ��)

0

10

20

30

40

50

60

CLW CBR CDRa CALC CBD CDE CIE CIW

TM FM

Page 15: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

114

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

Fig. 4. Percentage of costs of implementing advanced pressure management system for the components of the

developed mathematical model ZJ�ix30" #N�) �J�@�H ��#� ����� ���$� ;� 4N�� ��"

I#% I)�) G��� �u�� .#� ��0$� ���� ��@J

��/GJ d;�� ����O� ����� I#�% �J�� �L� �) 403� ��� <D" 2H30" 5�� ��"�0" 4���% �3 I��&� <,�`� <#��( ���" ���)���

In ���H ����� ����!� �����; ;� �G����� <����� *��� .����� ���#��&b����� ���Z���� �!���� )��� ���� �P+�#� ;� �� ��#=� U5��G�

� �#�#3/� ����� \��� D�%�H ���� #N�) #3F I ?9 ���Z��� �� ��) .#�

Y��`� D"��+ ;� 4N�� #���) D"�+ ;� 4N�� ��u ����� � D" 2H *� �) 0�� ��@J � ,����y� �y� #N�) I#��� ���)

� .��� #�N�) \� �" D"�+ ��;� � �u�� D" 2H �) + ��������� ���� ��@J �� ����$ ��� �3��� ���; �� �3��� ��" ����

�����/y �/y;� ��%�� #����) D"��+ ;� 4�N�� ��u #N�)�@J � ���� Y�`� D"�+ ����� �/9 .��� I#% ���O� ����"

� �� �� I#�� ��) \��� )�$ � ���� ��@H �) I���(T ���" �� S�������(���� r����� �) .)�) ������ :� d ���J �����1 *���3E�" ���"

.�� � ��(� ��" 4`J �) a�`( � :� )���+ �/9 <.�� S�� ��"\��� ;� I)�A��� ����(�� �) I��(T ��" �J� G��� <��@+ ��" �+

��@J '��� ���� ��#=� 7��� �)x�����) Y��`�N3*��3F ����� ( �) :� Y����`� 4��+ ���B�� *��� �) .#��% #��"��( �A��N ���+����@�

�� ��J�� ;� .#�% #�3"��( ��@J ;� 4=��� ����(�� ��(�)�H ��/9 ���� �) :� ,G!���� �" d �J ���1 <:� DV� �) ��B ) ����

��� :� I#% S��� ���1 p`� U���=� <��u�� D" 2H �) *����3� . �� ����� Y���`� D"��+ ;� ��%�� #����) D"�+ ;� 4N�� ��u

30" 4��=� �) ��@J ����� �5�� ��" @J ��#� ��"�+ ���D"�

.��� �J� . #$Q���@J ��#�� ������ ����$� ;� 4N�� oB�( )�� <

��� �>��� �� ����$ ��� ��3��� ���; �� �3��� �� �+ #�") ��,���Q/mmR i/Mlfm � .�� ���/�� ��� *�����3� .���� I#��� ���)

� ���� � $�� ���@J ��#�� ������ D" 2H *� �) <I#�� ��) 5���� ��30" ��!�� ���� �����$ ���� ���3��� <,��`� <#���( 4����%) �

I�&� �30" ���+) oB��( )�� ��� )��) ���5�� (���#&b� ���)������ ���@�� (4N�� )�� ;� ��� ��3��� ���@J ��#�� ����� �

���@J ��#�� ������ ����$� ;� 4�N�� )��� D�0J� .)��) ���;�� oB�( )�� D�0J� � �73� + ���$ �� �3��� ��� �� )�% �����

����� *� )�!/�9 ��� � $�� �� ������ *�� �) .)�) ]�u�� �" <��"I�&� ��@J ��0�� � $�� �� ���; �" �) ���)�� .��3+ ����9 ���$

�� 89�� + I#% ��L3� )��$ !��% �) �J�u� ��@J *���+ )�%I�&� ��@J �%�) \)0� �) ���)�� )���� 3�&� ��@J � �B�� *��

�� �� ���$� �3� ;� .#%�� ;��� D"��+ ��� �� ��tz�� *���@�� #�����b��!% <�@� �@� ���/�9 <�" �n���� :� Y��`� <.��GJ ���

.#%�� �%�) . #�$ �) I#�% �>��� ����� {��Q�) �30" �� )��� ����� <

����� ���� �u�� D" 2H ����; ��� ��3��� ���@J ��#�� ���" ,������ ��� �����$ ���� ���3���e/l j/l��� .����� I#���� ����)

���� 4���1 30" � )�� ���� �b���� I#% )� ��" I)��� �&$����� ��@� ����� ���$� #") ����; ��� ��3��� ���@J ��#�� ���"

