ebuitrago vertically stacked sinw sensor

46
M1 M2 M2 M etallisation MMMe-B R AIN S High Performance Vertically Stacked SiNW/Fin Based 3D FET for Biosensing Applications Elizabeth Buitrago

Upload: elizabeth-buitrago-phd

Post on 16-Aug-2015

49 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EBuitrago Vertically Stacked SiNW Sensor

IC Device 1 (Technology 1)

MetallisationSystem 1

IC Device 2 (Technology 2) with TSV

MetallisationSystem 2

IC Device 2 (Technology 2) with TSV

MetallisationSystem 2Metallisation

MEMS/NEMS Device possibly with TSV

Cap -Chip (Wafer)

MEMS/NEMS Device possibly with TSV

Cap -Chip (Wafer)

MEMS/NEMS Device possibly with TSV

Cap -Chip (Wafer)

e-BRAINS

High Performance Vertically Stacked SiNW/Fin Based 3D FET for Biosensing Applications

Elizabeth Buitrago

Page 2: EBuitrago Vertically Stacked SiNW Sensor

E. Buitrago

o Introductiono Fabrication

o Vertically stacked fabrication approacheso Short-loop and process flow

o Electrical characterizationo Dry characterization after SiNW releaseo Liquid gated experiments

o Sensor testingo Surface modification, fluid delivery, experimental set-upo pH and streptavidin sensing o Vertically stacked FET sensor in Bulk Si

o Conclusions

Outline

2

Page 3: EBuitrago Vertically Stacked SiNW Sensor

E. Buitrago

𝑉 h𝑡 =𝑉 𝑅𝑒𝑓 −𝜑 0+𝜒𝑠𝑜𝑙−

𝜙𝑆𝑖

𝑞−𝑄𝑜𝑥+𝑄𝑠𝑠+𝑄𝐵

𝐶𝑜𝑥

+2𝜙 𝑓

IntroductionPrinciple of OperationThe planar ISFET (ion sensitive field effect transistor)

ISFET

Only φ0 (solution-insulator potential) changes as function of pH.

Bergveld, IEEE Trans. Biomed. Eng. 1970, BME-17, 70-71.

𝑉 h𝑡 =𝜙𝑀−𝜙𝑆𝑖

𝑞−𝑄𝑜𝑥+𝑄𝑠𝑠+𝑄𝐵

𝐶𝑜𝑥

+2𝜙 𝑓

𝐼𝑑=𝜇𝐶𝑜𝑥𝑊𝐿 {[𝑉 𝐺−𝑉 h𝑡 ]𝑉 𝑑−

12𝑉 𝑑2 }

MOSFET

Threshold voltage shift ΔVth pH concentration changes observed in Id (Bergveld model).

𝛿𝜑0

𝛿𝑝𝐻=−2.3 𝑘𝑇

𝑞𝛼 (SB−model)

I d (drai

n cu

rren

t)

ΔVth VG (gate voltage)

pH = 4pH = 7

pH = 10

3

Page 4: EBuitrago Vertically Stacked SiNW Sensor

4E. Buitrago

IntroductionWhy FET Based and Si-Nanostructures for Sensing?

o High sensitivity from planar ISFET to 3D SiNWs:o Nanoscale high S/Vo Cross section modulation vs.

surface onlyo High selectivity:

o Selectivity/specificity through surface functionalization (proteins, DNA, viruses, etc.)

o Direct monitoring:o Label freeo Real time detectiono Fast, POC, low cost

Specific detection of disease biomarkers with high sensitivity at ultra-low

concentrations in a direct, non-invasive, real time manner is sometimes necessary.

Diagnosis of asymptomatic and aggressive diseases at early stage.

Application Example: Colon cancer diagnosis

From: BIOS/Lab on a Chip Group, University of Twentehttp://www.utwente.nl/onderzoek/themas/health/en/lab-on-a-chip/lab-on-a-chip/nanopil/

colonoscopy

nanopill ingestion

Page 5: EBuitrago Vertically Stacked SiNW Sensor

5E. Buitrago

IntroductionWhy Si-Nanostructure 2D Arrays?

o Increased chances for biomolecule interaction.o Increased number of sensing channels.

o Increased output currents Ion.o Increased number of conduction

channels.o Reduced device-to-device variation:[1]

o Less variation of Vth, SS and gm,max vs. single SiNWs device.

o Reduction of variation caused by random dopant fluctuation low doped channels (for high sensitivities).

