ece697bb-analog-handouts.pdf

47
Analog Integrated Circuits University of Massachusetts Amherst ANALOG INTEGRATED CIRCUITS DESIGN University of Massachusetts Electrical and Computer Engineering Department Omid Oliaei ECE697BB/Oliaei 2 • Real-world signals are Analog. • Signals generated by sensors are analog • Digital signal processing of signals requires Analog-to-Digital Conversion. • Analog signal needs to be amplified and filtered before A/D. • Amplifiers and Filters are Analog Circuits. • A/D is a Mixed-Signal Circuit. Why Analog? Chapter 1

Upload: manci

Post on 09-Nov-2015

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ANALOG INTEGRATED

    CIRCUITS DESIGN

    University of Massachusetts

    Electrical and Computer Engineering Department

    Omid Oliaei

    ECE697BB/Oliaei 2

    Real-world signals are Analog.

    Signals generated by sensors are analog

    Digital signal processing of signals requires Analog-to-Digital Conversion.

    Analog signal needs to be amplified and filtered before A/D.

    Amplifiers and Filters are Analog Circuits.

    A/D is a Mixed-Signal Circuit.

    Why Analog?

    Chapter 1

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 3

    Digital signals in a digital communication system behave as analog signals

    at certain stages of transmission, receive and processing.

    Ex 1. Lossy Cable Ex 2. Disc Drive

    Signal Attenuation, Noise and Distortion incurred in the propagation

    channel require that the received signal be Amplified, Filtered and

    Equalized using Analog circuits.

    Ex 3. Wireless Receiver Ex 3. Optical Receiver

    Chapter 1

    ECE697BB/Oliaei 4

    Why Integrated?

    Larger integration larger complexity

    Lower parasitics Higher speed

    Lower cost

    Moores Law: Number of transistors doubles every 18 months:

    1960: 25 m Gate length Today: 90 nm and 65 nm in production

    45 nm and 32 nm are in lab. 22nm and 16nm on roadmap.

    Why CMOS?

    Digital (Main Driver)

    Low Power, Simplicity, Scaling, Low cost

    Analog

    Integration with digital

    Improved speed over years

    Chapter 1

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 5Chapter 1

    Analog

    Design

    Performance

    Constra

    ints

    Schem

    atic

    Test

    Layout

    System Level

    Circuit Level

    Component Level

    Levels of Abstraction

    What is Analog Design?Dont Forget

    Variations

    ECE697BB/Oliaei 6

    CAD TOOLS FOR CIRCUIT DESIGN

    Two Dominant Suppliers:

    Cadence 80% market share

    Mentor Graphics 20% market share

    Simulation:

    System Level: Matlab, SPW

    High-Level (Behavioral): Verilog, Verilog_A, Verilog AMS

    Low-Level (Electrical): SPICE, SPECTRE, ADS, Proprietary Tools

    Cadence and Mentor Graphics Include tools for

    Schematic Capture

    Simulation

    Layout

    Chapter 1

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 7

    Schematic Capture

    Netlist

    Electrical/Behavioral Simulations

    Layout: Automatic/Manual

    Technology

    Device Model

    Parasitic Extraction

    Design Rules Check (DRC)

    Layout Versus Schematic (LVS)

    Masks

    Fabrication

    Design House FoundryCustomer

    Specifications

    TestProduction

    Chapter 1

    ECE697BB/Oliaei 8

    Analog Design Space

    Tradeoffs

    Analog Design is a Multi-Dimensional Optimization Problem.

    Improving one parameter always results in degradation of some others.

    Cost ?

    Chapter 1

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 9Chapter 2

    Basic MOS Device Physics

    Understanding Device Physics is Essential to Analog Design.

    MOS device is symmetric.

    NMOS

    Bulk

    Side Diffusion

    (Sio2) Contact

    (Metal)

    Ddrawneff LLL 2=5 nm0.25 m

    2.2 nm0.13 m

    3.5 nm0.18 m

    ToxLdrawn

    ECE697BB/Oliaei 10

    MOS is a four-terminal device.

    Substrate (bulk) of an NMOS is connected to the lowest potential.

    Substrate (bulk) of a PMOS is connected to the highest potential.

    All p-n junctions are reverse biased.

    Conduction takes place beneath gate, between source and drain.

    NMOS

    PMOS

    Chapter 2

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 11

    Complementary MOS Process (CMOS):

    PMOSNMOS

    Chapter 2

    PMOS

    ECE697BB/Oliaei 12

    MOS CHANNEL FORMATION

    Cut Off

    Depletion

    Inversion

    VGGND

    VG

    GND

    VG

    GNDGND

    VTH

    Chapter 2

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 13

    Device turn-on is a gradual phenomenon.

