echniques t optimization p using filtering linea adaptive · linea r filtering † a discrete-time...

32
Adaptive Linear Filtering Using Interior Point Optimization Techniques Lecturer: Tom Luo

Upload: others

Post on 15-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

AdaptiveLinearFilteringUsingInteriorPoint

OptimizationTechniques

Lecturer:TomLuo

Page 2: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Overview

A.InteriorPointLeastSquares(IPLS)Filtering

–IntroductiontoIPLS

–RecursiveupdateofIPLS

–Convergence/transientanalysisofIPLS

B.Applications

–Systemidentification

–Beamforming

–ChannelequalizationinaCDMAforwardlink

1

Page 3: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

InteriorPointOptimizationforOptimalLinearFiltering

•Adiscrete-timelinearsystemcanbedescribedby

yi=xTiw∗+vi,i=1,2,...

•Usinginputoutputpairsxi,yithelinearleast-squaresproblemisthentoestimateafilterwthatminimizesthemean-squarederror

Fn(w)=1

n

n∑

i=1

(

yi−xTiw

)

2

=1

nyTnyn−2w

Tnpxy(n)+w

TRxx(n)w,(1)

whereyn=[y1,y2,...,yn]T,pxy(n)=

1n

ni=1xiyi,Rxx(n)=

1n

ni=1xix

Ti.

Note:pxy(n)andRxx(n)arebothrecursivelyupdatablewithper-samplecomplexity

ofO(M2).

•Theoptimumlinearfilterthensatisfies∇Fn(w)=0,orRxx(n)w−pxy(n)=0.

2

Page 4: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

OneMotivation:TransientConvergence

•TheRLSalgorithmestimates(seee.g.,SayedandKailath’96)

wrlsn:=

[

δ

nI+Rxx(n)

]

−1

pxy(n),

whereδnIisaregularizationtermtoimproveconditioning.

•Problem:Theregularizationdependsentirelyontheconstantδ.If,forexample,

–SNRisunderestimated=⇒slowerasymptoticconvergence

–SNRisoverestimated=⇒badtransientbehaviour

•Remedy:

wn:=[αnI+Rxx(n)]−1pxy(n),αnadjustedadaptively

3

Page 5: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

TheAnalyticCenterApproach

•Formulateaconvexfeasibilityproblemateachiteration.wisafeasiblefilteronlyifit

iscontainedin

Ωn=w∈RM|Fn(w)≤τn,‖w‖

2≤R

2,(2)

1stconstraint:minimizethemean-squarederrorFn(w).

2ndconstraint:makeΩnaboundedregion.

•TheanalyticcenterwanofΩnistheminimizerof

φn(w)=−log(τn−Fn(w))−log(R2−‖w‖

2)

whichcanbefoundbysolving∇φn(w)=0

∇Fn

sn(wan)+

2wan

tn(wan)=0,thereforew

an=

(

sn(wan)

tn(wan)

I+Rxx(n)

)

−1

pxy(n).

wheresn(w):=τn−Fn(w)andtn(w):=R2−‖w

an‖

2.

4

Page 6: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Definitionofτn

Weareconcernedwiththebehaviourofαn=sn/tn.

1.Thegoalistomakeαn∼‖∇Fn(w)‖.

∇Fn(w)=2(Rxx(n)w−pxy(n))

Thus,if

•‖∇Fn(w)‖islarge=⇒needαnlargeforregularization.

•‖∇Fn(w)‖issmall=⇒needonlyasmallαn.