Can we go one step further?[1] Regonda et al. Biosens. Bioelectron. 2013, 45, 245-251.

Page 6: EBuitrago Vertically Stacked SiNW Sensor

6E. Buitrago

o Higher chances for biomolecule interactions for sensing:o High number of sensing channels in

two directions.o Suspended structures entire SiNW

surface area available for sensing.o Higher output currents Id:

o High number of conduction channels.

o Higher utilization of Si substrate:o High number of SiNW without

increasing Si-footprint.

IntroductionWhy 3D Vertically Stacked SiNW/Fin FET Sensor?

y

z

x

Page 7: EBuitrago Vertically Stacked SiNW Sensor

7E. Buitrago

o SiNWs stacked in between S/D anchors

o Device operated by SGs, VRef, VBG through liquid

IntroductionObjective

Develop vertically stacked SiNW/Fin FET biosensor to be integrated into a 3D heterogeneous system (e-BRAINS + SiNAPS).

Page 8: EBuitrago Vertically Stacked SiNW Sensor

8E. Buitrago

o Structure:o Ultra-thin (high S/V) NWs < 40 nmo Medium NW array density > 5

SiNWs/μmo Long channels > 1 μmo Uniformly distributed arrayo Uniform NW diameters

o Fabrication process flow:o Top-Down, CMOS compatibleo Cost effectiveo Heterogeneous integration TSV

compatibilityo Suspended and thin, possibly fragileo Fluid delivery, isolation, topographyo Availability (CMi)

FabricationStructure and Fabrication Requirements

y

z

x

Page 9: EBuitrago Vertically Stacked SiNW Sensor

9E. Buitrago

o Fabrication:o Si (110) wafer etched (1) by KOH

anisotropically.o Metal evaporation at an angle (2).o Metal (Ti, Au) catalyzed growth of SiNWs on

(111) sidewall (3) to bridge opposite wall (4).o Advantages and limitations

(‒) Bottom-up, not CMOS compatible(+) Cheap, no high resolution lithography needed(+) Medium vertical density ~ 5 NWs/μm(‒) Non-uniform NW thickness(‒) Random growth(‒) NW length limited by trench opening(‒) Not ultra-thin NW diameters possible > 90 nm

FabricationVLS-CVD GrowthFabrication aproach: Vapor liquid solid (VLS) chemical vapor deposition (CVD) growth

Islam et al. Nanotechnology. 2004, 15, L5. (Hewlett Packard, USA)

(1) (2)

(3) (4)

Page 10: EBuitrago Vertically Stacked SiNW Sensor

10E. Buitrago

FabricationStacked SiGe NW ArrayFabrication aproach: epitaxial growth Si/SiGe and patterning

[1]

[2]

(1)

(2)

(3)

[1] Bera et al. IEDM, 2006, 298. (A-Star, Singapore), [2] Ernst et al. IEDM, 2006, 740. (CEA-LETI, France)

o Fabrication:o Si and SiGe(buffer)/Ge multi-layer (1) epitaxial growth.o Fin patterning by RIE (2).o NW formation (3) by the selective isotropic etch of

sacrificial SiGe/Ge.o Advantages and limitations:

(+) Top-down, CMOS compatible(‒) Epitaxial growth is expensive and complicated(~) Ultra-high vertical NW density, not necessary(+) Uniform NW thickness(~) Ultra-thin NWs, limited thickness, only Si-nanoribbons or NWs possible due to lattice mismatch(+) NWs uniformly stacked

Page 11: EBuitrago Vertically Stacked SiNW Sensor

11E. Buitrago

o Fabrication:o BOSCH (1).o Thermal oxidation (2).o BHF oxide removal (3).

o Advantages and limitations(+) Top-down, CMOS compatible (+) Cheap, no high resolution lithography needed NW diameter further scaled by oxidation(+) Medium to high vertical density(‒) Optimization can be time consuming (+) NWs uniformly distributed(+) Ultra-thin NWs possible < 40 nm

FabricationBOSCH and Sacrificial OxidationFabrication aproach: BOSCH + thermal oxidation + BHF release

Doherty et al. ISCAS, 2003, 934. (Berkeley, USA)

Ng et al. EDSSC, 2007, 133.

