ec 1258-digital electronics lab

Upload: -

Post on 14-Apr-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    1/38

    EC1258 DIGITAL ELECTRONICS LAB

    LIST OF EXPERIMENTS

    1. ADDER AND SUBTRACTOR

    2. BINARY CODE TO GRAY CODE AND VICEVERSA

    3. BCD TO EXCESS3 CODE AND VICE VERSA

    4. MAGNITUDE COMPARATOR

    5. MULTIPLEXER AND DEMULTIPLEXER

    6. 9 BIT PARITY GENERATOR/CHECKER

    7. ENCODER AND DECODER

    8. SHIFT REGISTER

    9. SYNCHRONOUS COUNTER

    10. ASYNCHRONOUS COUNTER

    11. 4 BIT BINARY ADDER AND SUBTRACTOR

    12. BCD ADDER

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    2/38

    ADDERS

    AIM:

    To Design and construct Half and Full Adder and to verify its truth table.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 7432

    3. IC 74084. IC 7404

    5. IC 7486

    6. Connecting wires.

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.

    3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    3/38

    TRUTH TABLE FOR HALF ADDER:

    INPUT OUTPUT

    A B S C

    0 0 0 0

    0 1 1 0

    1 0 1 0

    1 1 0 1

    1

    2

    3

    1

    2

    3

    SUMY

    X

    IC7408

    IC7486

    CARRY

    HALF ADDER

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    4/38

    1

    2

    3 4

    5

    6

    1

    2

    3

    4

    5

    6

    1

    2

    3

    Y

    X

    FULL ADDER

    Z

    CARRY

    SUM

    IC7486

    IC7432IC7408

    IC7408

    IC7486

    TRUTH TABLE FOR FULL ADDER:

    INPUT OUTPUT

    A B C S C

    0 0 0 0 0

    0 0 1 1 0

    0 1 0 1 0

    0 1 1 0 1

    1 0 0 1 0

    1 0 1 0 1

    1 1 0 0 11 1 1 1 1

    RESULT:

    Thus the Adder circuits are verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    5/38

    SUBTRACTORS

    AIM:

    To Design and Construct Half and Full Subtractor and verify its truth table.

    APPARATUS REQUIRED:

    1. IC trainer kit.2. IC 7432

    3. IC 74084. IC 7404

    5. IC 7486

    6. Connecting wires.

    PROCEDURE:

    1. The connections are made as per the circuit diagram.2. Give the logical inputs as per the truth table.3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    6/38

    1

    2

    3

    1

    2

    3

    1 2

    YX

    BORROW

    DIFFERENCE

    HALF SUBTRACTOR

    IC7404 IC7408

    IC7486

    TRUTH TABLE FOR HALF SUBTRACTOR:

    INPUT OUTPUT

    A B D B

    0 0 0 0

    0 1 1 1

    1 0 1 0

    1 1 0 0

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    7/38

    TRUTH TABLE FOR FULL SUBTRACTOR:

    INPUT OUTPUT

    A B C D B

    0 0 0 0 0

    0 0 1 1 10 1 0 1 1

    0 1 1 0 1

    1 0 0 1 0

    1 0 1 0 0

    1 1 0 0 0

    1 1 1 1 1

    1

    2

    3 4

    5

    6

    1 2

    3 4

    1

    2

    3

    4

    5

    6

    1

    2

    3

    XY

    Z

    FULL SUBTRACTOR

    BORROW

    DIFFEREN

    IC7408

    IC7404IC7408

    IC7486IC7486

    IC7432IC7404

    RESULT:

    Thus the Subtractor circuits are verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    8/38

    CODE CONVERTERS

    BINARY CODE TO GRAY CODE

    AIM:

    To Design and Implement BINARY TO GRAY & GRAY TO BINARY usinglogic gates.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 74863. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    9/38

    BINARY TO GRAY CODE:

