ece 5320 lecture #10 - uh engineering information ...ecnfg/w5l2.pdfnp band gap material science of...

59
Stanko R. Brankovic ECE 5320 ECE 5320 Lecture #10

Upload: doanquynh

Post on 18-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    ECE 5320 Lecture #10

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthetic Methods of Semiconductor NP and Applications

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    * Terminology

    Nanoparticle : small particles in the size-range of 1~999 nm (most general term)

    Nanocrystal : nanoparticles having a unique crystallinity

    Quantum Dot : nanocrystals showing the quantum size effect (usually < 10 nm)

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Perspectives on the Physical Chemistry of Semiconductor Nanocrystals

    Optical absorption vs. size of CdSe. Density of state

    A.P. Alivisatos, J. Phys. Chem. 1996, 100, 13226.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Photocurrent (photovoltaic cell, sensor) CB E (hv)

    bandgap

    Small bandgap -7 high conductivity VB (because of easy electron jumping)

    : 102 ~ 10-4 S/cm

    * Bandgap for bulk semiconductor

    1 eV = 1.602177 x 10-19 J (96.485 kJ/mol)

    Solid State electronic Devices, 5th edition, New Jersey: Prentice Hall, 524.

    Si 1.11 eV CdS 2.42 eV

    Ge 0.67 eV CdSe 1.73 eV

    TiO2 3.2 eV GaP 2.26 eV

    ZnO 3.2 eV GaAs 1.43 eV

    NP Band Gap

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Photochemical reactions (Energy conversion reactions)

    Mn+

    - Photo-induced chemical reaction

    hv e- M0 Light energy (hv)

    Xn- or

    h+

    X0

    chemical energy

    electric energy

    - Light-Emitting Devices (LED, ELD, .)

    NP Band Gap

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Photoinduced chemical reactions vs. relaxation

    CB

    e- B B-

    + e-

    [red]

    - e-

    [ox] A A+

    h+

    VB

    Lifetime of excited state : ~ns (too short to show any photoinduced chemical reactions)

    NP Band Gap

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Mediators to increased excited state life-time & enhance the efficiency

    Pt

    Electron acceptor (removes e- from the excited state) TiO2

    RuO2 Electron donor (removes hole from the excited state)

    CB

    e- A B-

    RuO2 Pt

    h+ A+ B

    VB

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthesis of Titania(TiO2) Nanoparticles

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthesis of Titania Hydrolysis & condensation of Ti(OR)4

    Ti(OR)4 H2O Ti(OH)n(OR)4-n

    -Ti O Ti - TiO2

    1.0 50

    E. A. Barringer et al., J. Am. Ceram. Soc. 1982, 65, C-199. E. A. Barringer and H. K. Bowen, Langmuir, 1985, 1, 414. J. H. Jean et al., Langmuir, 1986, 2, 251.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthesis of Titania . / Reaction in microemulsions (micelle)

    V. Chhabra et al., Langmuir, 1995, 11, 3307.

    Source : TiCl4 Surfactant : Triton X-100* Co-surfactant : n-hexane Oil phase : cyclohexane

    size : 15 30 nm

    * Triton X-100 - Polyoxyethylene isooctylphenyl ether

    O OH

    n Schematic diagram showing the preparation of TiO2 particles in microemulsions.

    530 890 TiO2(amorphous) TiO2(anatase) TiO2(rutile)

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthesis of Titania

    E. Joselsevich et al., J. Phys. Chem., 1994, 98, 7628.

    - TiCl4 / cetyldiemthylbenzyl ammonium chloride in benzene

    H3C(H2C)15 N

    CH3

    CH3 Cl-

    UV

    - Size : 9 0.5 UV / Blue

    . / Synthesis in aerosols

    M. Visca and E. Matijevic, J. Colloid Interface Sci., 1979, 68, 308.

    Ti(OEt)4 or Ti(OiPr)4 0.06 ~ 0.6 TiO2

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthesis of Cadmium Chalcogenide

    (CdS and CdSe) Nanoparticles & Nanocrystals

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles

    1. Reaction in homogeneous system E Matijevic et al., J. Colloid Interface Sci., 1982, 86, 476.

    Cd2+ (Cd(NO3)2, 10-3 M) +

    pH < 1 CdS particles ( ~ 1 )

    TAA (thioacetamide)

    S H3C C NH2

    TAA CH3CN + 2H+ + S2- Rate-determining step ; the generation of S2-

    If pH < 1

    If pH is high (basic) Slow generation of S2-, CdS size can be controlled

    Fast generation of S2-, CdS size cannot be controlled

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles

    In the case of CdSe,

    selenourea + Cd2+ CdSe pH ~ 4.5

    Se H2N C NH2 H2NCN + 2H + Se

    + 2-

    Rate-determining step ; the generation of Se2-

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles 2. Homogeneous reaction with stabilizer (surfactants)

    G. Chiu, J. Colloid Interface Sci., 1981, 83, 309.

    Cd2+ H2S (g)

    EDTA CdS monodisperse size (10-4 ~ 10-3 M )

    EDTA = ethylenediaminetetraacetic acid

    O O N N

    OH HO

    O O T. Sugimoto et al., J. Colloid Interface Sci., 1996, 180, 305.

    Gelatin - anticoagulant (to prevent aggregation) - up to 10-1 M

    HO OH

    Cd-EDTA + TAA Monodisperse CdS (~0.5 um) 1 wt% gelatin

    S H3C C NH2

    TAA

    CH3CN + 2H+ + S2-

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles T. Sugimoto et al., Colloids Surf. A: Physicochem. Eng. Aspects., 1998, 135, 207.

    Detailed mechanism study on CdS formation

    * Ligands : amines and acids N

    TMD H2N NH2 trimethylenediamine

    H2N N,N-dimethylethylenediamine

    H

    DMED

    H N H N

    N

    DETA H2N NH2 N H

    NH2

    di(ethylene)triamine TETA

    2

    tri(ethylene)tetraamine

    N NH2 O

    TAEA NH2

    H2N

    tri(ethylamine)amine

    AA NH2 O

    aspartic acid

    OH HO

    NTA N

    O OH

    O O

    EDTA N

    N O

    O

    HO O HO

    O

    OH OH nitrilotriaceticacid

    HO OH ethylenediaminetetraacetic acid

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles

    Mn+ + L ML, K = [ML]

    If K increases, more stable M-L complex

    For nanosize products: 10 < log K < 18 (optimizing value)

    [Mn+] [L]

    i) log K < 10, too fast growth II) log K > 18, too slow growth S

    H3C C NH2 100

    60 8 hr

    A : TAEA D : DETA N : NTA

    Cd2+ + S2- CdS

    Cd-L

    Yiel

    d (%

    )

    25 2 min

    25 1 hr

    E : EDTA

    rate = k[Cd-L]

    rate (Cd)

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles 3. CdS formation in organized media

    1. Ionically conductive polymer film

    M. A. Fox and A.J. Bard et al., JACS, 1983, 105, 7002.

    [(-CF2-CF2)m(CF-CF2-)]n

    (O-CF2-CF-CF3)l

    O-CF2-CF2-SO3H

    Cd2+ H S 2 Nafion film (125 type) ( ~ 0.13 mm )

    1.0 M pH1

    CdS nanoparticle in Nafion (< 1 )

    Nafion CdS in Nafion

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles

    Methylviologen (MV)

    + e- MV+ H3C N X-

    N CH3 X-

    colorless Violet color

    CB e-

    Nafion film

    MV2+

    Solution hv

    h+

    CdS

    MV+ VB

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles 3.2. Bilayer lipid membrane

    J. H. Fendler et al., JACS, 1988, 110, 1012.

    Teflon

    bilayer film

    Cd2+ solution H2S(g)

    4 ~ 5 nm CdS ( ~ nm )

    Cd2+ H S 2

    bilayer ZnS, Cu2S, PbS, In2S3,

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles 3.3. Langmuir-Blodgett (LB) films

    LB film Multiple dip Multilayer generation

    J. H. Fendler et al., J. Phys. Chem., 1994, 98, 2735.

    H2S(g)

    air CdS generation

    Cd2+ in H2O

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Cd chalcogenide nanoparticles 3.4. CdS clusters encapsulated in Zeolites

    Zeolites have ion exchange ability

    Cd2+ cation

    H2S (g) Zeolite CdS within Zeolite cavity (

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Synthesis of CdSe Quantum Dots

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Brus, Alivisatos, and Bawendi

    L. E. Brus A. P. Alivisatos M. G. Bawendi

    Louis Brus 1965 Rice University

    1969 Columbia University (Ph.D) Gas phase photodissociation

    1973 ~ 1996

    Bell Labs. Study of short lived intermediates nano-size material (1986: CdS, CdSe, )

    1996~ Columbia Univ.

    A. Paul Alivisatos 1981 University of Chicago (Chemistry)

    1986 U. C. Berkeley (Ph.D.), Photophysics of electronically excited molecules

    1986 ~1988

    AT&T Bell labs.

    1988~ U. C. Berkeley

    Moungi G. Bawendi Harvard University (Arts)

    1988 University of Chicago (Chemistry, Ph.D) Lattice model for polymer solution

    1988 ~1989

    AT&T Bell labs.

    1990~ MIT

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    CdS nanoparticles

    R. Rossetti and L. E. Brus, JCP, 1983, 79, 1086.

    CdS prepd in aq. solution ( ~ 3.5 nm )

    max = 440 nm

    12.5 nm Still stable in solution

    max > 500 nm

    1 day aging pH = 3

    quantum-size bulk Quantum-size effect (absorption band gap) was first observed!

    R. Rossetti and L. E. Brus, JCP, 1985, 82, 552.

    Na S solution in MeOH rapid mixing 2 ( 5 ml of 6.6 10-3 M )

    + Cd(ClO4)2 solution

    ( 100 ml of 3 10-3 M )

    CdS ( ~ 5.4 nm) 23

    rapid mixing - 77 CdS ( ~ 2.8 nm)

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    CdS nanoparticles

    L. E. Brus, J. Chem. Phys., 1984, 80, 4403.

    Particle-in-a-box 0 < x < a , V = k(x)

    Particle(e-)-in-a-sphere model boundary condition : 0 < x < r

    r 0 a

    L. E. Brus et al., J. Phys. Chem,, 1986, 90, 3393. Luminescence at 10 K

    no band edge luminescence deep trap luminescence ( surface defect site emission )

    featureless and broad emission

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    CdSe nanoparticles Easy to see CdS

    Band gap = 2.42 eV UV region

    CdSe Band gap = 1.73 eV

    Vis. region

    & detect !!

    L. E. Brus et al., J. Chem. Phys., 1986, 85, 2237.

    1. Cd(ClO4)2 in MeOH ( - 80) xs. H2Se in iso-PrOH ( - 80) injection

    In alcohol, small CdSe

    2. Cd(ClO4)2 in H2O (23) xs. H2Se in H2O (23) injection

    In water, large CdSe ( > 5 nm)

    Small refers to CdSe colloid at -80. Large refers to CdSe colloid at 23. The vertical scale for Large is expended 5 500nm. The mass of CdSe in the optical path is nominally the same in both spectra.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Size Control of CdSe nanocrystals Arrested pprreecciippiittaattiioonn ( rreeaaccttiioonn in ccoonnffiinneedd rreeggiioonn )

    - J. H. Fendler et al., JCS CC., 1984, 90.

    P. Lianos & J. K. Thomas, Chem. Phys. Lett., 1986, 125, 299. Y. Wang & N. Herron, J. Phys. Chem., 1987, 91, 257.

    - A. P. Alivisatos & L. E. Brus et al., JACS, 1988, 110, 3046. AOT ( Aerosol-OT) : sodium bis(2-ethylhexyl)sulfosuccinate

    O +Na -O3S

    [H2O] CH3 CH3

    O

    O

    AOT / H2O / Heptane

    Cd(ClO4)2 in aq. solution Se(TMS)2 in heptane

    W = [AOT] Se Si CH3 H3C Si

    CH3 CH3

    Color change : from yellow to orange ( red )

    Se(TMS) 2

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Size Control of CdSe nanocrystals

    A. P. Alivisatos & L. E. Brus et al., J. Chem. Phys., 1988, 89, 4001. Electronic state of CdSe quantum dots (calculation)

    Energy level diagram for a spherical cluster of CdSe 45 in diameter, from elementary theory. Dotted lines are bulk band edges. The straight arrow shows the HOMO-LUMO transition. The wiggly arrows indicate the probable nonradiative decay times. labels spin- orbit split-off states. (inset) Stick diagram of the energies at which optical transitions occur within the MO model. The arrow denotes the HOMO-LUMO transition.

    A. P. Alivisatos & L. E. Brus et al., J. Chem. Phys., 1988, 89, 5979. Pressure dependent HOMO-LUMO transition energy due to surface deformation from zinc blend to wurzite

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Enhancement of Quantum Efficiency Core/Shell nanocrystals

    A. Henglein et al. JACS, 1987, 109, 5649. - inorganic ions (NaOH + Cd2+) can enhance PL.

    M. G. Bawendi & L. E. Brus et al., Phys. Rev. Lett., 1990, 65, 1623. Low temp. photoluminescence experiments of CdSe QD

    - low temp. : ~ 15 K , PL > 0.1 ( = 10 % ) - absorption & emission moves together tendency.

    M. G. Bawendi & L. E. Brus et al., JACS, 1990, 112, 1327. - CdSe/ZnS, prepared from AOT inversed micelle, can emit PL at room temp.

    ZnS

    CdSe Core-shell structure

    ZnS CdSe ZnS Band-edge Emission

    Energy trap !!

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Enhancement of Quantum Efficiency Pyrolysis Method to Prepare High Quality CdSe QDs

    C. B. Murray, D. J. Morris, and M. G. Bawendi, JACS, 1993, 115, 8706. Pyrolysis of organometallic precursors

    dimetylcadmium Me2Cd

    Cd2+ or Cd0

    TOP-Se / TOPO ( solvent & ligand )

    P Se P Se

    O2

    trioctylphosphine (TOP) O P

    trioctylphosphine oxide (TOPO, mp ~ 60)

    Nearly monodispersed size Soluble in hexane, benzene, CHCl3, ...

    Stable at 350 Nice crystal (wurzite)

    Strong band-edge emission at room temp! PL = ~ 10 % at room temp.

    = ~ 100 % at low temp.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Enhancement of Quantum Efficiency = O P Pyrolysis & Overcoated Structure

    M. G. Bawendi & L. E. Brus et al., J. Phys. Chem., 1996, 100, 468.

    ZnS

    CdSe CdMe2 + TOP-Se CdSe TOPO 350

    ZnMe2 (TMS) S 2 300 stirring

    at 100 PL > ~ 50 %

    Fluorescence Absorption

    (CdSe)ZnS

    (CdSe)ZnS

    Fluorescence of (CdSe)ZnS

    (CdSe)TOPO

    (CdSe)TOPO

    TEM picture of (CdSe)ZnS nanocrystals. This picture is 95 95 nm.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Enhancement of Quantum Efficiency CdS

    CdSe A. P. Alivisatos et al., JACS, 1997, 119, 7019.

    10 nm

    A B

    Absorption (dashed) & PL (solid) spectra of two series of core/shell nanocrystals.

    Q.Y. : quantum yield of photoluminescence. : number of monolayers of shell growth.

    All spectra were taken at a concentration corresponding to an optical density (OD) of roughly 0.2 at the peak of the lowest energy feature in the absorption spectrum. Figure A : 30 CdSe core diameter series. Figure B : 23 CdSe core diameter series.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Enhancement of Quantum Efficiency

    CdSe

    ZnS

    M. G. Bawendi et al., J. Phys. Chem. B, 1997, 101, 9463.

    Figure 1. Absorption spectra for CdSe (dashed) & CdSe/ZnS (solid) dots with dia-meters measuring (a) 23, (b) 42, (c) 48, and (d) 55 . Figure 2. PL spectra for CdSe (dashed) & CdSe/ZnS (solid) dots with the following core sizes : (a) 23, (b) 42, (c) 48, and (d) 55 . The PL spectra for the overcoated dots are much

    Figure 1 Figure 2

    more intense owing to their higher quantum yields : (a) 40, (b) 50, (c) 35, and (d) 30.

    Full color display could be possible !!

    small size large size

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Applications 1. Biological labeling

    Organic dyes - photochemically unstable Serious photobleaching

    5-Fluorescein (FITC) Rhodamine Red-X

    - broad emission band ( baseline width > 200 nm ) Multi-site monitoring is hard

    QDs - photochemically stable

    no photobleaching - narrow emission band ( baseline width < 60 nm )

    CdSe InP InAs

    Simultaneous multi-site monitoring

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Applications

    Shuming Nie et al., Science, 1998, 281, 2016.

    = HS OH O

    Color luminescence images obtained from (A) original QDs, (B) mercapto- solubilized QDs, and (C) QD-IgG conjugates. The images were directly

    CdSe ZnS recorded on color photographic film

    (ASA-1600) with a 15-s exposure by a 35-mm camera that was attached to a Nikon inverted optical microscope. Continuous-wave excitation at 514.5 nm was provided by an Ar ion laser. There are emission color differences among single QDs.

    mercaptocacetic acid

    A. P. Alivisatos et al., Science, 1998, 281, 2013.

    < ~ 10 % PL

    Si O

    O

    O HS =

    Cross section of a dual- labeled sample examined with a Bio-Rad 1024 MRC CLSM with a 40 oil 1.3 numerical aperture objective. The mouse 3T3 fibroblasts were grown and prepared as described. A false-colored image was obtained with

    ZnS

    CdSe

    (3-mercaptopropyl) trimethoxysilane

    363-nm excitation, with simultaneous two-channel detection (522DF 35-nm FWHM narrow-pass filter for the green, and a 585-nm long-pass filter for the red). Image width: 84 mm.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Applications org. soluble

    CdSe

    B. Dubertret & D. J. Norris et al., Science, 2002, 298, 1759. QD labeling of Xenopus embryos at different stages phospholipid

    CdSe

    Water- soluble micellar structure PL : 50 ~ 70 %

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Applications 2. Display (LED, ELD)

    LED : LLiigghhtt--Emitting Diode Epoxy matrix

    containing CdSe

    GaN Blue LED

    Using high PL efficiency By changing the ratio of various size CdSe in epoxy resin, LED color can be easily tuned

    M. G. Bawendi et al., Adv. Mater., 2000, 12, 1102.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Applications

    ELD : EElleeccttrroo-Luminescent Device Electric E. Light E.

    ZnS CdSe

    e- hv

    TOPO-capped CdSe/ZnS

    M. G. Bawendi et al., Nature, 2002, 420, 800. - Sandwich-type - mono-layered device - EL = ~ 0.52% at 10 mA/cm2

    h+

    hole transporter

    - Luminescence efficiency 1.6 cd/A at 2000 cd/m2

    Ag Mg:Ag

    40 nm Alq3 QD monolayer

    35 nm TPD ITO

    Glass

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Applications

    3.Photovoltaic device (solar cell) Light E.

    A. P. Alivisatos et al., Science, 2002, 295, 2425. (A) 7 7 nm

    Electric E.

    (B) 7 30 nm (C) 7 60 nm

    e- hv

    Electrical energy

    A

    h +

    (D) 10 10 nm CdSe in P3HT (E) 7 60 nm CdSe in P3HT

    Al External Circuit

    CdSe/P3HT Blend

    PEDOT:PSS ITO Substrate

    EQEs of 7-nm-diameter nanorods with lengths 7, 30, and 60 nm. The intensity is at 0.084 mW/cm2 at 515 nm.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Large Scale Synthesis & Water-soluble QDs

    Scale of conventional method; up to ~ 102 mg

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Conventional Pyrolysis Method

    J. Am. Chem. Soc., 1993, 115, 8706

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Surface Passivation with higher bandgap Inorganic Shell (TYPE I)

    Reason ? - CdSe QDs ensemble as-prepared can have PL QY of ~70%

    -+ High PL QY for most cases !!! however, - Low processibility of bare CdSe QDs

    -+ Surface alkyl chains, PL loss on surface ligand exchange - Low photochemical stability of bare CdSe QDs

    -+ PL loss on the exposure to UV irradiation (oxidation of Se)

    Approach ? - Heteroepitaxial growth of inorganic shell (CdS, ZnS, ZnSe)

    having low lattice mismatch to core QDs.

    TOPO

    TYPE I core-shell Confinement of CdSe ZnS Organic Ligand

    CdSe

    both h+ and e- in the core ZnS core shell

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Conventional Synthetic Method to Prepare Core-Shell Semiconductor QDs

    Injection of Se-precursor

    Dropwise addition of Zn-/S-precursors

    stoichiometric stoichiometric

    Hot Cd-precursor

    solution CdSe CdSe-ZnS

    Isolate CdSe QD

    Cd-precursor Se-precursor

    CdSe Zn-/S-precursors

    CdSe-ZnS

    Similar approaches have been used to prepared CdSe/CdS, CdSe/ZnSe

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Problem of Previously Known Inorganic Shell Passivation Technique

    1. Extensive purification step to remove unreacted precursors

    2. Dropwise addition of a precursor mixture

    3. Hard-to-handle dangerous and pyrophoric metal-precursor

    Very expensive materials!! -+ Bottleneck of large scale synthesis of

    Core-shell semiconductor QDs

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Successive injection of Precursors in One-Pot

    One-Pot Method with Temperature-Controlled Precursor Injection

    Fast Injection of excess Se-precursor

    Fast injection of excess Zn-precursor

    Hot Cd-precursor

    solution CdSe CdSe-ZnSe Product isolation

    Cd-precursor Se-precursor

    CdSe CdSe-ZnSe

    Zn-precursor

    No isolation

    * Expected advantages of low temperature shell precursor injection (1) quenching of seed growth & no new nuclei formation (2) swift & large amount of precursor injection (3) high reproducibility

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Temporal Evolution of PL of QDs

    (a) (b) 1.0

    CdSe 1.05

    PL In

    tens

    ity (a

    .u.)

    CdSe/ZnSe

    0.8

    1.0 0.3 min 1 min 3 min 5 min

    PL In

    tens

    ity (a

    .u.)

    0.6

    0.8

    1.00 592 nm 568 nm

    0.6 10 min 20 min 70 min

    0.2

    0.4 0.95 560 565 570 575 580 585 590 595

    No ZnSe peak 0.2

    0.4

    400 450 500 550 600

    Wavelength (nm) 650

    0.0 0.0 400 450 500 550 600 650 700

    Wavelength (nm) (a) Temporal PL evolution of CdSe QDs. CdSe

    size increases slowly between 3 and 20 min after TOPSe injection. Arrow indicates slow

    (b) Temporal PL evolution of CdSe /ZnSe QDs during ZnSe shell growth.

    growth region during CdSe growth.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Multi-gram scale Production

    Characteristic of SIPOP process Kim, J. I. et al. Adv. Func. Mater. 2006, 16, 2077.

    13 g CdSe/ZnSe 13 g CdSe/ZnSe from one-pot synthesis

    (b) (a)

    : room temperature precursor injection large scale synthesis ?

    from one-pot synthesis

    50 nm (c)

    0.3 2

    0.2

    1

    0.1

    Abso

    rban

    ce (a

    rb. u

    nits

    )

    PL In

    tens

    ity (n

    orm

    aliz

    ed)

    400 500 600

    Wavelength(nm) 700

    0.0 0

    unit : mm under UV

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    TEM images of CdSe and CdSe/ZnSe QDs

    (a) CdSe (b) CdSe/ZnSe

    Short axis Short axis D = 4.5 nm, = 0.37 D = 5.6 nm, = 0.23

    10 nm

    JEM-3000F

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    XPS and ICP-AES

    Zn 2p1 Zn 2p3 (a) (b) 1.0 [Cd]/([Cd]+[Zn])

    [Zn]/([Cd]+[Zn])

    Cou

    nts /

    s

    0.6

    0.8

    Mol

    . fra

    ctio

    n

    CdSe/ZnSe

    0.2

    0.4

    1050 1040 1030 1020 Binding energy (eV)

    1010

    CdSe

    0

    CdSe-ZnSe cluster

    10 20 30 40 50 60 0.0

    (a) XPS data for CdSe and CdSe/ZnSe QDs. No zinc 2p1 and 2p3 peaks were observed

    (b) Typical ICP-AES results during ZnSe shell growth. 4 molar excess zinc precursor was

    time (min

    in CdSe QDs. used for ZnSe shell.

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Proposed ZnSe Shell Growth Mechanism

    Temperature-Controlled One-Pot Process ; let QDs remain in quasi-eq. state, followed by

    precursor injection under temperature-controlled condition

    Quasi-Equilibrium Condition

    Se-precursor +

    Cd-precursor

    Cd-prec [Cd]

    280 oC CdSe CdSe

    Swift injection of Zn-precursor

    at < 50 oC Quasi-Equilibrium

    Condition

    Zn-prec [Zn]

    240 oC CdSe CdSe

    Cd-prec [Cd]

    ZnSe ZnSe

    [Cd] : Cadmium active species [Zn] : Zinc active species

    Cd-prec : Cadmium precursor Zn-prec : Zinc precursor

    Influx of precursors outflux of precursors

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Instability of selenide surface

    Se is easy to be oxidized with O2 Very sensitive to surface modification

    Hard to make stable water-soluble QDs having high quantum yields

    No isolation of core seems to be better process. Core-double shell structure has been suggested:

    CdSe/ZnSe/ZnS

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    CdSe/ZnSe/ZnS QDs via SiPOP process (Successive Injection of Precursor in One-Pot)

    excess Zn(UD)2

    excess S

    Cd(SA)2

    excess Se

    MPA MPA MPA

    CdSe CdSe-ZnSe CdSe-ZnSe-ZnS

    Hydrophobic ligand, i.e. SA, TOPO, and ODA Hydrophilic ligand, i.e. MPA

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    CdSe/ZnSs/ZnS QDs via SiPO process

    PL In

    tens

    ity (n

    orm

    aliz

    ed)

    CdSe-ZnSe-ZnS

    Abso

    rban

    ce (a

    .u.)

    CdSe-ZnSe

    500 550 600 Wavelength (nm)

    650 700

    CdSe

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    CdSe/ZnSs/ZnS QDs via SiPOP process

    toluene water toluene water toluene water

    90

    70

    80 toluene

    toluen

    PL q

    uant

    um e

    ffici

    ency

    (%)

    water 50

    40 toluene

    30

    20

    60

    0

    10 water water

    CdSe-ZnSe-ZnS CdSe-ZnSe CdSe

    toluene water toluene water toluene water

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    How large scale SiPOP process can be extended?

    Semiconductor Quantum Dot

    ???? L 100 mL ~500 mg

    3 L ~13 g

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    Semiconductor Quantum Dot

    Semi--PPiilloott Scale 20 L Reactor (103 times bigger than normal lab. reaction scale)

    100 ~ 1000 g scale synthesis

  • Material Science of Thin Films, ECE 6348 Stanko R. Brankovic ECE 5320

    200 g of CdSe--ZnSe QDs was prepared from one bbaattcchh reaaccttiioonn

    Semiconductor Quantum Dot

    Slide Number 1Synthetic Methods of Semiconductor NP and Applications Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Synthesis of TitaniaSynthesis of TitaniaSynthesis of TitaniaSlide Number 13Cd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesCd chalcogenide nanoparticlesSlide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Temporal Evolution of PL of QDsMulti-gram scale ProductionTEM images of CdSe and CdSe/ZnSe QDsXPS and ICP-AESProposed ZnSe Shell Growth MechanismSlide Number 53CdSe/ZnSe/ZnS QDs via SiPOP process(Successive Injection of Precursor in One-Pot)Slide Number 55CdSe/ZnSs/ZnS QDs via SiPOP processSlide Number 57Slide Number 58Slide Number 59