(1)

(2)

(3)

Page 12: EBuitrago Vertically Stacked SiNW Sensor

12E. Buitrago

Approach Top-down

CMOS compatible

Heterogeneous integration

NW diameters

< 40 nm when

suspended

NW length> 1 μm

Array uniformity

NW density

Availability at EPFL-CMi

VLS-CVD No No, dirty process

No No No> 2 μm limited

by initial trench

opening

NoRandom growth

YesMedium

No

Si/Ge epitaxy

Yes Yes Yes Yes Maximum thickness limited by

Si/Ge lattice

mismatch

Not clear< 500 nm, depends on NW

thickness

YesWell

controlled

NoUltra-high

No

BOSH + thermal

oxidation

Yes Yes Yes Yes Can be

controlled by careful

design

Yes< 10 μm, depends on NW

thickness

YesWell

controlled

YesMedium to ultra-

high

Yes

Fabrication Approaches ComparedFabrication

Page 13: EBuitrago Vertically Stacked SiNW Sensor

13E. Buitrago

o BOSCH Process Scallop formationo C4F8 passivation step (side wall protection), 1s

o O2 polymer removal (bottom trench/scallop), 1s

o SF6 isotropic etch (scallop formation), 2s

(process temperature 0 °C)

o Thermal oxidation NW formation

o BHF oxide removal NW releaseo H2O, air dried.

FabricationOptimization of Short-Loop SiNW Fabrication Process

Page 14: EBuitrago Vertically Stacked SiNW Sensor

14E. Buitrago

After BHFAfter oxidationAfter BOSCH

FabricationOptimization of Short-Loop SiNW Fabrication Process

Any process non-uniformity is furthermore highlighted after each step:Mask patterning mask etching BOSCH thermal oxidation BHF

Trench opening (T) and silicon spacer (S) width combination optimization

After BOSCH After oxidation

Page 15: EBuitrago Vertically Stacked SiNW Sensor

15E. Buitrago

FabricationOptimization of Short-Loop SiNW Fabrication Process

o Up to 16 NWs vertically stackedo Vertical NW density: up to 10 NW/μm

o dNW down to 15 – 30 nm o L = 2 – 5 μm (up to 10 μm dNW > 50 nm )

o BOSCH recipe NW diameter variation from top to bottom of trench

o T vertical densityo S + T horizontal NW

densityo S + T + oxidation + BHF

final NW diameter

Page 16: EBuitrago Vertically Stacked SiNW Sensor

16E. Buitrago

Masking level 0: alignment markso Patterning optical and e-beam marks

Masking level 1: SiNW formationo LTO/ZEP depositiono e-beam patterningo Hard mask dry etch patterningo Scallop formation by BOSCHo SiNW formation by thermal oxidationo 1 μm LTO implantation mask deposition

FabricationProcess Flow6 masking levels, 4 e-beam lithography steps, SOI, p-type, 1-10 Ohm·cm, device layer: 1 μm

Page 17: EBuitrago Vertically Stacked SiNW Sensor

17E. Buitrago

Masking level 2: ImplantationS/D junctions > 1018 cm-3 N+ phosphorous o Monte-Carlo 2D Simulations

o LTO mask thickness: 1 μmo Energy: 1e16 cm-2

o Dose: 320 keVo RTA: 30 secso 1 μm Si device layer 7 ‒ 8 NWs stacked

FabricationProcess Flow6 masking levels, 4 e-beam lithography steps, SOI, p-type, 1-10 Ohm·cm, device layer: 1 μm

Number of NWs that can be stacked in vertical direction limited by implantation deeper S/D junctions prohibitively expensive high implant energies and doses needed.

NW length limited by dopant lateral spread

Page 18: EBuitrago Vertically Stacked SiNW Sensor

18E. Buitrago

Masking level 2: Implantationo ZEP deposition, e-beam patterningo Implant mask patterning by dry etch o Implantation (IBS) + RTA (LAAS)

Masking level 3 + 4: Metallizationo Side gate patterning (e-beam)

o PMMA/MMA dep., e-beam patterningo Ti+Pt evaporation, lift-off

o S/D metallization (optical-litho)o LOR/AZ resist dep. and optical lithoo Ti+Al+Pt evaporation, lift-offo anneal (425 °C, forming gas, 30 mins)

FabricationProcess Flow6 masking levels, 4 e-beam lithography steps, SOI, p-type, 1-10 Ohm·cm, device layer: 1 μm