2.Define

sn:=βR√2‖∇Fn(w

an−1)‖

R/√2:anormalizationconstantrequiredtoshowasymptoticconvergence

β:alsorequiredtoshowconvergence

3.Thedefinitionofτnfollowssimplyfromτn=Fn(wan−1)+sn

5

Page 7: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

AnExample

−100−80−60−40−20020406080100−100

−80

−60

−40

−20

0

20

40

60

80

100

w(1)

w(2)

−100−80−60−40−20020406080100−100

−80

−60

−40

−20

0

20

40

60

80

100

w(1)w

(2)

−100−80−60−40−20020406080100−100

−80

−60

−40

−20

0

20

40

60

80

100

w(1)

w(2)

−100−80−60−40−20020406080100−100

−80

−60

−40

−20

0

20

40

60

80

100

w(1)

w(2)

−100−80−60−40−20020406080100−100

−80

−60

−40

−20

0

20

40

60

80

100

w(1)

w(2)

−100−80−60−40−20020406080100−100

−80

−60

−40

−20

0

20

40

60

80

100

w(1)

w(2)

6

Page 8: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

AsymptoticConvergenceAnalysis

Condition1.(BoundedAutocorrelationmatrix)Thereexistn0>0,σ1>0,σ2>0

suchthat

σ1I≤1

n

n∑

i=1

xixTi≤σ2I,∀n≥n0.

Condition2.(BoundedOutputs)Thereexistsafixedρysuchthatforalln>n0there

holds1

n

n∑

i=1

y2i≤ρy.

TheleftinequalityinCondition1isknownasweakpersistentexcitationcondition.

Theorem1.Letthesequenceofestimateswn,n=1,2,3,...begeneratedbythe

IPLSalgorithm.Then

‖∇Fn(wn)‖=2‖Rxx(n)wn−pxy(n)‖=O(1/n).

7

Page 9: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

TransientConvergenceAnalysis

Condition1.(BoundedAutocorrelationmatrix)Thereexistn0>0,σ1>0,σ2>0

suchthat

σ1I≤1

n

n∑

i=1

xixTi≤σ2I,∀n≥n0.

Condition2.(NoNoise)Thesystemisfreefrommeasurementnoise,i.e.,

yi=xTiw∗,i=1,2,....

Weassumethatthedatahasnostatisticalfluctuations.Convergencethenimplies

thephasingoutofeffectsofinitializationandthusisdictatedentirelybythetransient

behaviourofthealgorithm.

Theorem2.Letthesequenceofestimateswn,n≥MbegeneratedbytheIPLS

algorithm.Iftheobservationsarefreeofnoise,then

‖wn−w∗‖=O(R−1)‖wn−1−w∗‖.

8

Page 10: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

TransientAnalysis–asimpleexample

Example.yi=w∗xi+vi,withxi=w∗=1,i=1,2,...

•RLSAssumingnostatisticalaveraging(e.g.,nonoise),

Rxx(n)=E(xxT)=1,pxy(n)=E(xy)=1,∀n

TheRLSestimatorthenreducestowrlsn=(1+δ/n)−1

.

•IPLSNow,Fn(w)=(w−1)2,and∇Fn(w)=2(w−1).Evaluatingτn,the

condition∇φn(wan)=0fortheanalyticcenterbecomes,

2(wan−1)

βR√2|wa

n−1−1|+(wan−1−1)2−(wa

n−1)2+

2wan

R2−(wan)2=0

whichimplies

|wan−1|=O(R−1

)|wan−1−1|,

i.e.,exponentialdecayofthetransienterror.

9

Page 11: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

DirectComparisonofRLS,IPLS

PropertyRLSIPLS

AsymptoticConvergenceO(1/n)O(1/n)

ComputationalComplexityO(M2)O(M

2.2)

TransientConvergenceO(1/n)O(R−n)

RobustnesstoInitializationnoyes

Additionalconstraintsreq.newalgorithmeasilyaccommodated

Numerical

Stability

(inconstrained

case)

problemsoccur

whenλissmall

(λ:forgetting

factor)

stableevenat

smallvaluesof

λ,andincases

oflimited

precision

calculationsSlidingwindowimplementationcanbeaccommodatedeasilyaccommodated

10

Page 12: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

TheInteriorPointLeastSquares(IPLS)algorithm1.Wedon’tneedtheexactanalyticcenterofΩn,anapproximatecenterissufficient.