    INPUT OUTPUT

    A B C D W X Y Z

    0 0 0 0 0 0 0 0

    0 0 0 1 0 0 0 1

    0 0 1 0 0 0 1 1

    0 0 1 1 0 0 1 0

    0 1 0 0 0 1 1 0

    0 1 0 1 0 1 1 1

    0 1 1 0 0 1 0 1

    0 1 1 1 0 1 0 0

    1 0 0 0 1 1 0 0

    1 0 0 1 1 1 0 1

    1 0 1 0 1 1 1 1

    1 0 1 1 1 1 1 0

    1 1 0 0 1 0 1 0

    1 1 1 0 1 0 0 1

    1 1 1 1 1 0 0 0

    1 1 0 1 1 0 1 1

    1

    2

    3

    4

    5

    6

    9

    1 0

    8

    B2 B1 B0

    G

    G

    G

    G

    B3

    IC7486

    IC7486

    BINARY TO GRAY CODE

    CODE CONVERTER

    IC7486

    GRAY TO BINARY CODE:

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    10/38

    INPUT OUTPUT

    W X Y Z A B C D

    0 0 0 0 0 0 0 0

    0 0 0 1 0 0 0 1

    0 0 1 1 0 0 1 0

    0 0 1 0 0 0 1 1

    0 1 1 0 0 1 0 0

    0 1 1 1 0 1 0 1

    0 1 0 1 0 1 1 0

    0 1 0 0 0 1 1 1

    1 1 0 0 1 0 0 0

    1 1 0 1 1 0 0 1

    1 1 1 1 1 0 1 0

    1 1 1 0 1 0 1 1

    1 0 1 0 1 1 0 0

    1 0 1 1 1 1 0 1

    1 0 0 1 1 1 1 0

    1 0 0 0 1 1 1 1

    1

    23

    4

    56

    9

    1

    0 8

    1 2

    1

    3 1 1

    1

    23

    4

    56

    GRAY TO BINARY CODE

    B2

    B1

    B0

    G0G1G2G3

    B3

    IC7486

    IC7486IC7486

    IC7486

    IC7486

    IC7486

    RESULT:

    Thus the Code Converters were designed and implemented.

    BCD TO EXCESS 3 CODE AND VICE VERSA

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    11/38

    AIM:

    To Design and Implement BCD TO EXCESS 3 & EXCESS TO BCD using logic

    gates.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 7486

    3. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.

    3. The corresponding output is verified with their truth table.

    TRUTH TABLE:

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    12/38

    BCD TO EXCESS 3 CODES:

    INPUT OUTPUT

    B3 B2 B1 B0 E3 E2 E1 E00 0 0 0 0 0 1 1

    0 0 0 1 0 1 0 0

    0 0 1 0 0 1 0 1

    0 0 1 1 0 1 1 0

    0 1 0 0 0 1 1 1

    0 1 0 1 1 0 0 0

    0 1 1 0 1 0 0 1

    0 1 1 1 1 0 1 0

    1 0 0 0 1 0 1 11 0 0 1 1 1 0 0

    3

    4

    5

    6

    9

    8

    1

    23 1 2

    1

    1 22

    1 3

    1

    23

    4

    56 1

    2

    3

    4

    5

    6 1

    23

    IC7411IC7432

    IC7404

    IC7404

    IC7404

    IC7404

    IC7432

    IC7408

    IC7432IC7408

    IC7486

    B1B2B3 B0

    BCD TO EXCESS-3 CODE

    EXCESS 3 TO BCD CODE:

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    13/38

    INPUT OUTPUT

    E3 E2 E1 E0 B3 B2 B1 B0

    0 0 1 1 0 0 0 0

    0 1 0 0 0 0 0 1

    0 1 0 1 0 0 1 00 1 1 0 0 0 1 1

    0 1 1 1 0 1 0 0

    1 0 0 0 0 1 0 1

    1 0 0 1 0 1 1 0

    1 0 1 0 0 1 1 1

    1 0 1 1 1 0 0 0

    1 1 0 0 1 0 0 1

    3

    4

    5

    6

    9

    8

    1

    2

    3

    1

    2

    3

    1

    1 22

    1 3

    3

    64

    5

    1

    2

    3

    4

    5

    6

    1

    2

    3

    1

    1 22

    1 3

    1

    2

    3

    B0

    E0E1E2E3

    EXCESS-3 TO BCD CODE

    B3

    B2

    B1

    IC7404

    IC7404

    IC7404

    IC7408

    IC7486

    IC7432

    IC7432

    IC7432

    IC7411

    IC7411

    IC7411

    IC7408

    RESULT:

    Thus the Code Converters were designed and implemented.

    MAGNITUDE COMPARATOR

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    14/38

    AIM:

    To Design and Implement 2 bit, 4 bit Magnitude Comparator using logic gates and MSI

    devices.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 7432

    3. IC 7408

    4. IC 74045. IC 7486

    6. IC 74857. Connecting wires.

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.3. The corresponding output is verified with their truth table.

    TRUTH TABLE:

    2 BIT MAGNITUDE COMPARATOR

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    15/38

    INPUT OUTPUT

    A0 A1 B0 B1 A>B A=B A

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    16/38

    COMPARING INPUTS CASCADING

    INPUTS

    OUTPUT

    A3B3 A2B2 A1B1 A0B0 A>B A=B AB A=B A>B

    A3>B3 X X X X X X 1 0 0A3B2 X X X X X 1 0 0

    A3=B3 A2B1 X X X X 1 0 0

    A3=B3 A2=B2 A1B0 X X X 1 0 0

    A3=B3 A2=B2 A1=B1 A0

    B

    _

    IN

    4

    A

    B

    5

    A2

    A3

    +5V

    4 BIT MAGNITUDE COMPARATOR

    A1

    A0

    B0

    B3

    B2

    B1

    IC7485

    OUTPUT R

    RESULT:

    Thus the Magnitude Comparator circuit are designed and implemented.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    17/38

    MULTIPLEXER AND DEMULTIPLEXER

    AIM:

    To Design and Implement Multiplexer, DEMultiplexer using logic gates and MSI devices.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 7432

    3. IC 74084. IC 7404

    5. IC 74151

    6. Connecting wires.

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    18/38

    TRUTH TABLE:

    MULTIPLEXER

    INPUT OUTPUT

    S0 S1 Y

    0 0 D0

    0 1 D1

    1 0 D2

    1 1 D3

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    19/38

    1

    2

    3

    4

    1

    1 22

    1 3

    3

    64

    5

    9

    81 0

    1 1

    1

    1 22

    1 3

    1

    2

    3

    4

    5

    6

    9

    1 0

    8

    S0S1

    IC7411

    IC7404

    IC7404

    Y

    D3

    D2

    D1

    D0

    IC7432

    IC7432

    IC7432

    IC7411

    IC7411

    IC7411

    MULTIPLEXER

    TRUTH TABLE:

    DEMULTIPLEXER

    INPUT OUTPUT

    D A B D0 D1 D2 D3

    1 0 0 1 0 0 0

    1 0 1 0 1 0 0

    1 1 0 0 0 1 0

    1 1 1 0 0 0 1

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    20/38

    1

    2

    3

    4

    9

    81 0

    1 1

    3

    64

    5

    9

    81 0

    1 1

    1

    1 22

    1 3

    IC7411

    S1 S0

    IC7404

    IC7404

    D2

    D3

    D0

    D1

    IC7411

    IC7411

    IC7411

    DEMULTIPLEXER

    Y3

    Y2

    Y1

    Y0

    RESULT:

    Thus the Multiplexer circuit is designed and implemented.

    9 BIT PARITY GENERATOR / CHECKER

    AIM:

    To Design and Implement Parity Generator/Checker using IC 74180.

    APPARATUS REQUIRED:

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    21/38

    1. IC trainer kit.

    2. IC 74180

    3. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.

    3. The corresponding output is verified with their truth table.

    TRUTH TABLE

    PARITY CHECKER

    INPUTS

    OUTPUTS

    Number

    of Xo

    X7

    EVE

    N

    ODD EVE

    N

    ODD

    EVEN 1 0 1 0

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    22/38

    ODD 1 0 0 1

    EVEN 0 1 1 0

    ODD 0 1 1 0

    X 1 1 0 0

    X 0 0 1 1

    PARITY GENERATOR:

    PARITY OF

    INPUTS

    CASCADING

    INPUT

    PARITY

    OF X0-X7

    PARITY

    OF X0-

    X7

    X0 X7 EVEN ODD EVEN ODD

    ODD 1 0 ODD EVEN

    EVEN 1 0 ODD EVENODD 0 1 EVEN ODD

    EVEN 0 1 EVEN ODD

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    23/38

    A8

    B9

    C1 0

    D1 1

    E1 2

    F1 3

    G1

    H2

    O D D _ I N4 E V E N _ I N3

    O D D _ O U T6

    E V E N _ O U T5

    A8

    B9

    C1 0

    D1 1

    E1 2

    F1 3

    G1

    H2

    O D D _ I N4 E V E N _ I N3

    O D D _ O U T6

    E V E N _ O U T5

    EVEN INODD IN

    ODD OUT

    ODD INEVEN IN

    X3X2X1X0

    X0 - X7

    ODD OUT

    EVEN OUT

    EVEN OUT

    X7X6X5X4

    X0

    X3X2X1

    X5X4

    X7X6

    9 BIT PARITY CHECKER

    9 BIT PARITY GENERATOR

    9 BIT PARITY CHECKER / GENERATOR

    RESULT:

    Thus the 9 bit Parity Generator/ Checker circuit are designed and implemented.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    24/38

    ENCODER AND DECODER

    AIM:

    To Design and Implement encoder and decoder using logic gates .

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 7432

    3. IC 7408

    4. IC 74045. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.

    3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    25/38

    TRUTH TABLE:

    ENCODER

    INPUT OUTPUT

    A0 A1 A2 A3 A4 A5 A6 A7 D0 D1

    1 0 0 0 0 0 0 0 0 0

    0 1 0 0 0 0 0 0 0 0

    0 0 1 0 0 0 0 0 0 1

    0 0 0 1 0 0 0 0 0 1

    0 0 0 0 1 0 0 0 1 0

    0 0 0 0 0 1 0 0 1 0

    0 0 0 0 0 0 1 0 1 1

    0 0 0 0 0 0 0 1 1 1

    1

    2

    3

    4

    5

    6

    9

    1

    0 8

    1 2

    1

    3

    1 1

    1

    2

    3

    4

    5

    6

    9

    1

    0 8

    1 2

    1

    3 1 1

    1

    2

    3

    A3A2A1A0 A7A6A5A4

    IC7432

    IC7432

    IC7432

    IC7432

    D

    D

    D

    ENCODER (OCTAL TO BINARY)

    IC7432

    IC7432

    IC7432

    IC7432

    IC7432

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    26/38

    TRUTH TABLE:

    DECODER

    INPUT OUTPUT

    I0 I1 I2 A0 A1 A2 A3 A4 A5 A6 A7

    0 0 0 1 0 0 0 0 0 0 00 0 1 0 1 0 0 0 0 0 0

    0 1 0 0 0 1 0 0 0 0 0

    0 1 1 0 0 0 1 0 0 0 0

    1 0 0 0 0 0 0 1 0 0 0

    1 0 1 0 0 0 0 0 1 0 0

    1 1 0 0 0 0 0 0 0 1 0

    1 1 1 0 0 0 0 0 0 0 1

    1

    2

    3

    4

    5

    6

    I2I1I0

    1

    1 22

    1 3

    3

    64

    5

    9

    81 0

    1 1

    1

    1 22

    1 3

    3

    64

    5

    9

    81 0

    1 1

    1

    1 22

    1 3

    3

    64

    5

    A6

    A5

    A4

    A3

    A2

    A1

    A0

    IC7404

    IC7404

    IC7404

    A7

    IC7411

    IC7411

    IC7411

    IC7411

    DECODER (BINARY TO OCTAL)

    IC7411

    IC7411

    IC7411

    IC7411

    RESULT:

    Thus the encoder and decoder circuit is designed and implemented.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    27/38

    SHIFT REGISTERS

    AIM:

    To Design a 4bit Shift Register using flip-flops.

    (1). Serial In Serial Out

    (2). Serial In Parallel Out(3). Parallel In Parallel Out.

    APPARATUS REQUIRED:

    1. IC trainer kit.2. IC 7474

    3. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    28/38

    SERIAL IN SERIAL OUT:

    T i t l e

    S i z e D o c u m e n t N u m b e r R e v

    D a t e : S h e e t o f

    < D o c > < R e v C o d e >

    < T i t l e >

    A

    1 1F r i d a y , S e p t e m b e r 2 1 , 2 0 0 7

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E

    4

    Q5

    Q6

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E

    1

    0

    Q9

    Q8

    7 4 7 4

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E

    4

    Q5

    Q6

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E

    1

    0

    Q9

    Q8

    7 4 7 4

    D a t a I n S e r i a l O u t

    V c c

    CLK DATA QD

    0 1 0

    1 1 0

    2 0 0

    3 0 04 0 1

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    29/38

    SERIAL IN PARALLEL OUT:

    T i t l e

    S i z e D o c u m e n t N u m b e r R e v

    D a t e : S h e e t o f

    < D o c > < R e v C o d e >

    < T i t l e >

    A

    1 1F r i d a y , S e p t e m b e r 2 1 , 2 0 0 7

    T i t l e

    S i z e D o c u m e n t N u m b e r R e v

    D a t e : S h e e t o f

    < D o c > < R e v C o d e >

    < T i t l e >

    A

    1 1F r i d a y , S e p t e m b e r 2 1 , 2 0 0 7

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E

    4

    Q5

    Q6

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E

    1

    0

    Q9

    Q8

    7 4 7 4

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E

    4

    Q5

    Q6

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E

    1

    0

    Q9

    Q8

    7 4 7 4

    D a t a I n

    V c c

    Q DQ CQ B

    Q A

    CLK DATA QA QB QC QD

    0 1 0 0 0 0

    1 1 1 0 0 0

    2 0 0 1 0 0

    3 0 0 0 1 0

    4 0 0 0 0 1

    PARALLEL IN PARALLEL OUT:

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    30/38

    D 1 D 2

    T i t l e

    S i z e D o c u m e n t N u m b e r R e v

    D a t e : S h e e t o f

    < D o c > < R e v C o d e >

    < T i t l e >

    A

    1 1F r i d a y , S e p t e m b e r 2 1 , 2 0 0 7

    T i t l e

    S i z e D o c u m e n t N u m b e r R e v

    D a t e : S h e e t o f

    < D o c > < R e v C o d e >

    < T i t l e >

    A

    1 1F r i d a y , S e p t e m b e r 2 1 , 2 0 0 7

    T i t l e

    S i z e D o c u m e n t N u m b e r R e v

    D a t e : S h e e t o f

    < D o c > < R e v C o d e >

    < T i t l e >

    A

    1 1F r i d a y , S e p t e m b e r 2 1 , 2 0 0 7

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E

    4

    Q5

    Q6

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E

    1

    0

    Q9

    Q8

    7 4 7 4

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E

    4

    Q5

    Q6

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E

    1

    0

    Q9

    Q8

    7 4 7 4

    V c c

    Q B

    Q A

    Q DQ C

    D 4D 4

    D 3

    CLOCK D1 D2 D3 D4 QA QB QC QD

    0 1 1 0 0 0 0 0 0

    1 1 1 0 0 1 1 0 0

    RESULT:

    Thus the Shift Registers circuits are designed and verified with their truth table.

    SYNCHRONOUS COUNTER

    AIM:

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    31/38

    To Design and Implement 3-bit Synchronous counter.

    APPARATUS REQUIRED:

    1. IC trainer kit.2. IC 7476

    3. IC 7408

    4. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.2. Give the logical inputs as per the truth table.

    3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    32/38

    P

    R

    E

    2

    J4

    C L K1

    K1 6

    C

    L

    R

    3

    Q1 5

    Q1 4

    P

    R

    E

    7

    J9

    C L K6

    K1 2

    C

    L

    R

    8

    Q1 1

    Q1 0

    P

    R

    E

    2

    J4

    C L K1

    K1 6

    C

    L

    R

    3

    Q1 5

    Q1 4

    1

    2

    3

    CLOCK

    PRESET

    CLEAR

    IC7476IC7476IC7476

    IC7408

    A0A1A2

    DATA IN

    SYNCHRONOUS COUNTER

    TRUTH TABLE:

    CLK QA QB QC

    0 0 0 0

    1 0 0 1

    2 0 1 0

    3 0 1 1

    4 1 0 0

    5 1 0 1

    6 1 1 0

    7 1 1 1

    RESULT:

    Thus the Synchronous Counter circuits are designed and verified with their truth

    table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    33/38

    ASYNCHRONOUS COUNTER

    AIM:

    To Design and Implement 4-bit ASynchronous counter.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 74743. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Give the logical inputs as per the truth table.3. The corresponding output is verified with their truth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    34/38

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E4

    Q5

    Q6

    U 1 A

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E1

    0

    Q9

    Q8

    U 1 B

    7 4 7 4

    C L K3

    C

    L

    R

    1

    D2

    P

    R

    E4

    Q5

    Q6

    U 2 A

    7 4 7 4

    C L K1 1

    C

    L

    R

    1

    3

    D1 2

    P

    R

    E1

    0

    Q9

    Q8

    U 2 B

    7 4 7 4

    A1

    A2

    A3

    PRESET

    CLEAR

    CLOCK

    ASYNCHRONOUS COUNTER

    A0

    TRUTH TABLE:

    CLK QA QB QC QD

    0 0 0 0 0

    1 1 1 1 1

    2 1 1 1 0

    3 1 1 0 1

    4 1 1 0 0

    5 1 0 1 1

    6 1 0 1 0

    7 1 0 0 1

    8 1 0 0 0

    9 0 1 1 1

    10 0 1 1 0

    11 0 1 0 1

    12 0 1 0 0

    13 0 0 1 1

    14 0 0 1 0

    15 0 0 0 1

    RESULT:

    Thus the Asynchronous Counter circuits are designed and verified with theirtruth table.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    35/38

    4 BIT BINARY ADDER / SUBTRACTOR

    AIM:

    To design and implement 4 bit parallel binary adder and Subtractor.

    APPARATUS REQUIRED:

    1. IC trainer kit.2. IC 7483

    3. IC 74864. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Apply the binary inputs for A and B.3. Observe the output for the corresponding input .

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    36/38

    A

    4

    1

    A

    3

    3

    A

    2

    8

    A

    1

    1

    0

    B

    4

    1

    6

    B

    3

    4

    B

    2

    7

    B

    1

    1

    1

    C

    0

    1

    3

    C

    4

    1

    4

    S

    U

    M

    4

    1

    5

    S

    U

    M

    3

    2

    S

    U

    M

    2

    6

    S

    U

    M

    1

    9

    1

    2

    3

    4

    5

    6

    9

    1 0

    8

    1

    2

    1 3

    1 1

    A3

    GND/VCC

    B2

    B1

    B0

    A0A3

    A1

    A2

    B3

    S0 CoutS3S2S1

    Cin

    IC7486

    IC7486

    IC7486

    IC7486

    4 BIT BINARY ADDER/SUBTRACTOR

    RESULT:

    Thus the 4 bit binary adder and Subtractor circuit was designed andimplemented.

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    37/38

    BCD ADDER

    AIM:

    To design and implement BCD adder.

    APPARATUS REQUIRED:

    1. IC trainer kit.

    2. IC 7483

    3. IC 7408

    4. IC 7432

    5. Connecting wires

    PROCEDURE:

    1. The connections are made as per the circuit diagram.

    2. Apply the binary inputs for X and Y.3. Observe the output for the corresponding input .

  • 7/29/2019 Ec 1258-Digital Electronics Lab

    38/38

    A

    4

    1

    A

    3

    3

    A

    2

    8

    A

    1

    1

    0

    B

    4

    1

    6

    B

    3

    4

    B

    2

    7

    B

    1

    1

    1

    C

    0

    1

    3

    C

    4

    1

    4

    S

    U

    M

    4

    1

    5

    S

    U

    M

    3

    2

    S

    U

    M

    2

    6

    S

    U

    M

    1

    9

    A

    4

    1

    A

    3

    3

    A

    2

    8

    A

    1

    1

    0

    B

    4

    1

    6

    B

    3

    4

    B

    2

    7

    B

    1

    1

    1

    C

    0

    1

    3

    C

    4

    1

    4

    S

    U

    M

    4

    1

    5

    S

    U

    M

    3

    2

    S

    U

    M

    2

    6

    S

    U

    M

    1

    9

    0

    00

    1

    2

    3

    1

    23

    45

    6

    Y1

    Y0

    X0

    X1

    X2

    X3

    Y3

    Y2

    Cout

    S2S1S0 S3

    IC 7432

    IC 7432

    IC 7408

    BCD ADDER

    RESULT:

    Thus the BCD adder circuit was designed and implemented