Page 19: EBuitrago Vertically Stacked SiNW Sensor

19E. Buitrago

Masking level 5: SU-8 isolationo SU-8 deposition, optical lithography

30 x 30 μm2 window, expose NWs and SG

Masking level 6: NW release o ZEP deposition, e-beam patterning o BHF oxide removal + O2 plasmao Metal evaporation, ALD dielectric

deposition

3D Integration possible:o TSV-last, TSV from back of wafero SiNWs protected until end of process by

SiO2

FabricationProcess Flow6 masking levels, 4 e-beam lithography steps, SOI, p-type, 1-10 Ohm·cm, device layer: 1 μm

Page 20: EBuitrago Vertically Stacked SiNW Sensor

20E. Buitrago

Electrical CharacterizationDry Characterization After SiNW Release: BG, DGAmbient, dry conditions (air εr = 1) room temperature, native oxide as gate dielectric (SiO2 εr = 3.9)

o Normal operation of n-type device transitioning from linear to saturation.o Poor electrostatic control, SG distance ~ 1 μm, BG BOX distance ~ 70 nm. o Ioff = 1.2 × 10-6 mA/μm, Ion = 0.5 μA/μm, Ion/Ioff > 102.o SS = dVBG/d(log10Id) ~ 7.5 V/dec and Vth ~ 13.5 V for VDG = 0 V.o Slight SS improvement in the Id – VBG as the VDG increases.

SS ~ 6.7 V/dec

SS ~ 19 V/dec

Double SG (VDG) potential

increases

Page 21: EBuitrago Vertically Stacked SiNW Sensor

21E. Buitrago

Electrical CharacterizationWet Characterization After SiNW Release: SGAmbient, in isopropanol (IPA εr = 18), room temperature, native oxide as gate dielectric (SiO2 εr = 3.9)

o Use of Pt SG with IPA produces repeatable measurements.o Id ‒ VSG for different devices within same die are comparable.o SS (130 ± 21 mV/dec), Vth (2.43 ± 0.98 V) variation non-dedicated FAB.o Curve shifts to left positive charge trapping.o Little hysteresis (< 15 mV) found small surface and interface (Si/SiO2) defect

induced charge trapping.[1] Hysteresis affects sensor response drift.

1 mm

Bubbles appear at VSG ~ 10 V, IPA and @ ~5 V PBS pH = 7 [1] Ong et al. J. Phys. D: Appl. Phys. 2011, 44, 28530.

Page 22: EBuitrago Vertically Stacked SiNW Sensor

22E. Buitrago

Electrical CharacterizationWet Characterization After SiNW Release: SG

o Excellent electrostatic control through liquid:o SS ~ 100 mV/dec (87 mV/dec in PBS), Ion > 2 mA/μm.o Vth ~ 2.24 V (1.93 V in PBS), gm = (dId/dVSG) > 10 µSo Ioff < 2.1 × 106 mA/μm, Ion/Ioff > 106 for Vd < 500 mV

o Ion and gm,max ↑ with # of NWs and ↓ L

Ambient, in isopropanol (IPA εr = 18), room temperature, native oxide as gate dielectric (SiO2 εr = 3.9)

Page 23: EBuitrago Vertically Stacked SiNW Sensor

23E. Buitrago

Electrical CharacterizationWet Characterization: Asymmetric Gating VBG ,VSG Ambient, in isopropanol (IPA εr = 18), room temperature, native oxide as gate dielectric (SiO2 εr = 3.9)

o SS improvement (~ 30%) and Vth shift towards lower values electrostatic control enhancement by asymmetric gating through the liquid.

o α’ = (60 mV/dec)/SSmeasured for same tuning gate potential VSG = VBG = 0.5 V.o Back-gate can more efficiently control NWs:

o Higher back-gate coupling efficiency: αBG’ = 0.8 vs. αSG’ = 0.6o Lower Vth when back-gated (Vth = 1.6 V vs. 2.24 V when side/back-gating alone)

Vth =1.6 V 1.1 V

Vth = 2.24 V 0.113 V

Page 24: EBuitrago Vertically Stacked SiNW Sensor

24E. Buitrago

Electrical CharacterizationWet Characterization: Symmetric GatingAmbient, in Isopropanol (IPA εr = 18), room temperature, native oxide as gate dielectric (SiO2 εr = 3.9)

o The Vth is reduced but vs. asymmetric front-back gating SS does not change (~ 5%) significantly.