    There exists several definitions for VTH.

    One definition: when VG=VTH :

    density of electrons on the interfaced equals density of holes in the substrate

    VTH increases with increasing the substrate doping.

    Adjusting VTH by ion implantation:

    P+ layer increases VTH

    Chapter 2

    ECE697BB/Oliaei 14

    PMOS IN INVERSION STATE

    PMOS: Holes flow from Source to Drain.

    NMOS: Electrons flow from Source to Drain.

    Electrons have a higher Mobility. NMOS is faster than PMOS (~ 3 times).

    Chapter 2

    S D

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 15

    MOS Symbols

    Chapter 2

    Arrow indicates current flow from positive voltage to negative voltage polarity.

    ECE697BB/Oliaei 16

    NMOS

    I-V CHARACTERISTICS

    Uniform Charge

    Distribution

    Larger VDS Larger Longitudinal Field

    Larger VGS More Charge Carriers

    Chapter 2

    More Current

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 17

    I/V Characteristics (cont.)

    vxVVVWCI THGSoxD )]([ =

    ==

    =VDS

    V

    THGSnox

    L

    x

    D dVxVVVWCdxI00

    )]([

    Given v = E and E(x) = dV (x)

    dx

    dx

    xdVxVVVWCI nTHGSoxD

    )()]([ =

    ID = nCox WL

    [(VGS VTH)VDS 1

    2VDS

    2]

    ECE697BB/Oliaei 18

    I-V CHARACTERISTICS: Triode Region

    Triode Region:

    THGSDS VVV <

    ID = nCox WL

    [(VGS VTH)VDS 1

    2VDS

    2]

    Almost Linear

    n Electrons Mobilityox

    siox

    tC

    = Oxide Capacitance

    W Device Width

    L Device Length

    35.0=si

    DSTHGSL

    WoxnD VVVCI )(

    Oxide Permittivity

    oxt Oxide Thickness

    sV

    cm

    .

    2

    [ ]m

    [ ]mChapter 2

    [ ]cmpF /

    [ ]2/ cmpF

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 19

    THGSDS VVV >

    I-V CHARACTERISTICS: Saturation Region

    2)(2

    THGSoxn

    D VVL

    WCI

    =

    V'DS = VGS VTH (Pinch off )

    LL Chapter 2

    ECE697BB/Oliaei 20

    MOS OPERATION REGIMES

    Both PMOS and NMOS:

    THGSDS VVV < Triode Region

    THGSDS VVV = Pinch-Off

    THGSDS VVV > Saturation Region

    In saturation, MOS behaves as a current source.

    Chapter 2

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 21

    constant VDSGS

    Dm

    V

    Ig

    =

    = nCox WL

    (VGS VTH)

    gm = 2nCox WL

    ID

    =2ID

    VGS VTH

    Transconductance in Saturation Region

    2)(2

    THGSoxn

    D VVL

    WCI =

    Chapter 2

    ECE697BB/Oliaei 22

    ID = nCox WL

    [(VGS VTH)VDS 1

    2VDS

    2]

    ID = nCox WL

    (VGS VTH)VDS, VDS

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 23

    THRESHOLD VOLTAGE AND BODY EFFECT

    ( ) 220 FSBFTHTH VVV ++=

    VB < 0 attracts holes and widens depletion region

    Larger VG > 0 to put opposite charge on gate

    Larger VG > 0 to create inversion

    Higher VTH

    4.03.0

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 25

    ECE697BB/Oliaei 26

    =

    T

    GSD

    V

    VII

    exp0

    SUBTHRESHOLD CONDUCTION

    For VGS

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 27

    MOS LAYOUT

    Gate

    (Poly)Contacts

    (Metal)

    Gate

    Shared

    Chapter 2

    Gate Contact

    ECE697BB/Oliaei 28

    PARASITIC CAPACITANCES

    Overlap

    Bottom-plate

    cap

    Side-wall

    cap

    Junction capacitance increases non-linearly with reverse bias.

