earth science reference tables...ar 40 ca 40 radioactive decay data material specific heat...

34
EARTH SCIENCE REFERENCE TABLES Page 1 Radioactive Decay Data Specific Heats of Common Materials Properties of Water Equations Ruler Eurypterus (NY State Fossil) Page 2 Generalized Landscape Regions of NY State Page 3 Generalized Bedrock Geology of NY State Page 4 Surface Ocean Currents Page 5 Tectonic Plates Page 6 Rock Cycle in Earth’s Crust Relationship of Transported Particle Size to Water Velocity Scheme for Igneous Rock Identification Page 7 Scheme for Sedimentary Rock Identification Scheme for Metamorphic Rock Identification Page 8 and 9 Geologic History of NY State Page 10 Inferred Properties of Earth’s Interior Page 11 Average Chemical Composition of Earth’s Crust, Hydrosphere, and Troposphere Earthquake P-wave and S-wave Travel Time Page 12 Dewpoint Temperatures (°C) Relative Humidity (%) Page 13 Temperature Pressure Weather Map Symbols: Station Model Present Weather Air Masses Front Symbols / Hurricane Page 14 Selected Properties of Earth’s Atmosphere Electromagnetic Spectrum Planetary Wind and Moisture Belts in the Troposphere Page 15 Luminosity and Temperature of Stars Solar System Data Page 16 Properties of Common Minerals

Upload: others

Post on 27-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • EARTH SCIENCE REFERENCE TABLES

    Page 1

    Radioactive Decay Data

    Specific Heats of Common Materials

    Properties of Water

    Equations

    Ruler

    Eurypterus (NY State Fossil)

    Page 2

    Generalized Landscape Regions of NY State

    Page 3

    Generalized Bedrock Geology of NY State

    Page 4

    Surface Ocean Currents

    Page 5

    Tectonic Plates

    Page 6

    Rock Cycle in Earth’s Crust

    Relationship of Transported Particle Size to

    Water Velocity

    Scheme for Igneous Rock Identification

    Page 7

    Scheme for Sedimentary Rock Identification

    Scheme for Metamorphic Rock Identification

    Page 8 and 9

    Geologic History of NY State

    Page 10

    Inferred Properties of Earth’s Interior

    Page 11

    Average Chemical Composition of Earth’s Crust,

    Hydrosphere, and Troposphere

    Earthquake P-wave and S-wave Travel Time

    Page 12

    Dewpoint Temperatures (°C)

    Relative Humidity (%)

    Page 13

    Temperature

    Pressure

    Weather Map Symbols:

    Station Model

    Present Weather

    Air Masses

    Front Symbols / Hurricane

    Page 14

    Selected Properties of Earth’s Atmosphere

    Electromagnetic Spectrum

    Planetary Wind and Moisture Belts in the Troposphere

    Page 15

    Luminosity and Temperature of Stars

    Solar System Data

    Page 16

    Properties of Common Minerals

    by Charles BurrowsE.S.R.T.Ctrl + ...ZOOM INCtrl - ...ZOOM OUTCtrl 0 (zero) ...Fit PageESC ...Exit Full Screen ModeCtrl L ...Enter Full Screen Mode

    On a Mac, use "Apple" in stead of "Ctrl"

    Drag the "Hand tool" to move around a zoomed in page!

    Use the arrow keys to change pages in full screen mode!

    Enjoy! : )

    -Charles Burrows

    http://www.eram.k12.ny.us/education/staff/staff.php?sectiondetailid=16050

  • RADIOACTIVEISOTOPE DISINTEGRATION

    HALF-LIFE(years)

    Carbon-14

    Potassium-40

    Uranium-238

    Rubidium-87

    C14

    K40

    U238

    Rb87

    N14

    Pb206

    Sr87

    5.7 × 103

    1.3 × 109

    4.5 × 109

    4.9 × 1010

    Ar40

    Ca40

    Radioactive Decay Data

  • MATERIAL SPECIFIC HEAT(calories/gram • Cº)

    Water

    Dry airBasaltGraniteIronCopperLead

    solidliquidgas

    {0.51.00.50.240.200.190.110.090.03

    Specific Heats of Common Materials

  • Energy gained during melting . . . . . . . . . . . . . . . 80 calories/gram

    Energy released during freezing . . . . . . . . . . . . 80 calories/gram

    Energy gained during vaporization . . . . . . . . 540 calories/gram

    Energy released during condensation . . . . 540 calories/gram

    Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 gram/milliliter

    Properties of Water

  • Percent deviationfrom accepted value

    Eccentricity of an ellipse

    Gradient

    Density of a substance

    deviation (%) = × 100

    eccentricity = distance between focilength of major axis

    difference from accepted valueaccepted value

    gradient =change in field value

    distance

    density = massvolume

    Rate of change rate of change =change in field value

    time

    EQUATIONS

  • 16 17 18 19 20 21 22 23 24 25151 2 3 4 5 6 7 8 9 10 11 12 13 14cm

  • New York State Fossil

    EURYPTERUS

  • TUGHILLPLATEAU

    THECATSKILLS

    ALLEGHENY PLATEAU

    LAKEERIE

    LAKE ONTARIO

    ADIRONDACK MOUNTAINS

    ST. L

    AWRE

    NCE L

    OWLA

    NDS

    ERIE–ONTARIO LOWLANDS(PLAINS)