o Higher back-gate efficiency Extra BOX layer capacitance when back-gated in comparison to front-gate configuration:o solution gate capacitance + native oxide capacitance + BOX layer capacitance

o Low leakage current through SG < 50 nA, VSG < 3 V

SS = 147 mV/dec138 mV/dec

SS = 147 mV/dec142 mV/dec

Vth = 2.08 VVth = 1.82 V

Vth = 2.08 V

Vth = 1.8 V

Page 25: EBuitrago Vertically Stacked SiNW Sensor

25E. Buitrago

Electrical CharacterizationWet Characterization After High-κ ALD DielectricAmbient, in isopropanol (IPA εr = 18) native ox + t = 10 nm HfO2 (εr = 25) or Al2O3 εr = 15

o Degraded transistor performance for both HfO2 and Al2O3 SS and Vth ↑, Ion ↓.

o Direct deposition of dielectric on native oxide increased amount of dangling bonds and charge trapping density at interphase.[1]

o Can be improved by thermal anneal in N2 atmosphere or higher quality oxide by thermal oxidation,[1] not possible here (SU-8, Td ~ 380 °C).

HfO2 Al2O3

SiO2 SiO2

[1] Zhu et al. IEEE Electr. Device Lett. 2002, 23, 59.

Page 26: EBuitrago Vertically Stacked SiNW Sensor

26E. Buitrago

Description Dimensions Transistorperformance Remarks Ref.

SiNW array W = 50 nmL = 10 μm

in PBSIon/Ioff = 105

SS = 100 mV/dec

Pseudo Ag/AgCl electrode,

Kim et al. Analyst. 2011, 136, 5012.

FinFET arrayW = 15 nmH= 85 nmL = 10 μm

in PBSIon/Ioff = 107

SS = 80 mV/dec

Pseudo Pt+Ag/AgCl local electrode used

Rim et al. RSC Advances. 2003, 3,

7963.

SiNW arrayW = 100 nm – 1

μmH = 55 nmL = 3 μm

in PBSSS = 85mV/dec

No or little hysteresis observed,

RE usedVu et al. Physica Status

Solidi (a). 2009, 426.

SiNW arraynano-gratings

W = 50 nmH = 30 nmL = 20 μm

in PBSIon/Ioff = 106

SS = 80 mV/dec down to 65 mV/dec

Low device-to-device variation due to high NW

density,RE used

Regondaet al. Biosens.

Bioelectron. 2013, 245.

SiNW 3D ArraydNW = 15-30 nm

L = 2 – 4 μm

Ion/Ioff > 106

SS ~ 100 mV/dec in IPA down to 75 mV/dec

(when asymmetrically gated)

SS ~ 87 mV/dec in PBS

Pt gate usedlittle hysteresis

< 15 mV

This work Buitrago et al.

Sensing ExperimentsState-of-Art Liquid Gated Transistor Performaces:

Page 27: EBuitrago Vertically Stacked SiNW Sensor

27E. Buitrago

Aminosilanization:o Surface treated in piranha to leave

hydroxyl-terminated (-OH) surfaces.o Surface with silanol (Si–OH) and

amino groups can be protonated and deprotonated for pH sensing, APTES linker.

Biotinylation:o Aminosilanized surfaces immersed in

biotin solution.o Rinsed with PBS (phosphate buffered

saline) and DI-H2O and dried under N2.

Biotin-streptavidin one of strongest binding interactions known in nature

Sensing ExperimentsSurface Modification for Sensing Aminosilanization with APTES for pH sensing, biotinylation for streptavidin sensing

APTES linker

Page 28: EBuitrago Vertically Stacked SiNW Sensor

28E. Buitrago

Sensing ExperimentsFluid Delivery and Reference ElectrodeSmall channel dimensions minimize exposure, small analyte volumes needed for testing

PDMS stamp:o 150 μm wide microfluidic channels.o Contact access on sides of chip.o Access holes (d ~ 400 μm) link to

external tubing & pump.o Easy fabrication with SU-8 master mold.o PDMS stamp-chip bond by “stamp and

stick” for strong, non-permanent bond, no pretreatment.

Reference electrode (RE):o Ag/AgCl RE integrated into PDMS flow

cell.o Flow cell: 1 μL chamber at base

electrode.

o z

Page 29: EBuitrago Vertically Stacked SiNW Sensor

29E. Buitrago

Sensing ExperimentsSensor Testing Set-upo Microtech cascade probe station

and semiconductor device parameter analyzer.

o Solutions delivered using screw actuated syringe pump.

o Solution delivery rate: 100 μL/min.o Different streptavidin solutions

(100 μL) injected separately into main channel solution by use of a T-junction within continuous PBS flow.

o Liquid potential set by integrated Ag/AgCl RE in flow cell.