    Chapter 2

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 29

    GAT-SOURCE AND GATE DRAIN CAPCITANCES

    Cgs is maximum in the saturation region

    Device is symmetric in the triode region

    Chapter 2

    )]([ xVVVWCQ THGSoxch

    oxGS WLCC3

    2

    oxGDGS WLCCC2

    1=

    ECE697BB/Oliaei 30

    LOW-FREQUENCY MOS SMALL-SIGNAL MODEL

    D

    o

    Ir

    1

    =

    SBF

    mBS

    D

    mbV

    gV

    Ig

    +==

    22

    0=SBV 0SBV

    : Drain-source resistance

    : Bulk transconductance

    saturation

    Chapter 2

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 31

    HIGH-FREQUENCY SMALL-SIGNAL MODEL

    Chapter 2

    Saturation

    Triode Cut Off

    ECE697BB/Oliaei 32

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 33

    ECE697BB/Oliaei 34

    GATE ACCESS RESISTANCE

    Two fingers

    Reduce resistance

    Chapter 2

    Gate resistance effect is significant at RF.

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 35

    COMMON-SOURCE with RESISTIVE LOAD

    Av = gmRDDeep triode

    Saturation

    Sat.

    Triode

    Off

    Chapter 3

    ECE697BB/Oliaei 36

    omv rgA =

    Av = gm ro || RD

    DR

    Chapter 3

    COMMON-SOURCE with RESISTIVE LOAD: Model

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 37

    DIODE-CONNECTED MOS

    (gm + gmb)Vx +Vx

    ro= Ix

    Vx

    Ix=

    1

    gm+ gmb|| ro

    1

    gm + gmb

    Chapter 3

    ECE697BB/Oliaei 38

    COMMON-SOURCE STAGE with DIODE-CONNECTED LOAD

    Av = gm1 1

    gm2 + gmb2=

    gm1

    gm2

    1

    1 +

    Av = (W / L)1(W / L)2

    1

    1 +

    Av = un (W / L)1up (W / L)2

    Gain independent of bias current Good gain accuracy: good matching

    Gain independent of bias current Gain set by two different types of transistor

    PMOS Diode-Connected Load

    Chapter 3

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 39

    COMMON-SOURCE with CURRENT SOURCE LOAD

    Av = gm ro1 || ro2

    Large Output Voltage Compared with Resistive Load

    All Transistors Need to be in Saturation for High Gain

    M1 sets the Minimum Output Voltage

    M2 Sets the Maximum Output Voltage

    Saturation

    Triode

    Av = gmRON2

    RON 2 =1

    nCox WL

    2

    (VDD Vb | VTHP |)

    Chapter 3

    High-Resistance Node

    ECE697BB/Oliaei 40

    COMMON-SOURCE WITH SOURCE DEGENERATIONS

    Av = GmRD

    Av =gm RD

    1+ gm RS

    Gm =gm

    1 + gmRS

    Gm =gmro

    RS + [1+ (gm + gmb )RS ]ro

    Av = GmRD || ROUT

    Including Second-Order Effects

    Chapter 3

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 41

    COMMON-SOURCE OUTPUT RESISTANCE

    ROUT = [1+ (gm + gmb )ro ]RS + ro

    ROUT = ro' ro [1+ (gm + gmb )RS ]

    Av = GmRD || ro'

    Av =gm RD

    1+ gm RS =

    RD

    1/ gm + RS

    Simplified Model

    Chapter 3

    ECE697BB/Oliaei 42

    SOURCE FOLLOWER

    mbmmbm

    outgggg

    R+

    ==11

    ||1

    Av =gmRS

    1+ (gm + gmb )RS=

    RS

    1/ gm + (gm + gmb

    gm)RS

    RS

    1/ gm + RS

    Small-Signal Model

    Output Resistance

    Source Follower Exhibits a high input resistance

    and a low output resistance.

    Chapter 3

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 43

    SOURCE FOLLOWER WITH FIXED BIAS CURRENT

    Id1, thus, Vgs1- Vth1, are independent of Vin.