2.SuchanapproximatecenterisfoundbytakingjustasingleNewtoniterationinthe

minimizationofφn(w).

wn:=wn−1−(∇2φn(wn−1))−1

∇φn(wn−1),(3)

Tocompute(3)weneed

∇φn(w)=∇Fn

sn(w)+

2w

tn(w),(4)

∇2φn(w)=

(∇Fn)T∇Fn

s2n(w)

+∇2Fn

sn(w)+4ww

T

t2n(w)

+2I

tn(w)(5)

where∇Fn=−2pxy(n)+2Rxx(n)wand∇2Fn=2Rxx(n).

3.TocomputetheNewtondirection,anO(M2.2)recursiveupdateprocedurehasbeen

devised(usingtheworkofPowell,1997).

11

Page 13: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

InteriorPointLeastSquares(IPLS)Algorithm

Step1:Initialization.Letβ,Rbegiven.Setw0=0,pxy(0)=0,Rxx(0)=0,

∇F0(0)=0.

Step2:Updating.Forn≥1,acquirenewdataxn,yn.Thenrecursivelyupdate

pxy(n)=n−1n

pxy(n−1)+1

nxnyn,Rxx(n)=

n−1n

Rxx(n−1)+1

nxnx

Tn.

Update

•∇2Fn(wn−1)and∇Fn(wn−1)

•sn(wn−1)andtn(wn−1)

•(∇2φn(wn−1))−1

∇φn(wn−1)usingtheupdateprocedure(orusing(4),(5))

Step3:Recentering.ThenewcenterofΩnisobtainedbytakingjustoneNewton

iterationstartingatwn−1:

wn:=wn−1−(∇2φn(wn−1))−1

∇φn(wn−1)

Setn:=n+1,andreturntoStep2.

12

Page 14: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Summary

Contributions

•providedanewlookat(recursive)adaptivefiltering•firstapplicationofinteriorpointoptimizationtoadynamicproblem

FeaturesofIPLS

•convergesasymptoticallyattherateO(1/n)•exhibitsfasttransientconvergence,andisrobusttoinitialization

•easilyaccommodatesadditionallinearorconvexquadraticconstraints,andis

numericallystable

•O(M2.2)complexity

13

Page 15: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Application:SystemIdentification

•PerformanceMeasureεip(n)=‖wn−w∗‖2andεrls(n)=‖w

rlsn−w∗‖

2

•Sources(i)WhiteGaussiannoise,(ii)WhiteGaussiannoisefilteredthrough

H(z)=1+2z−1

+3z−2

(1−1.1314z−1+0.64z−2)(1+0.9z−1).

•SNRs(i)SNR1=40dB,(ii)SNR2=10dB

•NominalParameterSettings

RLSλ=1,δ=10−4

IPLSβ=2,R=1000

•Experiment1w∈R20,w(i)∈[−1,+1],500independentMonteCarlo

trials

•Experiment2ComparingslidingwindowversionsofRLS(Liu&He’95)andIPLS:

w∈R10,Tl=15

14

Page 16: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

SystemIdentification:Experiment1

20406080100120140160180200

10−2

10−1

100

Iteration k

IPAFRLS

2040608010012014016018020010

−2

10−1

100

Iteration k

IPAFRLS

(a)SNR=40dB,Source:WhiteGaussianNoise(b)SNR=40dB,Source:Correlated

20406080100120140160180200

100

101

Iteration k

IPAFRLS

20406080100120140160180200

100

101

102

Iteration k

IPAFRLS

(c)SNR=10dB,Source:WhiteGaussianNoise(d)SNR=10dB,Source:Correlated

15

Page 17: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

SystemIdentification:Experiment2

05010015020025030035040010

−2

10−1

100

101

Iteration k

SW−RLSSW−IPAF

Figure1:Comparisonofsliding-windowversionsofIPLSandRLSwhenchannel

characteristicschangeabruptly(atiteration100).