Device being measured

PDMS stamp

inout

RE and Flow Cell

T-junctionstreptavidin injection

RE and Flow Cell

Page 30: EBuitrago Vertically Stacked SiNW Sensor

30E. Buitrago

Sensing ExperimentspH Sensing, Id ‒ VRef with pHAPTES modified surfaces

o Excellent transistor characteristics:o Low SS down to 85 mV/dec dNW = 15 - 30 nm

o PBS pH = 7, εr = 80o High Ion > 1 mA/μm

Dense array of NWs.o High Ion/Ioff > 106

Low doped SOI substrate.

o ΔVth/pH ~ 50 mV/pH:o Linear Vth/pH shift, no SS degradationo Typical for APTES due to presence of both

amino and silanol groups with different acid dissociation constants.[1]

Increasing pH values

[1] Cui et al. Science. 2001, 293, 1289.

Page 31: EBuitrago Vertically Stacked SiNW Sensor

31E. Buitrago

Sensing Experiments

APTES modified surfaces

Subthreshold

strong inversion

pH Sensing, Various Operation Regimes

ΔId/pHdependent on

operation regime

o Clear signal steps observed with pH.o Avg. response time (time to achieve

90% of full response) t𝑅 < 60 s.

o High quasi-exponential Id response w/pH in subthreshold (VRef = 1.25 V) ΔId/pH ~ 0.70 dec/pH.

o High linear Id response with pH at higher current levels strong inversion (VRef = 3 V) ΔId/pH ~ 12 μA/pH.

o Sensor response repeatable for full range of operation.

subthresholdSubt

hres

hold

Mod

erat

e in

vers

ion

Stro

ng in

vers

ion

Page 32: EBuitrago Vertically Stacked SiNW Sensor

32E. Buitrago

Sensing ExperimentspH Sensing, increasing # of NWs (within same die)APTES modified surfaces

o Drain current changes consistently vary with pH, Id levels increase as the number of NWs increase.

o Sensor response among different devices within the same die is repeatable for the full range of operation.

Subthreshold

strong inversion

Page 33: EBuitrago Vertically Stacked SiNW Sensor

33E. Buitrago

Sensing ExperimentspH Sensing, Repeatability

o Sensor still functional after 10 days.o Reproducible measurements.o High quasi-exponential Id response in subthreshold

(VRef = 1.25 V, Vd = 1 V) ΔId/pH ~ 0.8 dec/pHo High linear Id response with pH above threshold (VRef

= 2 V, Vd = 50 mV) ΔId/pH ~ 5 μA/pH.

Subthreshold

Above threshold

APTES modified surfaces, 10 days after first measurement, stored in ambient conditions

Subthreshold

Above threshold

Page 34: EBuitrago Vertically Stacked SiNW Sensor

34E. Buitrago

Sensing ExperimentspH Sensing, Robustness

o Sensor remains functional after drop.

o Repeatable sensor responses after 1 m drop.

o Non-ideal handling possible:1. EPFL Fabrication2. Tyndall surface modification3. Imperial stamp bonding4. Tyndall/EPFL sensor testing

Structures dropped 1 m away from ground.

APTES modified surfaces

Page 35: EBuitrago Vertically Stacked SiNW Sensor

35E. Buitrago

Description DimensionspH response

Transistorperformance

Remarks Ref.

SiNWs array NA

(pH = 2 – 9)ΔId/pH = 100 nA/pH

APTES modified: ΔVth/pH linear

Cui et al. Science. 2001, 293, 1289-1292.

SiNW arraynano-gratings

W = 50 nmH = 30 nmL = 20 μm

(pH = 2 – 9)ΔId/pH = nA/pH

ΔVth/pH = 50 mV/pH

Ion/Ioff = 106

SS = 80 mV/dec down to 65 mV/dec

APTES modified: ΔVth/pH linear

Regondaet al. Biosensors and

Bioelectronics. 2013, 245.

Singletrapezoidal

SiNWsW = 50 nmH = 25 nm

(pH = 6 – 8)ΔId/pH ~ 0.82 – 1 dec/pH

Surface not modified: High

operation voltages used

Stern et al. Nature. 2007, 445, 519.