    Av =

    1

    gmb|| ro1 || ro2 || RL

    1

    gmb|| ro1 || ro2 || RL +

    1

    gm

    Load Effect on Gain

    Application: Buffering a High-Gain Stage

    Chapter 3

    ECE697BB/Oliaei 44

    COMMON-GATE

    Rout ={[1 + (gm + gmb )ro]RS + ro}|| RD

    AC couplingDC coupling

    DmbmD

    DSSombmo

    ombmv RggR

    RRRrggr

    rggA )(

    )(

    1)(+

    ++++++

    =

    Small-Signal Model

    Gain

    Output Resistance

    Input Resistance

    Rin = ro ||1

    gm||

    1

    gmb

    Chapter 3

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 45

    CASCODE AMPLIFIER

    Dmbmoo

    Dooombm

    Rggrr

    RrrrggRout

    ||)]([

    ||}])(1{[

    2221

    21222

    +

    +++=

    AV gm1{[ro1ro2 (gm 2 + gmb2 )] || RD ]}

    AV gm1[(ro1ro2 gm2 ) || (ro3ro4gm3 )]Shielding Effect of Cascode

    Chapter 3

    ECE697BB/Oliaei 46

    DIFFERENTIAL VERSUS SINGLE-ENDED

    Single-Ended Source Differential Sources

    Advantage: Reduced Sensitivity to Supply Noise

    Supply Noise

    Clock Noise

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 47

    PSEUDO-DIFFERENTIAL AMPLIFIER

    Disadvantage: Sensitive to Input Common-Mode Voltage

    Chapter 4

    ECE697BB/Oliaei 48

    DIFFERENTIAL AMPLIFIER

    Tail current: Rejects input common mode

    Dm

    inin

    outoutdiff Rg

    VV

    VVA =

    =21

    21Differential-Mode Gain

    0=cACommon-Mode Gain

    2

    2

    /

    4

    /

    4

    2in

    oxn

    SS

    in

    oxn

    SS

    oxn

    in

    Dm

    VLWC

    I

    VLWC

    I

    L

    WC

    V

    IG

    =

    =

    Chapter 4

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 49

    SMALL-SIGNAL ANALYSIS

    Dmd RgA =

    Differential-Mode

    SSm

    Dc

    Rg

    RA

    +=

    )2/(1

    2/

    Common-Mode

    Virtual ground

    Chapter 4

    ECE697BB/Oliaei 50

    COMMON-MODE RESPONSE

    SSm

    Dm

    CMin

    YX

    Rg

    Rg

    V

    VV

    21, +=

    Load Resistor Mismatch

    Transistor Mismatch

    ( )1)( 21

    21

    , ++

    =

    SSmm

    Dmm

    CMin

    YX

    Rgg

    Rgg

    V

    VV

    Chapter 4

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 51

    DIFF. AMP WITH ACTIVE LOAD

    mP

    mNoPoNmPmNd

    g

    grrggA = )||||( 1 )||( oPoNmNd rrgA =

    )](||)[( 7551331 oomoommd rrgrrggA

    Chapter 4

    ECE697BB/Oliaei 52Chapter 5

    CURRENT MIRRORS

    2

    12

    2 )(2

    THDDoxn

    OUT VVRR

    R

    L

    WCI

    +

    Reference Current

    Sensitive to VDD , Vth , W, L

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 53

    CURRENT-BIASED DIFFERENTIAL AMPLIFIER

    Chapter 5

    ECE697BB/Oliaei 54

    CASCODE CURRENT MIRROR

    Low-Voltage Cascode

    Chapter 5

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 55

    DIFFERENTIAL AMPLIFIER WITH

    ACTIVE CURRENT MIRROR

    Large-Signal Operation

    Chapter 5

    ECE697BB/Oliaei 56

    ID1 = ID3 = ID 4 = gm1,2Vin / 2 ID2 = gm1,2Vin / 2

    Iout = ID2 ID4 = gm1,2Vin , Gm = gm1, 2

    DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

    Small-Signal Analysis

    Av GmRoutRout ro2 || ro4 , (2ro1,2 >> [1/ gm3] || ro3 )

    Chapter 5

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 57

    COMMON-MODE ANALYSIS

    4,3

    2,1

    2,121

    1

    m

    m

    SSm

    CMg

    g

    RgA

    +

    xF VV =

    )21)(||( 2,14,32,14,3 SSmoomCM

    DM RgrrgA

    ACMRR +==

    Common-Mode Gain

    Common-Mode Rejection Ratio

    Chapter 5

    ECE697BB/Oliaei 58

    FREQUENCY RESPONSE OF AMPLIFIERS

    vi vo

    pi

    o

    sRCSsCR

    sC

    sV

    sV

    /11

    1

    1

    /1

    /1

    )(

    )(

    +=

    +=

    += RCp 2/1=

    Single-Pole Passive RC

    jRCV

    V

    i

    o

    +=1

    1

    )(

    )(

    : pole frequency

    ( )22

    1

    1

    )(

    )(

    RCV

    V

    i

    o

    +=js =

    Z1 =Z

    (1 Av)Z2 =

    Z

    (1 A1v )