    GRENVILLE PROVINCE(HIGHLANDS)

    NEW

    ENGL

    AND

    PROV

    INCE

    (HIG

    HLAN

    DS)

    INTERIOR LOWLANDS

    TAC

    ON

    IC M

    OU

    NTA

    INS

    NEW

    ARK

    LOW

    LAN

    DS

    HUDSON H

    IGHLANDS

    MANHATTA

    N PRONG

    CH

    AM

    PLA

    INLO

    WLA

    ND

    S

    Generalized Landscape Regions of New York StateA

    PPA

    LACH

    IAN

    PLAT

    EAU

    (UPL

    ANDS

    )

    ATLA

    NTIC C

    OASTAL P

    LAIN

    HU

    DS

    ON

    –M

    OH

    AW

    KLO

    WLA

    ND

    S

    KEY

    Major Geographic Province Boundary

    Landscape Region Boundary

    State Boundary

    International Boundary

    N

  • N

    Earth

    Scien

    ce Referen

    ce Tables —

    2001 Ed

    ition

    3

    Generalized Bedrock Geology of New York State

    modified fromGEOLOGICAL SURVEY

    NEW YORK STATE MUSEUM1989

    Ni

    agar

    aR

    iver

    GEOLOGICAL PERIODS AND ERAS IN NEW YORK

    CRETACEOUS, TERTIARY, PLEISTOCENE (Epoch) weakly consolidated to unconsolidated gravels, sands, and claysLATE TRIASSIC and EARLY JURASSIC conglomerates, red sandstones, red shales, and diabase (in Palisades Sill)PENNSYLVANIAN and MISSISSIPPIAN conglomerates, sandstones, and shalesDEVONIAN limestones, shales, sandstones, and conglomeratesSILURIAN Silurian also contains salt, gypsum, and hematite.

    ORDOVICIAN limestones, shales, sandstones, and dolostonesCAMBRIAN

    CAMBRIAN and EARLY ORDOVICIAN sandstones and dolostones Moderately to intensely metamorphosed east of the Hudson River.

    CAMBRIAN and ORDOVICIAN (undifferentiated) quartzites, dolostones, marbles, and schistsIntensely metamorphosed; includes portions of the Taconic Sequence and Cortlandt Complex.

    TACONIC SEQUENCE sandstones, shales, and slatesSlightly to intensely metamorphosed rocks of CAMBRIAN through MIDDLE ORDOVICIAN ages.

    MIDDLE PROTEROZOIC gneisses, quartzites, and marblesLines are generalized structure trends. Intensely Metamorphosed Rocks

    MIDDLE PROTEROZOIC anorthositic rocks (regional metamorphism about 1,000 m.y.a.)

    }}

    }

    }}

    DominantlySedimentaryOrigin

    DominantlyMetamorphosedRocks

    LONG

    ISLAND SOUND

  • Surface Ocean Currents

  • Earth

    Scien

    ce Referen

    ce Tables —

    2001 Ed

    ition

    5

    Tectonic Plates

    PhilippinePlate

    FijiPlate

    Mid

    -Atla

    ntic

    Rid

    ge

    SandwichPlate

    KEY:

    Divergent Plate Boundary (usually broken by transform

    faults along mid-ocean ridges)

    Convergent Plate Boundary(Subduction Zone)

    Transform Plate Boundary(Transform Fault)

    Complex or Uncertain Plate Boundary

    Relative Motion at Plate Boundary

    NOTE: Not all plates and boundaries are shown.

    MantleHot Spot

    Mid-Ocean Ridge

    overridingplate

    subductingplate

  • Cem

    entat

    ion

    BurialDeposition

    Compaction

    Wea

    ther

    ing

    &E

    rosi

    onM

    etamorphism

    SEDIMENTARYROCK

    Weathering & Erosion

    Weather

    ing& E

    rosion

    Melting

    METAMORPHICROCK

    IGNEOUSROCK

    Melting

    (Upl

    ift)

    Solid

    ific

    atio

    n

    Heat and/

    or Pressure

    (Uplift)

    Melting

    (Uplift)

    Heatand/or

    Pressure

    Metamorphism

    Erosion

    MAGMA

    SEDIMENTS

    Rock Cycle in Earth’s Crust

    Scheme for Igneous Rock Identification

    Relationship of TransportedParticle Size to Water Velocity

  • 0 100 200 300 400 500 600 700 800

    100.0

    10.0

    1.0

    0.1

    0.01

    0.001

    0.0001

    0.00001

    STREAM VELOCITY (cm/sec)

    PA

    RT

    ICLE

    DIA

    ME

    TE

    R (

    cm)

    *This generalized graph shows the water velocity needed tomaintain, but not start, movement. Variations occur due todifferences in particle density and shape.

    BOULDERSCOBBLES

    PEBBLES

    SAND

    SILT

    CLAY

    25.6 cm6.4 cm

    0.2 cm

    0.006 cm

    0.0004 cm

    Relationship of TransportedParticle Size to Water Velocity

  • Scheme for Igneous Rock Identification

    Pyroxene(green)

    Amphibole(black)

    Biotite(black)

    Potassiumfeldspar

    (pink to white)

    (Rel

    ativ

    e by

    Vol

    ume)

    MIN

    ER

    AL

    CO

    MP

    OS

    ITIO

    N

    Quartz(clear towhite)

    CH

    AR

    AC

    TE

    RIS

    TIC

    S

    MAFIC (Fe, Mg)

    HIGH

    DARK

    FELSIC (Al)

    LOW

    LIGHT

    GRAIN SIZE TEXTURE

    Pumice

    INT

    RU

    SIV

    E(P

    luto

    nic)

    EX

    TR

    US

    IVE

    (Vol

    cani

    c)

    EN

    VIR

    ON

    ME

    NT

    OF

    FO

    RM

    ATIO

    N

    Plagioclase feldspar(white to gray)

    Olivine(green)

    COMPOSITION

    DENSITY

    COLOR

    100%

    75%

    50%

    25%

    0%

    100%

    75%

    50%

    25%

    0%

    IGN

    EO

    US

    RO

    CK

    S

    Non

    -cr

    ysta

    lline

    GlassyBasaltic GlassObsidian(usually appears black)

    less

    than

    1 m

    m FineBasaltAndesiteRhyolite

    1 m

    mto

    10

    mm

    CoarsePeri-dotite

    GabbroDioriteGranite

    Pegmatite

    10 m

    mor

    larg

    er VeryCoarse

    Scoria

    Vesicular(gas

    pockets)

    Dun

    ite

    Non-vesicular

    Non-vesicular

    Vesicular Basaltic GlassVesicular BasaltVesicular Rhyolite

    VesicularAndesite

  • Earth Science Reference Tables — 2001 Edition 7

    INORGANIC LAND-DERIVED SEDIMENTARY ROCKS

    COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

    Rounded fragments

    Angular fragmentsMostlyquartz,feldspar, andclay minerals;may containfragments ofother rocksand minerals

    Pebbles, cobbles,and/or bouldersembedded in sand,silt, and/or clay

    Clastic(fragmental)

    Very fine grain

    Compact; may spliteasily

    Conglomerate

    Breccia

    CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS

    Crystalline

    Halite

    Gypsum

    Dolomite

    Calcite

    Carbon

    Crystals fromchemicalprecipitatesand evaporites

    Rock Salt

    Rock Gypsum

    Dolostone

    Limestone

    Coal

    . . . . .. . . .

    Sand(0.2 to 0.006 cm)

    Silt(0.006 to 0.0004 cm)

    Clay(less than 0.0004 cm)

    Sandstone

    Siltstone

    Shale

    aaaaaaaaaaaaaaaaFine to coarseCOMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

    Varied

    Varied

    Varied

    Microscopic to coarse

    Varied

    Cemented shellfragments or precipitates

    of biologic origin

    From plant remains

    . . . . .. . . .

    Bioclastic

    FO

    LIA

    TE

    D

    NO

    NF

    OLI

    AT

    ED

    Fine

    Fineto

    medium

    Mediumto

    coarse

    Regional Low-grademetamorphism of shale

    Platy mica crystals visible frommetamorphism of clay orfeldspars

    High-grade metamorphism;some mica changed to feldspar;segregated by mineral typeinto bands

    Slate

    Schist

    Gneiss

    Metamorphism of quartzsandstone

    Metamorphism oflimestone or dolostone

    Pebbles may be distortedor stretched

    MIC

    AQ

    UA

    RT

    ZF

    EL

    DS

    PAR

    AM

    PH

    IBO

    LE

    GA

    RN

    ET

    PY

    RO

    XE

    NE

    COMPOSITIONTEXTUREGRAINSIZE COMMENTS ROCK NAME

    TYPE OFMETAMORPHISM

    Metaconglomerate

    Quartzite

    Marble

    Coarse

    Fineto

    coarse

    Quartz

    Calcite and/ordolomite

    Various mineralsin particlesand matrix

    (Heat andpressureincreasewith depth)M

    INE

    RA

    L A

    LIG

    NM

    EN

    TB

    AN

    D-

    ING

    Contact(Heat)

    Various rocks changed byheat from nearbymagma/lava

    HornfelsVariableFine

    Regional

    or

    Contact

    MAP SYMBOL

    Foliation surfaces shiny frommicroscopic mica crystals

    Phyllite

    Scheme for Metamorphic Rock Identification

    Scheme for Sedimentary Rock Identification

  • Earth Science Reference Tables — 2001 Edition 7

    INORGANIC LAND-DERIVED SEDIMENTARY ROCKS

    COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

    Rounded fragments

    Angular fragmentsMostlyquartz,feldspar, andclay minerals;may containfragments ofother rocksand minerals

    Pebbles, cobbles,and/or bouldersembedded in sand,silt, and/or clay

    Clastic(fragmental)

    Very fine grain

    Compact; may spliteasily

    Conglomerate

    Breccia

    CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS

    Crystalline

    Halite

    Gypsum

    Dolomite

    Calcite

    Carbon

    Crystals fromchemicalprecipitatesand evaporites

    Rock Salt

    Rock Gypsum

    Dolostone

    Limestone

    Coal

    . . . . .. . . .

    Sand(0.2 to 0.006 cm)

    Silt(0.006 to 0.0004 cm)

    Clay(less than 0.0004 cm)

    Sandstone

    Siltstone

    Shale

    aaaaaaaaaaaaaaaaFine to coarseCOMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

    Varied

    Varied

    Varied

    Microscopic to coarse

    Varied

    Cemented shellfragments or precipitates

    of biologic origin

    From plant remains

    . . . . .. . . .

    Bioclastic

    FO

    LIA

    TE

    D

    NO

    NF

    OLI

    AT

    ED

    Fine

    Fineto

    medium

    Mediumto

    coarse

    Regional Low-grademetamorphism of shale

    Platy mica crystals visible frommetamorphism of clay orfeldspars

    High-grade metamorphism;some mica changed to feldspar;segregated by mineral typeinto bands

    Slate

    Schist

    Gneiss

    Metamorphism of quartzsandstone

    Metamorphism oflimestone or dolostone

    Pebbles may be distortedor stretched

    MIC

    AQ

    UA

    RT

    ZF

    EL

    DS

    PAR

    AM

    PH

    IBO

    LE

    GA

    RN

    ET

    PY

    RO

    XE

    NE

    COMPOSITIONTEXTUREGRAINSIZE COMMENTS ROCK NAME

    TYPE OFMETAMORPHISM

    Metaconglomerate

    Quartzite

    Marble

    Coarse

    Fineto

    coarse

    Quartz

    Calcite and/ordolomite

    Various mineralsin particlesand matrix

    (Heat andpressureincreasewith depth)M

    INE

    RA

    L A

    LIG

    NM

    EN

    TB

    AN

    D-

    ING

    Contact(Heat)

    Various rocks changed byheat from nearbymagma/lava

    HornfelsVariableFine

    Regional

    or

    Contact

    MAP SYMBOL

    Foliation surfaces shiny frommicroscopic mica crystals

    Phyllite

    Scheme for Metamorphic Rock Identification

    Scheme for Sedimentary Rock Identification

  • GEOLOGIC HISTORY OF NEW YORK STATE

    Advance and retreat of last continental iceUplift of Adirondack region

    Sands and shales underlying Long Island and StatenIsland deposited on margin of Atlantic Ocean

    Development of passive continental margin

    Initial opening of Atlantic OceanNorth America and Africa separate

    Intrusion of Palisades sillPangea begins to break up

    Extensive erosion

    Appalachian (Alleghanian) Orogenycaused by collision of North Americaand Africa along transform margin,forming Pangea

    Catskill Delta formsErosion of Acadian Mountains

    Acadian Orogeny caused by collision ofNorth America and Avalon and closingof remaining part of Iapetus Ocean

    Salt and gypsum deposited in evaporite basins

    Erosion of Taconic Mountains; Queenston Delta forms

    Taconian Orogeny caused by closing ofwestern part of Iapetus Ocean and collision between North America andvolcanic island arc

    Iapetus passive margin forms

    Rifting and initial opening of Iapetus OceanErosion of Grenville Mountains

    Grenville Orogeny: Ancestral AdirondackMtns. and Hudson Highlands formed

    EraEon

    PH

    AN

    ER

    O-

    ZO

    ICP

    RE

    CA

    MB

    RI

    AN

    AR

    CH

    EA

    NP

    RO

    TE

    RO

    ZO

    IC

    LATE

    LATE

    MIDDLE

    MIDDLE

    EARLY

    EARLY

    0

    500

    1000

    2000

    3000

    4000

    4600

    Millions of years ago

    CENOZOIC

    MESOZOIC

    PALEOZOIC

    Oldest multi-cellularlife

    QUATERNARY

    NEOGENE

    PALEOGENET

    ER

    TIA

    RY

    CRETACEOUS

    JURASSIC

    TRIASSIC

    PERMIAN

    CA

    RB

    ON

    IF-

    ER

    OU

    S

    DEVONIAN

    Period Epoch Life on Earth

    SILURIAN

    ORDOVICIAN

    CAMBRIAN

    PLEISTOCENEPLIOCENEMIOCENE

    OLIGOCENEEOCENE

    PALEOCENE

    LATE

    EARLY

    LATE

    MIDDLE

    EARLY

    LATEMIDDLEEARLY

    LATE

    EARLY

    LATE

    MIDDLE

    EARLY

    LATE

    EARLY

    LATE

    MIDDLE

    EARLY

    LATE

    MIDDLE

    EARLY

    24

    33.754.8

    544

    580

    490

    443

    418

    362

    323

    290

    206

    142

    1300

    Millions of years ago

    RockRecord

    inNYS

    Time Distribution of Fossils(Including Important Fossils of New York)

    TectonicEvents

    AffectingNortheast

    NorthAmerica

    Rif

    tin

    gR

    ifti

    ng

    Pas

    sive

    Mar

    gin S

    ubdu

    ctio

    n

    Con

    tin

    enta

    l Col

    lisi

    on

    Tran

    sfor

    m C

    olli

    sion

    Pas

    sive

    Mar

    gin

    Important GeologicEvents in New York

    Inferred Position ofEarth’s Landmasses

    TERTIARY 59 millionyears

    ago

    CRETACEOUS 119 millionyears

    ago

    TRIASSIC 232 millionyears

    ago

    ORDOVICIAN 458 millionyears

    ago

    99-098 CDK(rev) 8/2000

    PENNSYLVANIAN

    MISSISSIPPIAN

    First appearanceof sexually

    Earth Science Reference Tables— 2001 Edition 9

    LATE

    EARLY

    LATE

    EARLY

    BR

    AC

    HIO

    PO

    DS

    GA

    ST

    RO

    PO

    DS

    CO

    RA

    LS

    CR

    INO

    IDS

    Earth’s first forest

    AM

    MO

    NO

    IDS

    VA

    SC

    UL

    AR

    PL

    AN

    TS

    EU

    RY

    PT

    ER

    IDS

    GR

    AP

    TO

    LIT

    ES

    TR

    ILO

    BIT

    ES

    PL

    AC

    OD

    ER

    MF

    ISH

    BIR

    DS

    MA

    MM

    AL

    S

    DIN

    OS

    AU

    RS

    NA

    UT

    ILO

    IDS

    A

    I

    H

    B

    C F G

    L

    A B C D E F G

    O S

    E

    D

    J

    K

    N

    P

    T

    U

    VX Z

    W

    Y

    Q R

    M

    Elliptocephala

    (Fossils not drawn to scale)

    CryptolithusPhacops

    ValcourocerasHexameroceras Manticoceras

    Centroceras

    H I J

    EucalyptocrinusCtenocrinus

    Tetragraptus

    K

    Dicellograptus EurypterusStylonurus

    Mastodont

    O

    BelugaWhale

    P

    Cooksonia

    R

    Bothriolepis

    S

    Maclurites EospiriferMucrospiriferPlatyceras

    Q

    Aneurophyton

    T

    CondorNaples Tree

    Cystiphyllum

    U

    Lichenaria

    V W Y ZX

    Pleurodictyum

    L

    Coelophysis

    NM

    HOLOCENE

    65

    251

    1.6

    5.3

    0.010

    Earth’s firstcoral reef

    Lettered circles indicate the approximate time of existence of a specificindex fossil (e.g. Fossil lived at the end of the Early Cambrian).

    DEVONIAN/MISSISSIPPIAN 362 millionyears

    ago

    A

    Oldest known rocks

    Geochemical evidencefor oldest biologicalfixing of carbon

    Oldest microfossils

    Transition toatmospherecontainingoxygen

    reproducingorganisms

    Estimated time of originof Earth and solar system

    Humans, mastodonts, mammothsLarge carnivoresAbundant grazing mammalsEarliest grassesLarge running mammalsMany modern groups of mammals

    Extinction of dinosaurs and ammonoidsEarliest placental mammals

    Climax of dinosaurs and ammonoids

    Earliest flowering plantsDecline of brachiopodsDiverse bony fishes

    Earliest birds Abundant dinosaurs and ammonoids

    Modern coral groups appearEarliest dinosaurs and mammals with

    abundant cycads and conifersExtinction of many kinds of marine

    animals, including trilobitesFirst mammal-like reptiles

    Earliest reptilesExtensive coal-forming forests

    Abundant sharks and amphibiansLarge and numerous scale trees

    and seed ferns

    Earliest amphibians, ammonoids, sharksExtinction of armored fish, other

    fish abundant

    Earliest insectsEarliest land plants and animalsPeak development of eurypterids

    Invertebrates dominant– mollusks become abundant

    Diverse coral and echinoderms

    Graptolites abundantEarliest fishAlgal reefsBurgess shale fauna

    Earliest chordates, diverse trilobitesEarliest trilobitesEarliest marine animals with shells

    Ediacaran fauna

    Soft-bodied organisms

    Stromatolites

  • 10 Earth Science Reference Tables — 2001 Edition

    aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa43

    2

    1

    0

    PR

    ES

    SU

    RE

    (mill

    ions

    of a

    tmos

    pher

    es)

    MID-ATLANTIC

    RIDGE

    LITHO

    SPHE

    RE

    CR

    US

    TRI

    GID

    MAN

    TLE

    C A S C A D E S

    T R E N C H

    12.7–13.0

    9.9–12.1

    3.3–5.5

    3.0 oceanic crust2.7 continental crust

    DENSITY (g/cm3)

    0 2000 4000 6000

    5000

    4000

    3000

    2000

    1000

    0

    DEPTH (km)

    TE

    MP

    ER

    AT

    UR

    E (

    °C)

    1000 3000 5000

    6000MANTLE

    ATLANT

    IC OCEA

    NN

    OR

    THAM

    ERIC

    A

    MOHO

    INN

    ER

    CORE

    IRO

    N&

    NICK

    EL

    OU

    TER

    CO

    RE(IR

    ON?)

    AS

    THEN

    OSP

    HERE

    (PLA

    STIC

    MANTL

    E)

    EARTH’S CENTER

    STI

    FFER

    MANT

    LE

    MELT

    ING

    POI

    NT

    ??

    ?

    ?????

    ?

    PARTIAL MELTING OFULTRAMAFIC MANTLE

    ME

    LTIN

    G P

    OIN

    T

    ACTU

    ALTE

    MPER

    ATUR

    E

    OC

    EA

    NP

    AC

    IFIC

    Inferred Properties of Earth’s Interior

  • Earth Science Reference Tables — 2001 Edition 11

    Average Chemical Compositionof Earth’s Crust, Hydrosphere, and Troposphere

    ELEMENT(symbol)

    CRUST HYDROSPHERE TROPOSPHERE

    Oxygen (O)Silicon (Si)Aluminum (Al)Iron (Fe)Calcium (Ca)Sodium (Na)Magnesium (Mg)Potassium (K)Nitrogen (N)Hydrogen (H)Other

    46.4028.15

    8.235.634.152.362.332.09

    0.66

    Percent byMass

    Percent byVolume

    Percent byVolume

    Percent byVolume

    94.040.880.480.491.181.110.331.42

    0.07

    33.0

    66.01.0

    21.0

    78.0

    1.0

  • 24

    23

    22

    21

    20

    19

    18

    17

    16

    15

    14

    13

    12

    11

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    1 2 3 4 5 6 7 8EPICENTER DISTANCE (×103 km)

    TR

    AV

    EL

    TIM

    E (

    min

    utes

    )

    P

    9 10

    S

    Earth Science Reference Tables — 2001 Edition 11

    Average Chemical Compositionof Earth’s Crust, Hydrosphere, and Troposphere

    Earthquake P-wave and S-wave Travel Time

  • 1– 33– 28– 24– 21–18–14–12–10– 7– 5– 3–11468

    10121416192123252729

    2

    – 36– 28– 22–18–14–12– 8– 6– 3–11368

    111315171921232527

    0– 20–18–16–14–12–10– 8– 6– 4– 2

    02468

    1012141618202224262830

    – 20–18–16–14–12–10– 8– 6– 4– 2024681012141618202224262830

    3

    – 29– 22–17–13– 9– 6– 4–11469

    1113151720222426

    4

    – 29– 20–15–11– 7– 4– 2

    1469

    11141618202224

    5

    – 24–17–11– 7– 5– 2

    1479

    121416182123

    6

    –19–13– 9– 5– 2

    147

    101214171921

    7

    – 21–14– 9– 5– 2

    147

    1012151719

    8

    –14– 9– 5–1248

    10131618

    9

    – 28–16–10– 6– 2

    258

    111416

    10

    –17–10– 5–2369

    1114

    11

    –17–10– 5–1269

    12

    12

    –19–10– 5–137

    10

    13

    –19–10– 5

    048

    14

    –19–10– 4

    15

    15

    –18– 9– 3

    1

    Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)Dry-BulbTempera-ture (°C)

    12840485561667173777981838586878888899091919292929393

    15

    49

    1216

    12 Earth Science Reference Tables — 2001 Edition

    Dewpoint Temperatures (°C)

    Relative Humidity (%)

  • Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)

    Dry-BulbTempera-ture (°C)

    12840485561667173777981838586878888899091919292929393

    2

    1123334148545863677072747678798081828384858686

    0100100100100100100100100100100100100100100100100100100100100100100100100100100

    – 20–18–16–14–12–10– 8– 6– 4– 2024681012141618202224262830

    3

    1320323745515659626567697172747576777879

    4

    112028364246515457606264666869707172

    5

    111202735394348505456586062646566

    6

    61422283338414548515355575961

    7

    10172428333740444649515355

    8

    61319252933364042454749

    9

    410162126303336394244

    10

    28

    1419232730343639

    11

    17

    12172125283134

    12

    16

    111520232629

    13

    51014182125

    14

    49

    131720

    15

    49

    1216

    Dry-BulbTempera-ture (°C)

    12 Earth Science Reference Tables — 2001 Edition

    Dewpoint Temperatures (°C)

    Relative Humidity (%)

  • 110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    –10

    –20

    –30

    –40

    –50

    220

    200

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    –20

    –40

    –60

    380

    370

    360

    350

    340

    330

    320

    310

    300

    290

    280

    270

    260

    250

    240

    230

    220

    Fahrenheit Celsius Kelvin

    Water boils

    Human bodytemperature

    Roomtemperature

    Ice melts

    Temperature

  • 30.70

    30.60

    30.50

    30.40

    30.30

    30.20

    30.10

    30.00

    29.90

    29.80

    29.70

    29.60

    29.50

    29.40

    29.30

    29.20

    29.10

    29.00

    28.90

    28.80

    28.70

    28.60

    28.50

    1040.0

    1036.0

    1032.0

    1028.0

    1024.0

    1020.0

    1016.0

    1012.0

    1008.0

    1004.0

    1000.0

    996.0

    992.0

    988.0

    984.0

    980.0

    976.0

    972.0

    968.0

    oneatmosphere1013.2 mb

    Pressuremillibars inches

  • 196

    +19/

    .25

    28

    27

    Amount of cloud cover(approximately 75% covered)

    Barometric pressure(1019.6 mb)

    Barometric trend(a steady 1.9-mb rise the past 3 hours)

    Precipitation(inches past 6 hours)

    Wind direction(from the southwest)

    Temperature (°F)

    Present weather

    Visibility (mi)

    Dewpoint (°F)

    Wind speed

    (1 knot = 1.15 mi/hr)

    12

    whole feather = 10 knotshalf feather = 5 knots

    total = 15 knots

    Station Model

  • FreezingRain

    Haze

    Rain

    FogSnow✱

    Hail RainShowers

    Thunder-storms

    Drizzle

    Sleet∞

    Smog

    SnowShowers

    Present Weather

  • Air MassescA

    cP

    cT

    mT

    mP

    continental arctic

    continental polar

    continental tropical

    maritime tropical

    maritime polar

    Cold

    Warm

    Stationary

    Occluded

  • Air Masses

    cA

    cP

    cT

    mT

    mP

    continental arctic

    continental polar

    continental tropical

    maritime tropical

    maritime polar

    Cold

    Warm

    Stationary

    Occluded

    Front Symbols

    Hurricane

  • km 150

    100

    50

    0

    75

    50

    25

    0

    mi

    Sea Level

    Altitude

    Temperature Zones

    Thermosphere

    Mesopause

    Mesosphere

    Stratopause

    Stratosphere

    TropopauseTroposphere

    Temperature (°C)

    –100° 0° 100°

    –90° –55° 15° 10–

    4

    10–3

    10–2

    10–1

    10 0

    Pressure (atm)

    Atmospheric Pressure

    0 20 40

    Concentration(g/m3)

    WaterVapor

    eltsshift northward in summer andsouthward in winter.

    Selected Properties of Earth’s Atmosphere

  • Decreasing Wavelength

    10010–10

    4.0

    × 10

    –5

    10–9 10–8 10–7 10–6 10–5 10–4 10–3 10–2 10–1 101 102 103

    0.00

    0,00

    0,00

    0,1

    0.00

    0,00

    0,00

    1

    0.00

    0,00

    0,01

    0.00

    0,00

    0,1

    0.00

    0,00

    1

    0.00

    0,01

    0.00

    0,1

    0.00

    1

    0.01

    0.1

    1.0

    10 100

    1,00

    0

    cm

    cm

    Increasing Wavelength

    Gamma rays x rays

    Ultraviolet Infrared

    Vis

    ible

    Radio waves

    Microwaves

    Violet Blue Green Yellow Orange Red

    Visible Light

    4.3

    × 10

    –5

    4.9

    × 10

    –5

    5.3

    × 10

    –5

    5.8

    × 10

    –5

    6.3

    × 10

    –5

    7.0

    × 10

    –5

    Electromagnetic Spectrum

  • 30° N

    60° N

    60° S

    30° S

    S.W.WINDS

    DRY

    DRY

    WET

    N.E.

    N.E. WINDS

    S.E.WINDS

    WET

    DRY

    WET

    DRY

    S.E.

    N.W.WINDS

    Polar Front

    SubtropicalJet Streams

    Tropopause

    Polar Front Jet Stream

    Polar Front Jet Stream

    Planetary Wind and Moisture Belts in the Troposphere

  • RedDwarfs

    1,000,000

    10,000

    100

    1

    0.01

    0.000120,000 10,000 5,000 2,500

    Red StarsYellow StarsWhite StarsBlue Stars

    Temperature (°C)

    Lu

    min

    osi

    ty (

    Rel

    ativ

    e to

    th

    e S

    un

    )

    SmallStars

    MassiveStars

    BlueSupergiants

    Rigel

    Supergiants

    Betelgeuse

    Aldebaran

    Red GiantsMain Sequence

    Alpha CentauriSun

    White Dwarfs

    Sirius

    Color

    +

    +

    Procyon B+

    Barnard’sStar

    ++

    Polaris ++

    +

    +

    Luminosity and Temperature of Stars(Name in italics refers to star shown by a + )

    Luminosity is thebrightness of starscompared to thebrightness of ourSun as seen fromthe same distancefrom the observer.

  • SUN — — 27 days — 1,392,000 333,000.00 1.4 –

    MERCURY 57.9 88 days 59 days 0.206 4,880 0.553 5.4 0

    VENUS 108.2 224.7 days 243 days 0.007 12,104 0.815 5.2 0

    EARTH 149.6 365.26 days 23 hr 0.017 12,756 1.00 5.5 156 min4 sec

    MARS 227.9 687 days 24 hr 0.093 6,787 0.1074 3.9 237 min23 sec

    JUPITER 778.3 11.86 years 9 hr 0.048 142,800 317.896 1.3 1650 min30 sec

    SATURN 1,427 29.46 years 10 hr 0.056 120,000 95.185 0.7 1814 min

    URANUS 2,869 84.0 years 17 hr 0.047 51,800 14.537 1.2 2114 min

    NEPTUNE 4,496 164.8 years 16 hr 0.009 49,500 17.151 1.7 8

    PLUTO 5,900 247.7 years 6 days 0.250 2,300 0.0025 2.0 19 hr

    EARTH’S 149.6 27.3 days 27 days 0.055 3,476 0.0123 3.3 —MOON (0.386 from Earth) 8 hr

    Object Mean Distance from Sun

    (millions of km)

    Periodof

    Revolution

    EquatorialDiameter

    (km)

    Mass(Earth = 1)

    Eccentricityof

    Orbit

    Periodof

    Rotation

    Density

    (g/cm3)

    Numberof

    Moons

    Solar System Data

  • Properties of Common Minerals

    HARD- COMMON DISTINGUISHINGLUSTER NESS COLORS CHARACTERISTICS USE(S) MINERAL NAME COMPOSITION*

    black streak,greasy feel

    very dense (7.6 g/cm3),gray-black streak

    attracted by magnet,black streak

    green-black streak,cubic crystals

    red-brown streak

    greasy feel

    easily melted,may smell

    easily scratchedby fingernail

    flexible inthin sheets

    cubic cleavage, salty taste

    flexible in thin sheets

    bubbleswith acid

    bubbles with acidwhen powdered

    cleaves in4 directions

    cleaves in2 directions at 90°

    cleaves at56° and 124°

    cleaves in2 directions at 90°

    cleaves in 2 directions,striations visible

    commonly light greenand granular

    glassy luster, may formhexagonal crystals

    glassy luster, often seen as redgrains in NYS metamorphic rocks

    Graphite

    Galena

    Magnetite

    Pyrite

    Hematite

    Talc

    Sulfur

    Gypsum

    Muscovite Mica

    Halite

    Biotite Mica

    Calcite

    Dolomite

    Fluorite

    Pyroxene(commonly Augite)

    Amphiboles(commonly Hornblende)

    Potassium Feldspar(Orthoclase)

    Plagioclase Feldspar(Na-Ca Feldspar)

    Olivine

    Quartz

    Garnet(commonly Almandine)

    silver togray

    metallicsilver

    black tosilver

    brassyyellow

    metallic silver orearthy red

    white togreen

    yellow toamber

    white to pink or gray

    colorless toyellow

    colorless towhite

    black todark brown

    colorlessor variable

    colorlessor variable

    colorless orvariable

    black todark green

    black to dark green

    white topink

    white to gray

    green togray or brown

    colorless orvariable

    dark redto green

    pencil lead,lubricants

    ore oflead

    ore ofiron

    ore ofsulfur

    oreof iron

    talcum powder,soapstone

    vulcanize rubber,sulfuric acid

    plaster of parisand drywall

    electricalinsulator

    food additive,melts ice

    electricalinsulator

    cement,polarizing prisms

    source ofmagnesium

    hydrofluoricacid

    mineralcollections

    mineralcollections

    ceramicsand glass

    ceramicsand glass

    furnace bricksand jewelry

    glass, jewelry,and electronics

    jewelry andabrasives

    16DET 633 (0-00-00,000)

    Nonm

    etal

    lic L

    uste

    r

    *Chemical Symbols: Al = aluminum Cl = chlorine H = hydrogen Na = sodium S = sulfur C = carbon F = fluorine K = potassium O = oxygen Si = siliconCa = calcium Fe = iron Mg = magnesium Pb = lead Ti = titanium

    ✔ = dominant form of breakage

    C

    PbS

    Fe3O4

    FeS2

    Fe2O3

    Mg3Si4O10(OH)2

    S

    CaSO4•2H2O

    KAl3Si3O10(OH)2

    NaCl

    K(Mg,Fe)3AlSi3O10(OH)2

    CaCO3

    CaMg(CO3)2

    CaF2

    (Ca,Na) (Mg,Fe,Al)(Si,Al)2O6

    CaNa(Mg,Fe)4 (Al,Fe,Ti)3Si6O22(O,OH)2

    KAlSi3O8

    (Na,Ca)AlSi3O8

    (Fe,Mg)2SiO4

    SiO2

    Fe3Al2Si3O12

    1–2

    2.5

    5.5–6.5

    6.5

    1–6.5

    1

    2

    2

    2–2.5

    2.5

    2.5–3

    3

    3.5

    4

    5–6

    5.5

    6

    6

    6.5

    7

    7

    Met

    allic

    Lus

    ter

    Eith

    er

    CLEA

    VAGE

    FRAC

    TURE

    (Selenite)