SiNW 3D Array

dNW = 15-30 nmL = 2 – 4 μm

(pH = 4 – 10)ΔId/pH > μA/pH

ΔId/pH up to 0.8 dec/pHΔVth/pH = 50 mV/pH

Ion/Ioff > 106

SS ~ down to 85 mV/dec

APTES modified: ΔVth/pH linearWide range of

operation pH =4-10.

This work Buitrago et al.

Sensing ExperimentsSiNWs, State-of-Art pH Sensing

Page 36: EBuitrago Vertically Stacked SiNW Sensor

36E. Buitrago

Sensing ExperimentsStreptavidin SensingBiotinylated surfaces, 100 μL/min, 100 μL streptavidin solution injected within continuous PBS stream, VRef = 1.5 V

~500 nA

streptavidin injection

PBS

o Attomolar (~ 17 aM) streptavidin concentration measured.o Id drops and threshold voltage increases consistently with

the streptavidin binding to the device (streptavidin protein negatively charged at pH = 7.4).[1]

o As the streptavidin concentration increases consecutively by a factor of 30 the drain current Id consistently decreases.

[1] Duan et al. Nat. Nano. 2012, 7, 401-407

Page 37: EBuitrago Vertically Stacked SiNW Sensor

37E. Buitrago

Sensing ExperimentsProtein Sensing, State-of-the-Art

Description Substratefabrication Dimensions Concentration

Limits Ref.

Singletrapezoidal SiNWs

SOITop down

W = 50 nmH = 25 nm

Down to 10 fMstreptavidin

Stern et al. Nature. 2007, 445, 519-522

SiNWsArray

Bulk SiBottom up

NA

10 pMstreptavidin

Cui et al. Science. 2001, 293, 1289-1292.

Sinano-ribbon

SOITop down

W = 45-100 nmH = 50 nmL = 1.2 μm

10 fM streptavidin

Elfstrom et al. Nano Lett. 2008, 8, 945-949.

Random SiNWs Bulk SiBottom up NA 15 fM biotin Li et al., Biosens. Bioelectron.

2013, 45, 252-259.

Single SiNW SOITop down

W = 1 μmH = 45 nmL = 10 μm

200 fMstreptavidin

Duan et al. Nat. Nano. 2012, 7, 401-407.

SiNW + electrodes for electro-kinetic pre-

concentrationNA NA aM cancer

protein PSA Gong. Small. 2010, 6, 967-973.

SiNW 3D Array SOITop down

dNW = 15-30 nmL = 2 - 4 μm

Down to 17 aM streptavidin This work Buitrago et al.

Page 38: EBuitrago Vertically Stacked SiNW Sensor

38E. Buitrago

Sensing ExperimentsVertially Stacked SiNWs on Bulk SiLow cost alternative to SOI-based sensor with potential

o Low subthreshold slopes SS ~ 160 mV/dec.

o High Ion/Ioff > 3x104

o Parasitic FET (equivalent structure with destroyed NWs) does not dominate transistor characteristics.

o Ioff still dominated by leakage current passing through the parasitic MOSFET.

o Stack more NWs than implantation can reach. NWs themselves would act as resistive paths for electron conduction.

Page 39: EBuitrago Vertically Stacked SiNW Sensor

39E. Buitrago

Sensing ExperimentsSiNWs on Bulk Si, State-of-Art Liquid Gated, Top-Down Fabrication ApproachDescription Dimensions Transistor

performance Remarks Ref.

Fin ArrayH = 65 – 120 nmW = 18 – 40 nm

L = 8 – 12 μm

SS ~ 300 mV/decIon/Ioff ~ 104

Ioff ~ 0.1 nA

-Local SOI by “Spacers Technology”

Rigante et al. ULIS, Coventry, 2013, 73-76

Single SiNW NASS ~ 400 mV/dec

Ion/Ioff ~ 104

Ioff ~ pA

-Channel-stop implantation to suppress leakage current

-Shallow trench isolation oxide

Ahn et al. IEEE Trans. Electron. Devices. 2012,

59, 2243-2249

Polysilicon NW

W = 40 nmL = 10 μm

SS = 450 mV/decIon/Ioff > 105

Ioff ~ pA

-thin film process, SiN and SiO2 isolation layers

Chen et al. Jpn. J. Appl. Phys. 2011, 50.

Vertically stacked SiNWs

dNW = 15 – 30 nm

L = 10 μm

SS = 160 mV/decIon/Ioff > 3 × 104

Ioff ~ 20 nA

-No particular isolation strategy This work, Buitrago et al.

No active isolation strategy to suppress leakage current or isolate of SiNWs/Fins from the bulk

Page 40: EBuitrago Vertically Stacked SiNW Sensor

40E. Buitrago

o Successfully fabricated 3D vertically stacked SiNW FET for biosensing applications.

o High density array (up to 8 x 20) with ultra-small SiNW diameters (down to dNW ~ 15 ‒ 30 nm), long (up to L = 5 μm) robust structures with TSV compatible process.

o Devices have excellent transistor characteristics when liquid gated.

o High pH sensing responses up to 0.8 dec/pH subthreshold and > μA/pH in strong inversion.

o Attomolar streptavidin concentrations measured.

o Bulk vertically stacked FET efficiently demonstrated.

Conclusions and PerspectivesConclusions

Page 41: EBuitrago Vertically Stacked SiNW Sensor

41E. Buitrago

o EPFL: A. M. Ionescu, M. Fernandez-Bolaños, N. Berthaut, X. Van Kooten.

TNI: O. Lotty, R. Yu, J. D. Holmes, Y. Georgiev, G. Fagas Imperial College: A. M. Nightingaleo Semiconducting Nanowire Platform for

Autonomous Sensors SiNAPS FP7 European Project.

o FP7 Integrated project e-BRAINS European Project.

o Fabrication Center of Micro and Nanotechnology (CMi) at EPFL.

Acknowledgments

IC Device 1 (Technology 1)

MetallisationSystem 1

IC Device 2 (Technology 2) with TSV

MetallisationSystem 2

IC Device 2 (Technology 2) with TSV

MetallisationSystem 2Metallisation

MEMS/NEMS Device possibly with TSV

Cap -Chip (Wafer)

MEMS/NEMS Device possibly with TSV

Cap -Chip (Wafer)

MEMS/NEMS Device possibly with TSV

Cap -Chip (Wafer)

e-BRAINS

People, Funding and Fabrication Facilities

Page 42: EBuitrago Vertically Stacked SiNW Sensor

E. Buitrago

Thank you for your attention

Questions?

Page 43: EBuitrago Vertically Stacked SiNW Sensor

43E. Buitrago

o Anisotropic etch Vertical wall definitiono C4F8 passivation step (side wall protection)o Anisotropic vertical etch (SF6/C4F8 mixed flow)o O2 polymer removal (bottom trench/scallop)o SF6 isotropic etch (scallop formation)

o Thermal oxidation Fin formation

o BHF oxide removal Fin releaseo H2O, IPA rinse, N2 dry

FabricationOptimization of Short-Loop Fin Fabrication Process

Page 44: EBuitrago Vertically Stacked SiNW Sensor

44E. Buitrago

Fin StructurationBack-up Slides: Fin Structuration

First Generation:Vertical walls: BOSCH

Fin Separation: Passivation C4F8

+ isotropic SF6

Second GenerationVertical walls: anisotropic

C4F8/ SF6 mixed flowFin Separation: Passivation C4F8

+ isotropic SF6

Third GenerationVertical walls: anisotropic

C4F8/ SF6 mixed flowFin Separation: Passivation C4F8+ O2 plasma +

isotropic SF6

o High process variability: e-beam, dry etcho Thin fins possible 20 x 200 nmo Scallop shape limits height length to 200 nmo Achieving fin to fin vertical uniformity is a challenge

Need sharp round scallop to

reduce droplet shape

Page 45: EBuitrago Vertically Stacked SiNW Sensor

45E. Buitrago

Back-up Slides: Vertically StackedVertically Stacked SiNWsFabrication approach: BOSCH + thermal oxidation

Doherty et al., ISCAS, 2003, 934. (Berkeley, USA)As sacrificial molds for nanofluidic channels

For biospecimen sorting and filtering by varying vertical wire

separation along a channel

Page 46: EBuitrago Vertically Stacked SiNW Sensor

46E. Buitrago

Ferain et al., Nature. 2011, 479.

Types of Multigate MOSFETsBack-up Slides: Multigate

SOI-FinFETGate control

From lateral sidesSOI-tri-gated SiNW gate control from 3

sides

SOI Π-gategate control improved

electric field from sides exerts control on bottom too

SOI Ω-gate gate control improved

electric field from sides exerts control on bottom

too

SOI-GAAGate control from 4

sides ultimate arquitecture

Bulk tri-gate