�$�� <���$ �� �3��� �$�� ��� *� �� I ?9 .)��) �)�`�1� ��ZH� oB�( )�� ��#=� � ����O� �30" �� )��� ���� I#�� ��)

*� �) I#%D" 2H ���% ;� I)�A��� �� ��@J ��#� ����� ���$� <��#� ����� �� ���$ �� �3��� ��@J I#3"�+ ���; �� �3��� ��@J

.)��) ��O$�� 30" o(�% \x�b) I#�J ����� ���$� �) ��#�� ���"

�J�@�H ��@J I���% �@� �)QQi ����� �� �G� ����L� �0� o(��% *�� �) .���� I#�% )�&3�@�H ����&�$ ����� �)��"��

������ ����$� �30" <�)�&3@�H ��" ��;� �� ���@J ��#�� ���"�����@� ) ����@J D"���+ ����� \�� ������pm���� �����O� ( )���%

)VPSPS, 2012(��#=� . 6��� ����$� 30" ���=� ;� o(�% *����� 30") ��@J ��#� I�&� ���Z� ��� (���#�&b� ���)���

.���9� ;� �%�� ��@J ���� D"�+ ��#=� �) !�% ����G@�� )�#G�

0

15

30

45

60

75

90

CDRb CPRV

FM TM

Page 16: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

+6�h� ���#�����R� �dx.doi.org/10.22093/wwj.2019.163790.2794 115

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

� ��@J ��#� ��� ��) ������ ����� .#�� ���@J ��#�� ���"�� ���; �� �3��� ��#�=� �B�=� *�� �) I#�% ���$� ����$ ��� ��3�

� ��J o(�% ,��������� �~��� :�G�@�� �" ��;� � .��� ��@J D"�+ ��� \ ���� ��@� )�&3@�H � $�� �� + #�� ��)

I���%~~� ���$� 4��1 ���� *� ���� �J�@�H ��@J ��#� 6�� <�+ ���� �� d � *�� pG�u r�=� ;� �! .��� k���� ��� ��&3�

30" 6�� ���$� ��" ���O� ��@J ��#� ��"��)�% ���0� )���� �B�=� *�� �) 4��`A� �� �+ ��@J ��#� ���$� ;� 4N��

��� �L� �) �� �J�� ���1 ����� )�����; ¨����$� ;� 4�N�� #��J �b���!% <��@� D"��+ ;� 4�N�� )��� ���L� ���@J ��#� <��"

� Y��`� �n����� ��@J � ��� �$�� �� #���� �)��`�1� ��ZH6�� ���$� .#%�� �%�) ��0�� ��tz� ��@J ��#� ��"

*��#����+ ;� �! ��@J ��#� �)�`�1� d � *��� ���"!�% �) ��A/� ��#� � ���� .��� :� C;�� ��" ;� I#�� ��)

\�+ ��@+ :� �G3N ��``V�� ���#� � GB�'� *� ��#�3+ 6���� �����$� ;� 4��N�� �)���`�1� #����J ;� �G����$ ��) ���� ����"

����; ��� ��3��� ���@J I#�3"�+ ��"���% I)�A��� �� ��@J ��#� I)�) G���� �u�� .#� *� �� I ?9 .#3%�� �%�) ���$ �� �3���

*� �) I#%D" 2H ��� ���@J ��#� �)�`�1� 4�/O� ���� #�������!�� ���� � �73�6�� ���$� �)�`�1� �$� ��@J ��#� ��"

!�% �) I)�) 41�#� �� ��@+ ]'� �) p/�V� :� C;�� ��" ��".)�% I)�A��� ;��� )���

L6�%>* 9,%g !��% �) ���@J ��#�� ����"� �� �$�� �� D" 2H *� �) ���"

:� � ����� D"��+ ��#� �) �t�� #����+ ��!"�� \ ���39 <��A/������ ���$� �)�`�1� 4�/O� .#�% �>��� ��@J ��#� ��"*� � ��tz�� ;� 4�N�� )��� ����O� ���� �u�� .#� \ ��L3�

�b���!% <�@� D"�+ �� ��@J ��#� Y��`� <:� Y��`� <��"�@� ���/�9 <�n��� ����(��� �� I)�� ������( <.�GJ ��� ��"

�30" *��3E�" ����@� ��u� D�0J� ���" <#��( ;� 4�N��

I�&� <,`� ��%�� #���) D"�+ ;� 4N�� ��u ���#&b� ���)�� ��u�� ��� � .#�% I)�) G���� ��@J � ���� Y��`� D"�+ ;� )��� 4���% I#% I)�) G��� �u�� .#� ��0$� ;� �)�#G� � r����

����(����� ���� I)�� ��������( D"����+ ;� 4���N�� ;� ����%�� ����"�b��!% ���/�9 D"��+ <��" ��@� �D"��+ D"��+ .��GJ �����b��!% d��0� ��" d��0� I#% *�� �) ���� *��B � ����� I#�@�

���@J ��#�� ������ ����$� ;� 4�N�� ���� .#)�� >��� GB�'� ��3��� ����; ��� �3��� ��@J I#3"�+ ��"��% ;� I)�A��� �� �J�@�H

��� #&�@� �&% �) �G1� B 0� ���� \ ���� ���$ �� ;� I)�A���� 4�N�� )�� + )�) ��@� ���� .#% I); *��V� I#% I)�) G��� .#�

������ ����� �GB�'� *�� �) ��@� D"�+ ;� ���@J ��#�� ���"\ ) #� �J�@�H ��#�� 6��� ���$� ;� 4N�� )�� 4+ ;� S )

�� a�`�(� )�( � �� ��@J �b���!% D"��+ �� ;� #�G� .#") <��"� ���� Y��`� D"�+�@� ���/�9 ��@J U��9��7� .��GJ ���

) #�fR��� 4���% �� )��� 4�+ ;� #�N�) ������ ���=� .#���% )��� �+ )�) ���@� ����$ �� �3��� ���; �� �3��� ��@J ��#�

� I#% I); *��V� oB�( ) #� ,����mmR MlQR .��� ����/�� 30" � )�� ���� e/l j/l��� ��) ���3� .#� *�� �) *��

�� ����� ���$ �� �3��� ��@J ��#� ����� ;� I)�A��� D" 2H <)��) ��B � ���; �� �3��� ��; ��#� ����� ��� *� ;� I)�A���

)��� #�% ��73� !��% �) �J��u� ��@J ��P+�#� D"�+ � ��@J D" 2�H *�� ����� .�%�) ���; �� �3��� ����� � ���� ���5��

�� ���� �) �G���$ #�) ���@+ :� �G3N ��``V�� ���#� � #��� #�") �>��� ���@J ��#�� ����$� �)��`�1� )#�G�� #��J )���

6�� ���$� ;� C��$ �)�`�1� �$�� \ #3����� ��@J ��#� ��"!�% �) �u�=� ��#� ������ �) :� ��" .#3%�� �%�) �����

N6G*���)e J :� �_�% ;� ���#3���� #�J k#3&� ��1� #&@� :?u�

I)�) ;� �(�� _ ��q���9 �����(� �) �� D" 2�H *�� ;���� )��� ��".#3��" ��0b��q� <#�)�) ���1

References Al-Washali, T., Sharma, S. & Kennedy, M. 2016. Methods of assessment of water losses in water supply

systems: a review. Water Resources Management, 30, 4985-5001.

Page 17: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

� ���� ;#�#�� � �h2W� 0��6�... dx.doi.org/10.22093/wwj.2019.163790.2794

116

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

Amoatey, P. K., Minke, R. & Steinmetz, H. 2014. Leakage estimation in water networks based on two categories

of night-time users: a case study of a developing country network. Water Science and Technology: Water

Supply, 14, 329-336.

Amoatey, P. K., Minke, R. & Steinmetz, H. 2018. Leakage estimation in developing country water networks

based on water balance, minimum night flow and component analysis methods. Water Practicle and

Technology, 13, 96-105.

Awad, H., Kapelan, Z. & Savić, D. 2008. Analysis of pressure management economics in water distribution

systems Conference, Water Distribution Systems Analysis, National Park, South Africa.

AWWA. 2009. Water audits and loss control programs: M36, American Water Works Association.

AWWA. 2016. Water audits and loss control programs, Denver, American Water Works Association.

Creaco, E. & Walski, T. 2017. Economic analysis of pressure control for leakage and pipe burst reduction.

Journal of Water Resources Planning and Management, 143 (12), 04017074..

Fanner, P., Davis, S., Hoogerwerf, T., Liemberger, R., Sturm, R. & Thornton, J. 2007. Leakage management

technologies, AWWA Research Foundation.

Fantozzi, M. & Lambert, A. 2007. Including the effects of pressure management in calculations of short-run

economic leakage levels. IWA Conference "Water loss 2007", Bucharest, Romania.

Fantozzi, M. & Lambert, A. 2012. Residential night consumption–assessment, choice of scaling units and

calculation of variability. Water Loss, 2012, 26-29.

Girard, M. & Stewart, R. 2007. Implementation of pressure and leakage management strategies on the Gold

Coast, Australia: case study. Journal of Water Resources Planning and Management, 133, 210-217.

Gomes, R., Sá Marques, A. & Sousa, J. 2011. Estimation of the benefits yielded by pressure management in

water distribution systems. Urban Water Journal, 8, 65-77.

Hamilton, S. & Mckenzie, R. 2014. Water management and water loss, IWA Publishing, London.

Jalili Ghazizade, M. & Moslehi, I. 2017. General water loss reduction model in water distribution networks. The

First Seminar with Experts in Water and Environment, Tehran. (In Persian)

Kanakoudis, V. & Gonelas, K. 2016. Non-revenue water reduction through pressure management in Kozani’s

water distribution network: from theory to practice. Desalination and Water Treatment, 57, 11436-11446.

Lambert, A. 2001. What do we know about pressure-leakage relationships in distribution systems. IWA

Conference Systems Approach to Leakage Control and Water Distribution System Management, UK.

Lambert, A. 2003. Assessing non-revenue water and its components: a practical approach. Water, 21, 50-51.

Lambert, A. & Fantozzi, M. 2010. Recent developments in pressure management. IWA Conference "Water loss

2010", Sao Paulo, Brazil.

Lambert, A., Fantozzi, M. & Thornton, J. 2013. Practical approaches to modeling leakage and pressure

management in distribution systems–progress since 2005. Proceedings of the 12th Int. Conference on

Computing and Control for the Water Industry-CCWI2013, Perugia, Italy.

Lambert, A. & Lalonde, A. Using practical predictions of economic intervention frequency to calculate short-run

economic leakage level, with or without pressure management. Proceedings of IWA Specialised Conference

‘Leakage, 2005, 310-321.

Page 18: Economic Analysis of Pressure Management in …...Journal of Water and Wastewater Vol. 31, No. 2, 2020 ˘˘

����R� � +6�h� ���#� dx.doi.org/10.22093/wwj.2019.163790.2794 117

����� ��� �� Journal of Water and Wastewater ����� ���� ����� ����� Vol. 31, No. 2, 2020

Lambert, A. & Thornton, J. 2012. Pressure: bursts relationships: influence of pipe materials, validation of

scheme results, and implications of extended asset life. IWA Conference "Water loss 2012", Mauila,

Philippines.

Martínez-Codina, Á., Cueto-Felgueroso, L., Castillo, M. & Garrote, L. 2015. Use of pressure management to

reduce the probability of pipe breaks: a bayesian approach. Journal of Water Resources Planning and

Management, 141(9), 04015010.

MOE. 2018. Monthly statistical reports of water and electricity industries, Deputy of Planning and Economic,

Tehran, Iran. (In Persian)

Moslehi, I. & Jalili Ghazizadeh, M. 2016. A review of the relationships between pressure and burst in water

supply systems. Journal of Water and Wastewater Science and Engineering, 1, 11-19. (In Persian)

Mutikanga, H. E., Sharma, S. K. & Vairavamoorthy, K. 2012. Methods and tools for managing losses in water

distribution systems. Journal of Water Resources Planning and Management, 139, 166-174.

Pearson, D. & Trow, S. 2005. Calculating economic levels of leakage. Leakage 2005 Conference Proceedings,

Jakarta, Indonesia.

Puust, R., Kapelan, Z., Savic, D. & Koppel, T. 2010. A review of methods for leakage management in pipe

networks. Urban Water Journal, 7, 25-45.

Sajjadifar, S., Pakrouh, S., Ghane, A. & Fathi, B. 2017. Effective drinking water pricing, a case study of Arak

city. Journal of Water and Wastewater, 28(1), 95-103. (In Persian)

Tabesh, M. & Beigi, S. 2017. Water pricing as an economic justification for reducing non-revenue water (NRW)

projects. Journal of Water and Wastewater, 28(1), 113-125. (In Persian)

Thornton, J. & Lambert, A. 2005. Progress in practical prediction of pressure: leakage, pressure: burst frequency

and pressure: consumption relationships. Proceedings of IWA Special Conference'Leakage, 2005, 12-14.

Thornton, J. & Lambert, A. Pressure management extends infrastructure life and reduces unnecessary energy

costs. IWA Conference'Water Loss, 2007, Bucharest, Romania.

Van Zyl, J. & Clayton, C. 2007. The effect of pressure on leakage in water distribution systems. Proceedings of

the Institution of Civil Engineers-Water Management, Thomas Telford Ltd, 109-114.

Vicente, D., Garrote, L., Sánchez, R. & Santillán, D. 2015. Pressure management in water distribution systems:

current status, proposals, and future trends. Journal of Water Resources Planning and Management, 142,

04015061.

VPSPS. 2012. Guideline for determining effective parameters on unaccounted for water (UFW) and water losses

reduction schemes. Tehran, Iran: Vice Presidency for Strategic Planning and Supervision. (In Persian)

Yousefi Khoshqalb, E., Jalili Ghazizade, M. & Moslehi, I. 2018. A review of methods for economic level of

leakage in water distribution networks. 2nd Biennial Conference on Water Economics, Tehran. (In Persian)