16

Page 18: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Application:MinimumVarianceBeamforming

AdaptiveFilteringAlgorithm

ArrayAdjustableWeights

Steering Vectors

Target

Interferer

Output

Σ

Signal

y(n)

Sensor

17

Page 19: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

MinimumVarianceBeamforming

Byadaptivelyadjustingthetapweightshi(n)thebeamformermust

1.SteeringCapability:protectthetargetsignal

cH(θ)h(n)=1,∀n,θ=θ1,θ2,...

cH(θ)=[1,e−jθ

,...,e−j(M−1)θ],

where

M:numberoftapweightshi,

θi:ElectricalAngledeterminedbythedirectionofthetargetiwithrespecttothe

firstsensor

2.Minimizetheeffectsoftheinterferers

i.e.,minimizetheOutputPowerE(|y|2)ofthebeamformer

ThisbeamformingproblemcanbecastintheframeworkofaConstrainedAdaptive

EstimationProblem.

18

Page 20: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Beamforming:ConstrainedAdaptiveEstimation

minimizeFn:=1

n

n∑

i=1

λn−i|d(i)−x

Tih|

2,

subjecttoCTh=f,h∈R

M,

(6)

λ:forgettingfactor

d(·):desiredresponse

xTi:vectorinputsequence

h:vectoroftapweights

C,f:definethelinearconstraintsonh

•IntheMinimumVarianceBeamformingproblemthereferencesignald(·)iszero.Duringtheadaptionprocessweassumethatnotargetispresent.

•TherowsofCcorrespondtosteeringvectorconstraints.

19

Page 21: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Beamforming:NumericalSimulation

Input:(interferenceat0.3,0.325and0.7)

x(n)=sin(0.3nπ)+sin(0.325nπ)+sin(0.7nπ)+b(n).

b(n):whiteGaussiannoiseat40dB.

Constraints:(desiredresponseatfreq.0.2and0.5)

CT=

1cos(0.2π)...cos((M−1)0.2π)1cos(0.5π)...cos((M−1)0.5π)0sin(0.2π)...sin((M−1)0.2π)0sin(0.5π)...sin((M−1)0.5π)

,f=

1

1

0

0

20

Page 22: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Beamforming:NumericalSimulation

00.10.20.30.40.50.60.70.80.91−80

−60

−40

−20

0

20

40

Normalized frequency

abs H(f) [dB

]

LCMV LC−FLS IPM1 Optimum Filter

0500100015002000250030003500400010

−2

10−1

100

101

102

Time (Iteration)

Norm

[ hopt − h(n) ]

LCMV LC−FLSIPM1

Figure2:(a)Freq.responseatIteration4000,(b)Mean-squarederrorinh(n)

LCMVµ=0.1

LCFLSλ=0.99,Eo=0.1

IPLSλ=0.99,ε=0.01,R=100,β=2

Precision4digitsforLCFLSandIPLS

21

Page 23: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Application:ChannelEqualizationinaCDMADownlink

LC (z)

LC (z)

LC (z)

1

2

K

Σ

u (k)

u (k)

u (k)

1

2

K

H (z)Σ

Channel

noise

chiprate

sampler

SignalReceived

Code Filters

y(k)

Figure3:Discrete-timemodelofCDMAdownlink

22

Page 24: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Equalizer/DecoderStructure

L FFF

FBF

ΣReceived signal

code matched filter

y(k)u (k) 1^

C (z ) 1-1r(k)x(k)

x(k)

Figure4:CodeMatchedFilter–ChiprateDFE

23

Page 25: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

CDMADownlink:SystemDescription

SourcesQPSKwithuniformprobabilitiesforeachsymbol(i.i.d.)

FadingChannelLOScomponentis5dBhigherthan2multipathcomponents,fading

ratefD=0.005,delayspread:≤6Tc

02040608010012014016018020010

−2

10−1

100

101

Symbol Index

Individual path amplitudes

LOS PathFirst multi−pathSecond Multi−Path

StaticChannelFadingChannelsampledatarandominstant.

24

Page 26: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Experiment1:StaticChannel,Singleuser

810121416182010

−5

10−4

10−3

10−2

10−1

100

SNR

BE

R

SQRT−RLSIPLS

81012141618200.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Prob(packet arrival)

SQRT−RLSIPLS

MessageSignalN=200,NT=10,CL=16,Users=1

Algorithmsλ=1.0,δ=R=104,β=2

EqualizerMff=14,Mfb=2,delay=1,pfr=10−2

25

Page 27: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Experiment1:StaticChannel,4Users

810121416182022242610

−4

10−3

10−2

10−1

100

SNR

BE

R

SQRT−RLSIPLS

81012141618202224260.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Prob(packet arrival)

SQRT−RLSIPLS

MessageSignalN=200,NT=10,CL=16,Users=4

Algorithmsλ=1.0,δ=R=104,β=2

EqualizerMff=14,Mfb=2,delay=1,pfr=10−2

26

Page 28: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Experiment1:DependenceonTrainingLength

246810121416182010

−5

10−4

10−3

10−2

10−1

100

NT

BE

R

SQRT−RLSIPLS

24681012141618200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NT

Prob(packet arrival)

SQRT−RLSIPLS

MessageSignalN=200,SNR=12dB,CL=16,Users=1

Algorithmsλ=1.0,δ=R=104,β=2

EqualizerMff=14,Mfb=2,delay=1,pfr=10−2

27

Page 29: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Experiment2:Time-VaryingChannel,Singleuser

101214161820222410

−4

10−3

10−2

10−1

100

SNR

BE

R

SQRT−RLS, NT=2SQRT−RLS, NT=10IPLS, NT=2IPLS, NT=10

10121416182022240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Prob(packet arrival)

SQRT−RLS, NT=2SQRT−RLS, NT=10IPLS, NT=2IPLS, NT=10

MessageSignalN=200,NT=2/10,CL=16,Users=1

Algorithmsλ=0.85,δ=R=104,β=2

EqualizerMff=14,Mfb=2,delay=1,pfr=10−2

28

Page 30: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Experiment2:Time-VaryingChannel,4users

101214161820222426283010

−3

10−2

10−1

100

SNR

BE

R

SQRT−RLS, NT=10IPLS, NT=10

10121416182022242628300.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Prob(packet arrival)

SQRT−RLS, NT=10IPLS, NT=10

MessageSignalN=200,NT=2/10,CL=16,Users=4

Algorithmsλ=0.85,δ=R=104,β=2

EqualizerMff=14,Mfb=2,delay=1,pfr=10−2

29

Page 31: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Experiment2:DependenceonTrainingLength

246810121416182010

−3

10−2

10−1

100

NT

BE

R

SQRT−RLSIPLS

24681012141618200.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NT

Prob(packet arrival)

SQRT−RLSIPLS

MessageSignalN=200,SNR=16dB,CL=16,Users=1

Algorithmsλ=0.85,δ=R=104,β=2

EqualizerMff=14,Mfb=2,delay=1,pfr=10−2

30

Page 32: echniques T Optimization P Using Filtering Linea Adaptive · Linea r Filtering † A discrete-time linea r system can b e describ ed b y y i = x T i w ⁄ + v i; i = 1; 2;::: †

StanfordUniversityEE392oZ.Q.Luo

Conclusions

•TransientconvergenceofIPLSisO(1/Rn),n≥M

•SuperiortransientconvergencetoRLSevenwhenn<M

•GainofusingIPLSovertheRLSalgorithmcanrangefrom5-6dBtowellover10dB

31