    Millers Theorem

    X

    Yv

    V

    VA =

    vA

    Chapter 6

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 59

    AMPLIFIER FREQUENCY RESPONSE ANALYSIS

    C1 = CF(1 Av) C2 = CF(1 A1

    v ) CF

    Capacitance Multiplication

    Association of Poles and Nodes

    pNinsinout

    CRCR

    A

    CR

    A

    sV

    sV

    21

    21

    1

    1

    11)(

    )(

    +++=

    Chapter 6

    ECE697BB/Oliaei 60

    COMMON-SOURCE FREQUENCY RESPONSE

    [ ] 1()1()()(

    )

    2 ++++++++

    =DBGDDGSSGDDmSDBGDSBGSGDGSDS

    DmGD

    i

    o

    CCRCRCRgRsCCCCCCRRs

    RgsC

    V

    V

    f p,in =1

    2RS CGS + (1+ gmRD )CGD[ ]

    f p,out =1

    2 CGD + CDB( )RD[ ]Exact Analysis

    GD

    mz

    C

    g+=

    Chapter 6

    Approximate Analysis (Miller)

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 61

    SOURCE FOLLOWER OR COMMON DRAIN

    vo

    vi=

    gm + sCGSs

    2RS (CGSCL +CGSCGD +CGDCL)+ s gmRSCGD +CGD +CGS( )+ gm

    f p1 gm

    2 gmRSCGD + CL + CGS( ) , assuming f p2 >> f p1

    =1

    2 RSCGD +CL + CGS

    gm

    Chapter 6

    ECE697BB/Oliaei 62

    SOURCE FOLLOWER INPUT IMPEDANCE

    At low frequencies, gmb >>| sCL |

    Zin 1

    sCGS1+ gm / gmb( )+1/ gmb

    Cin = CGSgmb /(gm + gmb ) + CGD (same as Miller)

    LmbGS

    m

    GS

    insCgsC

    g

    sCZ

    +

    ++

    11

    1

    At high frequencies, gmb

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 63

    SOURCE FOLLOWER OUTPUT IMPEDANCE

    ZOUT =VX / IX

    =sRSCGS +1gm + sCGS

    1/gm , at low frequencies

    RS , at high frequencies

    ( )mSm

    GSmSm gR

    g

    CLgRRgR /1,/1,/1 12 ===

    Output ringing due to CL and inductive

    component of output impedance.

    Chapter 6

    ECE697BB/Oliaei 64

    CASCODE STAGE

    f pA =1

    2RS CGS1 + CGD1 1+gm1

    gm 2 + gmb 2

    f pX =gm 2 + gmb 2

    2 CGD1 + CDB1 + CSB 2 + CGS2( )

    f pY =1

    2RD CDB 2 + CL + CGD 2( )

    Chapter 6

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 65

    DIFFERENTIAL PAIR

    f p1 1

    2 (roN || roP )CLf p2 =

    gmP

    2CE

    fZ = 2 f p 2 =2gmP2CE

    Chapter 6

    ECE697BB/Oliaei 66

    FEEDBACK PRINCIPLES

    Y(s) = H (s)[X(s) G(s)Y (s)]

    Y(s)

    X(s)=

    H (s)

    1+ G(s)H (s)

    1

    1

    1

    1

    +=

    +==

    A

    A

    A

    A

    X

    YACL

    Gain Desensitization

    2

    211

    1

    1

    R

    RR

    A

    AACL

    +=

    +=

    Example

    1

    21R

    RACL +

    Chapter 8

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 67

    FEEDBACK EFFECT ON BANDWIDTH

    +=

    p

    cl

    ff

    j

    AA

    1

    0

    ( )

    +++

    =

    )1(11

    1

    00

    0

    Aff

    jA

    AA

    p

    CL

    Chapter 8

    ECE697BB/Oliaei 68

    FEEDBACK EFFECT ON OUTPUT IMPEDANCE

    IX =VX VM

    Rout=

    VX (A0VX )Rout

    VXIX

    = Rout,CL =Rout

    1+ A0

    VX

    IX= Rin ,CL = Rin(1+ A0)

    Input Impedance

    Output Impedance

    Chapter 8

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 69

    AMPLIFIER TYPES

    Chapter 8

    ECE697BB/Oliaei 70

    OP-AMP

    -+

    -+ -+

    Differential Output

    Single-Ended Output

    vAIdeal Op-Amp

    inR

    0=outR

    Chapter 9

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 71

    SINGLE-STAGE OP-AMP

    OP-AMP as a voltage buffer

    Chapter 9

    ECE697BB/Oliaei 72

    CASCODE OP-AMP: SINGLE-STAGE

    + Higher Gain

    - Reduced Output Swing

    - Output swing dependent on input swing

    Telescopic Cascode

    Chapter 9

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 73

    IMPROVED SINGLE-ENDED CASCODE OP-AMP

    Chapter 9

    Low-Voltage Cascode Current Mirror

    ECE697BB/Oliaei 74

    TRIPLE CASCODE

    Av app. (gmro)3/2

    Severely Limited Output Swing

    Complex biasing

    Chapter 9

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 75

    FOLDED-CASCODE AMPLIFIER

    PMOS Input

    NMOS Input

    + High Gain

    + Output Swing Decoupled from Input Swing

    - Reduced Speed

    Chapter 9

    ECE697BB/Oliaei 76

    FOLDED-CASCODE OP-AMP

    13331 ])[(|| oombmmv rrgggA 44 344 21+

    Cascode Gain

    Chapter 9

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 77

    | Av | gm1{[(gm 3 + gmb3)ro3 (ro1 || ro5 )] || [(gm 7 + gmb 7)ro7ro9 ]}

    FOLDED-CASCODE OP-AMP

    Chapter 9

    ECE697BB/Oliaei 78

    TELESCOPIC VERSUS FOLDED CASCODE

    Non-dominant Pole

    Non-dominant Pole

    Chapter 9

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 79

    FOLDED-CASCODE OP-AMP IMPLEMENTATION

    Current-Mirror

    Current-MirrorDevices in Signal Path

    Current-Mirror

    signal

    Chapter 9

    ECE697BB/Oliaei 80

    SINGLE-ENDED TWO-STAGE OP-AMPS

    + Large Voltage Swing

    - Reduced Speed

    Single-Ended Output Two-Stage Op Amp

    Chapter 9

    Active Current Mirror

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 81

    FULLY-DIFFERENTIAL TWO-STAGE OP-AMPS

    + Larger Voltage Swing

    + Better Noise Performance

    Chapter 9

    Ex.1 Ex.2

    ECE697BB/Oliaei 82

    OUTPUT IMPEDANCE ENHANCEMENT USING FEEDBACK

    Rout = A1gm 2ro2ro1

    Disadvantage: Low swing or Large Supply Voltage

    Regulated Cascode

    Chapter 9

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 83

    DIFFERENTIAL GAIN BOOSTING

    Low-SupplyHigh-Supply

    Chapter 9

    ECE697BB/Oliaei 84

    OP-AMP USING DIFFERENTIAL GAIN BOOSTING

    Enhanced Telescopic Cascode

    Chapter 9

    Enhanced Folded Cascode

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 85

    COMPARISON

    Chapter 9

    Performance Comparison of OP-AMP Topologies

    ECE697BB/Oliaei 86

    COMMON-MODE FEEDBACK

    Chapter 9

    Low-Gain Amplifier

    -+ -+

    High-Gain Amplifier

    Output common-mode voltage in a low-gain diff-pair is well-defined.

    Output common-mode voltage in a low-gain diff-pair is ill-defined.

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 87

    COMMON-MODE FEEDBACK PRINCIPLE

    Auxiliary amplifier sets the output common-mode.

    CMref

    oo VVVV

    ==+

    2

    21refCM VV =

    ECE697BB/Oliaei 88

    COMMON-MODE SENSING METHODS

    Resistive Buffered-Resistive

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 89

    FOLDED-CASCODE WITH COMMON-MODE CONTROL

    (a)

    (b)

    ECE697BB/Oliaei 90

    SIMPLIFIED CMFB

    M7 and M8 in Triode.

    Advantages:

    Simple, low power

    Disadvantages:

    Low Accuracy

    Reduced Output Swing due to M7 and M8 Increased Output Parasitic Capacitance

    CMFB with improved output swing:

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 91

    IMPROVED CMFB

    CMref VV =

    Through Symmetry:Complete Implementation

    ECE697BB/Oliaei 92

    TRANSIENT LARGE-SIGNAL: SLEWING

    Slew rate:

    ( )L

    SSout

    C

    I

    dt

    tdVSR ==

  • Analog Integrated Circuits

    University of Massachusetts Amherst

    ECE697BB/Oliaei 93

    SLEWING IN TELESCOPIC OP-AMP

    ( )L

    SSout

    C

    I

    dt

    tdVSR

    2==

    Fully-Differential:

    ECE697BB/Oliaei 94

    FOLDED-CASCODE SLEWING

    ( )L

    SSout

    C

    I

    dt

    tdVSR

    2==

    Fully-Differential: