early cretaceous micropaleontological · pdf filevalanginian) deposits might be also present...

18
ACTA PALAEONTOLOGICA ROMANIAE V. 9 (2), P. 67-84 ________________________________ 1 Babeş-Bolyai University, Department of Geology, Str. M. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania, [email protected] 67 2 University of Bucharest, Department of Geology, Bd. Nicolae Bălcescu nr. 1, 010041 Bucharest, Romania, [email protected]; [email protected]; [email protected] EARLY CRETACEOUS MICROPALEONTOLOGICAL ASSEMBLAGES FROM A CONDENSED SECTION OF THE CODLEA AREA (SOUTHERN CARPATHIANS, ROMANIA) Ioan I. Bucur 1* , Eugen Grădinaru 2 , Iuliana Lazăr 2 & Mihaela Grădinaru 2 Abstract The “Piatra Mare” quarry near Codlea, Brașov County, Romania, exposes limestones belonging to the eastern part of the Getic Carbonate Platform. Carbonate deposits consisting of Štramberk-type limestone are here unconformably overlain by the Braşov Formation. The latter unit starts with a condensed sect ion that overlies a hardground unconformity on top of the Štramberk-type limestone. We present new results of micropaleontological investigations of the uppermost part of the Štramberk-type limestone and of the condensed section. Assemblages of benthic foraminifera, calcareous algae, calpionellids, and calcispheres (cysts of calcareous dinoflagellates) are identified that enable us to assign a BerriasianValanginian age for the studied section. The hiatus identified on the top of the Štramberk-type limestone is most probably of early Valanginian age. Keywords: microfossils, foraminifera, calpionellids, calcispheres, Early Cretaceous, Getic Carbonate Platform, Romania INTRODUCTION In the eastern part of the Southern Carpathians, carbonate deposits of the Getic Carbonate Platform are known from three areas: Braşov-Codlea, Dâmbovicioara-Piatra Craiului, and the western side of the Bucegi Mountains. In these areas, the carbonate succession includes deposits assigned to the Upper Jurassic Lower Cretaceous. Commonly, these deposits consist of Štramberk-type white, massive limestones, considered to have a Late Jurassic (KimmeridgianTithonian) age (e.g., Popescu, 1967; Patrulius, 1969). Patrulius (1976) and Bucur (1978) have assumed that Lower Cretaceous (Berriasianlower Valanginian) deposits might be also present in these limestones, a supposition that was subsequently documented by the fossil record (Patrulius et al., 1980; Bucur et al., 2009; Dragastan, 2010; Săsăran et al., 2011). Upper ValanginianHauterivian marls were described overlying the Štramberk-type limestone from both the Dâmbovicioara (Patrulius, 1969; Patrulius & Avram, 1976; Patrulius et al., 1980) and Braşov-Codlea (Grădinaru, in Neagu, 1975; Grădinaru & Bărbulescu, 1989; Avram & Grădinaru, 1993; Avram & Grădinaru, 2001; Grădinaru & Bucur, 2001) areas. These two successions are separated by a condensed section overlaying a hardground discontinuity at the top of the Štramberk-type limestones. Patrulius (1969) was the first to mention the presence of a hardground surface at the base of the upper Valanginian-Hauterivian deposits in the Dâmbovicioara area. In the Codlea area, Grădinaru & Bărbulescu (1989) firstly identified several discontinuities within the Valanginian-Hauterivian condensed section unconformably overlying the top of the Štramberk-type limestone. The detailed microfacies, sedimentological, geochemical and taphonomical study of the condensed section and of the associated discontinuities is still in progress (Mihaela Grădinaru et al., in preparation), in order to define the depositional environments characterizing these units of the Getic Carbonate Platform during the Early Cretaceous. In this study, we present the micropaleontological assemblages identified in the Codlea area in samples located towards the top of the Štramberk-type limestones and in the condensed section. Based on these results, the aim of the present paper is to constrain the time duration of the condensed section and to date the sedimentary hiatus represented by the hardground unconformity at the top of the Štramberk-type limestones. GEOLOGICAL SETTING AND STRATIGRAPHIC DATA The studied carbonate rocks are exposed in the small “Piatra Mare” quarry (Grădinaru & Bărbulescu, 1989; Avram & Grădinaru, 1993) located at about 2 km south- west from Codlea (Fig. 1). The studied section is represented by (Fig. 2): - white, massive Štramberk-type limestones. Toward the topmost part, this unit is represented by bioclastic peloidal grainstone-packstone and bioclastic intraclastic rudstone. The top of this unit is marked by the first hardground discontinuity (HG-1) mineralized with ferruginous crusts (Fig. 2). From this layer, Grădinaru & Bărbulescu (1989) cited a micropaleontological association (determined by Dragastan) including Lithocodium aggregatum, Everticyclammina greigi, Pseudocyclammina lituus, Ammocycloloculina erratica, Anchispirocyclina maynci, Protopeneroplis trochangulata, Trocholina alpina, Trocholina elongata, Megaporella cf. fluegeli, Paraorthonella richteri, Rivularia pumilii and Rivularia dianae. The succession yielding this association was assigned to the Berriasianlower Valanginian. - the base of the Braşov Formation consists of a 10-30 cm thick condensed section, represented by subnodular to nodular limestones containing numerous ferruginous macro-oncoids and a fossil assemblage represented mainly by brachiopods, ammonites, belemnites, together with rare bivalves and gastropods. The associated microfacies types are grey-green to brownish bioclastic wackestone packstone with ferruginous ooids and

Upload: ledieu

Post on 27-Feb-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

ACTA PALAEONTOLOGICA ROMANIAE V. 9 (2), P. 67-84

________________________________

1Babeş-Bolyai University, Department of Geology, Str. M. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania, [email protected] 67 2 University of Bucharest, Department of Geology, Bd. Nicolae Bălcescu nr. 1, 010041 Bucharest, Romania, [email protected];

[email protected]; [email protected]

EARLY CRETACEOUS MICROPALEONTOLOGICAL ASSEMBLAGES FROM A

CONDENSED SECTION OF THE CODLEA AREA

(SOUTHERN CARPATHIANS, ROMANIA)

Ioan I. Bucur1*, Eugen Grădinaru2, Iuliana Lazăr2 & Mihaela Grădinaru2

Abstract The “Piatra Mare” quarry near Codlea, Brașov County, Romania, exposes limestones belonging to the

eastern part of the Getic Carbonate Platform. Carbonate deposits consisting of Štramberk-type limestone are here

unconformably overlain by the Braşov Formation. The latter unit starts with a condensed section that overlies a

hardground unconformity on top of the Štramberk-type limestone. We present new results of micropaleontological

investigations of the uppermost part of the Štramberk-type limestone and of the condensed section. Assemblages of

benthic foraminifera, calcareous algae, calpionellids, and calcispheres (cysts of calcareous dinoflagellates) are

identified that enable us to assign a Berriasian–Valanginian age for the studied section. The hiatus identified on the

top of the Štramberk-type limestone is most probably of early Valanginian age.

Keywords: microfossils, foraminifera, calpionellids, calcispheres, Early Cretaceous, Getic Carbonate Platform, Romania

INTRODUCTION

In the eastern part of the Southern Carpathians, carbonate

deposits of the Getic Carbonate Platform are known from

three areas: Braşov-Codlea, Dâmbovicioara-Piatra

Craiului, and the western side of the Bucegi Mountains.

In these areas, the carbonate succession includes deposits

assigned to the Upper Jurassic – Lower Cretaceous.

Commonly, these deposits consist of Štramberk-type

white, massive limestones, considered to have a Late

Jurassic (Kimmeridgian–Tithonian) age (e.g., Popescu,

1967; Patrulius, 1969). Patrulius (1976) and Bucur (1978)

have assumed that Lower Cretaceous (Berriasian–lower

Valanginian) deposits might be also present in these

limestones, a supposition that was subsequently

documented by the fossil record (Patrulius et al., 1980;

Bucur et al., 2009; Dragastan, 2010; Săsăran et al., 2011).

Upper Valanginian–Hauterivian marls were described

overlying the Štramberk-type limestone from both the

Dâmbovicioara (Patrulius, 1969; Patrulius & Avram,

1976; Patrulius et al., 1980) and Braşov-Codlea

(Grădinaru, in Neagu, 1975; Grădinaru & Bărbulescu,

1989; Avram & Grădinaru, 1993; Avram & Grădinaru,

2001; Grădinaru & Bucur, 2001) areas. These two

successions are separated by a condensed section

overlaying a hardground discontinuity at the top of the

Štramberk-type limestones. Patrulius (1969) was the first

to mention the presence of a hardground surface at the

base of the upper Valanginian-Hauterivian deposits in the

Dâmbovicioara area. In the Codlea area, Grădinaru &

Bărbulescu (1989) firstly identified several

discontinuities within the Valanginian-Hauterivian

condensed section unconformably overlying the top of

the Štramberk-type limestone. The detailed microfacies,

sedimentological, geochemical and taphonomical study

of the condensed section and of the associated

discontinuities is still in progress (Mihaela Grădinaru et

al., in preparation), in order to define the depositional

environments characterizing these units of the Getic

Carbonate Platform during the Early Cretaceous. In this

study, we present the micropaleontological assemblages

identified in the Codlea area in samples located towards

the top of the Štramberk-type limestones and in the

condensed section. Based on these results, the aim of the

present paper is to constrain the time duration of the

condensed section and to date the sedimentary hiatus

represented by the hardground unconformity at the top of

the Štramberk-type limestones.

GEOLOGICAL SETTING AND STRATIGRAPHIC

DATA

The studied carbonate rocks are exposed in the small

“Piatra Mare” quarry (Grădinaru & Bărbulescu, 1989;

Avram & Grădinaru, 1993) located at about 2 km south-

west from Codlea (Fig. 1).

The studied section is represented by (Fig. 2):

- white, massive Štramberk-type limestones. Toward the

topmost part, this unit is represented by bioclastic

peloidal grainstone-packstone and bioclastic intraclastic

rudstone. The top of this unit is marked by the first

hardground discontinuity (HG-1) mineralized with

ferruginous crusts (Fig. 2). From this layer, Grădinaru &

Bărbulescu (1989) cited a micropaleontological

association (determined by Dragastan) including

Lithocodium aggregatum, Everticyclammina greigi,

Pseudocyclammina lituus, Ammocycloloculina erratica,

Anchispirocyclina maynci, Protopeneroplis

trochangulata, Trocholina alpina, Trocholina elongata,

Megaporella cf. fluegeli, Paraorthonella richteri,

Rivularia pumilii and Rivularia dianae. The succession

yielding this association was assigned to the Berriasian–

lower Valanginian.

- the base of the Braşov Formation consists of a 10-30 cm

thick condensed section, represented by subnodular to

nodular limestones containing numerous ferruginous

macro-oncoids and a fossil assemblage represented

mainly by brachiopods, ammonites, belemnites, together

with rare bivalves and gastropods. The associated

microfacies types are grey-green to brownish bioclastic

wackestone – packstone with ferruginous ooids and

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

68

Fig. 1 Location of the study area in the Romanian territory and

the geological map of the Codlea town area (modified from

Săndulescu et al., 1972, geological map of Romania, scale

1:50.000, sheet 94d Codlea). 1 - Voinești-Păpușa metamorphic

group; 2 - Permian–Lower Triassic; 3 - Lower Triassic; 4 -

Middle Triassic (Anisian); 5 - Lower Jurassic; 6 - Middle

Jurassic; 7 - Callovian–Oxfordian; 8 - Kimmeridgian–

Tithonian; 9 - Beriassian–Valanginian; 10 - Hauterivian–

Barremian; 11 - latest Albian–Cenomanian; 12 - Pleistocene; 13

- Holocene; 14 - Overthrust line; 15 - Fault; 16 - Quarry. White

arrow points to the „Piatra Mare” quarry.

grapestone structures (Fig. 2). The top of the condensed

layer is marked by the second hardground discontinuity

(HG-2), mineralized with 0.2–0.5 cm-thick ferruginous

laminated crusts. These crusts are distributed along both

hardground discontinuities (HG-1 and HG-2), and they

also occur in fissures, fractures and small neptunian

dykes within the condensed layer. According to Avram

& Grădinaru (1993), the overlying layer consists of a

beige to greenish-white, 10-15 cm thick bioclastic

wackestone-mudstone, followed by 2.3-3 m of yellowish-

gray marls (Fig. 2).

Besides the brachiopod fauna studied by Grădinaru &

Bărbulescu (1989), Avram & Grădinaru (1993)

described from the condensed layer a rich ammonite and

duvaliid fauna ranging in age from latest early

Valanginian to late Valanginian (Verrucosum and

Trinodosum Zones). The ammonites from the overlying

layer are indicative for the latest late Valanginian

Callidiscus Zone (following the ammonite biozonation of

Bulot & Thieuloy, 1994). For the Brașov Formation

marls that follow upwards in the ”Piatra Mare” quarry

succession, the foraminiferal fauna described by Neagu

(1975) indicates a Hauterivian age.

Brief considerations on the identified microfacies and

its depositional significance

The limestone level located below the condensed section

consists of typical shallow water deposits of a carbonate

platform, within which we have identified ooidic-

pisoidic, brecciated peloidal grainstones with keystone

vugs and rivulariacean-type cyanobacteria (Fig. 3a),

intraclastic-peloidal-fenestral limestones with rare, small

foraminifera and meniscus-type cement (Fig. 3b; Fig, 5d),

peloidal-bioclastic, intraclastic grainstone/rudstones with

larger agglutinated foraminifera (Pseudocyclammina and

Spiraloconulus) (Fig. 3c, d), bioclastic-intraclastic

rudstones and bioclastic-peloidal packstone-grainstones,

with micritization rims and early marine fibrous-acicular

cement followed by non-ferroan scalenohedral (”dog

tooth”) calcite cement. The third generation of cement

that surrounds the grains is represented by drusy ferroan

calcite in optical continuity with the scalenohedral

cement. In some voids, the ferroan calcite completely

filled up all the available pore spaces. The matrix is

ferruginized (reddish-brown color), with a variable iron

oxy-hydroxide content (Fig. 3e-h; Fig. 4a; Fig. 5a, b).

Syntaxial calcite overgrowths on echinoderm fragments

are common (Fig. 5f). This cement has generally been

interpreted to be of meteoric diagenetic origin (e.g.,

Bathurst, 1975; Longman, 1980). In addition, the

syntaxial cement grew in competition with the

scalenohedral calcite cement. In some cases, both the

matrix and the grains show traces of dissolution /

recrystallization features (Fig. 5a-c, g), while the fenestral

voids may be filled with successive generations of

sediment, probably including vadose silt. We have also

identified peloidal-bioclastic packstones with

recrystallized grains and brown/reddish matrix showing

cracks filled with finer, hemipelagic brown-reddish

material (Fig. 4c). The fibrous cement indicates

precipitation in marine phreatic environment (James &

Choquette, 1990a). Vadose silt, micrite meniscus and

scalenohedral cements indicate precipitation in vadose

conditions, suggesting significant influence of meteoric

waters (Bathurst, 1975; James & Choquette, 1990b). The

presence of iron oxy-hydroxides surrounding the grains

and intraclasts may by related to subaerial exposure

(Haywick et al., 2009). These features suggest that

diagenesis of the topmost part of the Štramberk-type

limestone was dominated by synsedimentary and early

meteoric processes following short periods of subaerial

exposure. Accordingly, some of these features point to

subaerial exposure stages that have preceded drowning.

The condensed leyer contains fine bioclastic wackestone-

packstones (Fig. 4d) with ferruginous ooids and

clayey micrite matrix (Fig. 4e-h). The associated

micropaleontological content indicates a hemipelagic

(spirillinids, nodosariids, small fragments of molluscs and

echinoderms) to pelagic (calpionellids and calcispheres)

environment.

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

69

The micropaleontological assemblage and its

biostratigraphic significance

Besides sponge fragments (Fig. 5h, i), in the limestone

level located underneath the condensed section we have

identified corals, bryozoans, brachiopods, bivalves,

gastropods and echinoderms, as well as a relatively rich

micropaleontological association. The latter consists

mainly of benthic foraminifera accompanied by

fragments of dasycladaleans and organisms assumed to

have a microbial nature, such as Lithocodium aggregatum

Elliott (Fig. 10n) and bacinellid structures.

The foraminiferal association consists of:

Pseudocyclammina lituus (Yokoyama) (abundant in some

peloidal-bioclastic grainstones) (Fig. 6), Spiraloconulus

suprajurasicus Schlagintweit (Fig. 7), Gaudryina ectypa

Arnaud-Vanneau, Nautiloculina bronnimanni Arnaud-

Vanneau & Peybernes (Fig. 9s), Nautiloculina cretacea

Peybernes (Fig. 9t), Haplophragmoides joukowskyi

Charollais, Brönnimann & Zaninetti (Fig. 8u-w),

Meandrospira favrei Charollais, Brönnimann & Zaninetti

(Fig. 8s, t), Montsalevia salevensis Charollais,

Brönnimann & Zaninetti (Fig. 8j-r), Coscinoconus

alpinus (Leupold) (Fig.9f, g, m), Coscinoconus

cherchiae (Arnaud-Vanneau, Boisseau & Darsac)

(Fig.9d), Coscinoconus delphinensis (Arnaud-Vanneau,

Boisseau & Darsac) (Fig. 9e, h), Coscinoconus molestus

(Gorbatchick) (Fig. 9q), Coscinoconus perconigi Neagu

(Fig. 9i), Protopeneroplis ultragranulata (Gorbachik)

(Fig. 8a, b, d, e, g-i), Protopeneroplis cf. banatica Bucur

(Fig. 8c, f), Neotrocholina valdensis Reichel (Fig. 9n. o),

Mohlerina basiliensis (Mohler) (Fig.10a-d), Earlandia

sp., Glomospira sp., Ammobaculites sp., ?Everticyclamm-

ina sp., Gaudryina sp., Charentia sp., Mayncina sp. (Fig.

9r), Arenobulimina sp., Neotrocholina and Ramulina sp.

(Fig. 9l, p, u)

The species listed above can be grouped into three

categories:

a) Late Jurassic species that are also frequently cited from

the base of the Lower Cretaceous: Pseudocyclammina

lituus, Andersenolina alpina, Protopeneroplis

ultragranulata, Mohlerina basiliensis, Coscinoconus

alpinus, Coscinoconus elongatus (Masse, 1976;

Peybernes, 1976; Azema et al., 1979; Jaffrezo, 1980;

Darsac, 1983; Salvini Bonnard et al., 1984; Boisseau,

1987; Granier, 1987; Arnaud-Vanneau et al., 1988;

Bucur, 1988; Chiocchini et al., 1988; Fourcade &

Granier, 1989; Altiner, 1991; Chiocchini et al., 1994;

Neagu, 1994; Bucur et al., 1995; Bulot et al., 1997;

Gorbachik & Mohamad, 1997; Mancinelli & Coccia,

1999; Ivanova, 2000; Clark & Boudagher-Fadel 2001;

Schlagintweit & Gawlick, 2006);

b) Barremian–Aptian species that are also cited from

Berriasian–Valanginian deposits (Gaudryina ectypa), or

species widely distributed in the entire Lower Cretaceous

(Berriasian–Albian): Nautiloculina bronnimanni and

Nautiloculina cretacea (Arnaud-Vanneau & Peybernes,

1978; Arnaud-Vanneau, 1980; Darsac, 1983; Salvini-

Bonnard et al., 1984; Boisseau, 1987; Bucur, 1988;

Altiner, 1991; Bucur et al., 1995; Bucur et al., 1996; Ebli

& Schlagintweit, 1998);

c) almost exclusively Berriasian–Valanginian species:

Haplophragmoides joukowskyi, Montsalevia salevensis,

Meandrospira cf. favrei, Coscinoconus cherchiae,

Coscinoconus delphinensis, Coscinoconus perconigi,

Neotrocholina valdensis, and Protopeneroplis banatica.

Fig. 2 Lithostratigraphic succession at the base of the Braşov Formation in the „Piatra Mare” quarry, SW

of Codlea town, with location of the samples Cd-1 to Cd-7.

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

70

Fig. 3 Microfacies of the uppermost part of the Štramberk-type limestone. a Ooidic-pisoidic-peloidal grainstone with

keyston-vugs and rivulariacean-type cyanobacteria; sample 160. b Peloidal-intraclastic, fenestral limestone with rare

small foraminifera; meniscus cement can be noticed between some grains; sample 152(a). c, d Peloidal-intraclastic-

bioclastic grainstone with Pseudocyclammina; c, sample J(2); d, sample Nv-2. e-g Intraclastic-bioclastic-peloidal

grainstone; the space between grains is partially filled with a brown-reddish micritic to microsparitic matrix; most of

the grains are surrounded by a fringe of acicular cement; f, sample 106(a); g, sample d-2. h Peloidal-intraclastic-

bioclastic grainstone-packstone. Part of the grains are recystallized and the space in between is partially filled with a

brown-reddish matrix; sample Nc-1. Scale bar: 1mm

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

71

Fig. 4 Microfacies of the limestones at the top of the Štramberk–type limestone (below HG-1) (a, b) and of the

carbonate deposits of the condensed bed in the lower part of the Braşov Formation (c-h). a, b Bioclastic-

intraclastic, and peloidal-intraclastic-bioclastic grainstone-rudstone. Dark brown-reddish to black sediment fills

partially the space between the clasts (in a); the clasts are surrounded by a fringe of acicular white cement. Iron oxi-

hydroxides replaced partially or filled the voids in the carbonate sediment (in b). A, sample 304-1; b, sample 305-1.

c Peloidal-bioclastic packstone with a brown-reddish matrix and fissures (cracks) filled with a finer, brown-reddish

sediment; sample103b. d Fine bioclastic wackestone-packstone marking the drowning of the platform; sample 107-

1. e-h wackestone with iron ooids; e, sample 107-1; f, sample 107-1a; g, sample g-3; h, sample h-3. Scale bar: 1

mm.

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

72

Fig. 5 Microfacies and calcareous sponges from the uppermost part of the Štramberk -type limestones. a Peloidal

packstone with strongly recystallized grains and a brown-reddish matrix; sample Nc-2. b Grainstone-packstone with

a blackish sediment/matrix in the intergranular space; sample 312. c Close-up view of a showing the recrystallized

clasts. d Intertidal peloidal limestone with meniscus cement (arrow); sample 305. e Botioidal, pigmented cement in a

peloidal grainstone; sample 106(a). f Bioclastic-peloidal packstone with a brown-reddish matrix and syntaxial

overgrowth cement on echinoderm plates; sample 314(b). g Dark, iron-rich cement surrounding the recrystallized

grains in a peloidal-bioclastic grainstone; sample 322. h, i Calcareous sponges; h, sample 308a; i, sample 308. Scale

bar: 0.5 mm (a, b, h, i); 0.25 mm (e, d, f, g); 0.125 mm (c).

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

73

Fig. 6 Foraminifera from the uppermost part of the Štramberk-type limestone. a-k Pseudocyclammina lituus

(Yokoyama). Axial-subaxial (a, b, f, i), oblique (c, d, h, j) and subequatorial-equatorial (e, g, k) sections; a, sample

102-1a; b, sample Cd-11; c, sample Nv(2); d, sample 323(a); e, sample Nv(1); f, sample 323(c); g, sample Cd-9; h,

sample 102-1a; i, sample d-2; j, k, sample 316. Scale bar: 0.5 mm (a, c, d, g, i, j); 0.25 mm (b, e, f, h, k).

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

74

Below we present some details on the latter group, given

their significance concerning the age of the studied

limestones.

- Haplophragmoides joukowskyi (Charollais, Brönnimann

& Zaninetti, 1966). Described from Valanginian deposits

(Charollais et al., 1966), Haplophragmoides joukowskyi

has been subsequently identified also in the Berriasian–

Valanginian (Darsac, 1983; Boisseau, 1987; Chiocchini

et al., 1994; Bucur et al., 1995; Ivanova, 2000), as well as

in the Hauterivian (most probably lower Hauterivian)

(Bucur, 1988; Altiner, 1991).

- Montsalevia salevensis (Charollais, Brönnimann &

Zaninetti, 1966). Similarly to H. joukowskyi, this species

was originally described from Valanginian deposits

(Charollais et al., 1966, under Pseudotextulariella

salevensis). Subsequently it was also cited from upper

Berriasian (Salvini-Bonnard et al., 1984: Zaninetti et al.,

1987; Chiocchini et al., 1994) or Hauterivian (probably

lower Hauterivian) formations (Masse, 1976; Peybernès,

1976; Bucur, 1988). However, the great majority of

references for this species concern Valanginian deposits

(Azema et al., 1977; Vila, 1980; Darsac, 1983; Velić &

Fig. 7 Foraminifera from the uppermost part of the Štramberk-type limestone. a-f Spiraloconulus suprajurasicus

Schlagintweit. Longitudinal and longitudinal-oblique sections (a-d); transverse sections (e, f); a, sample Nv(2); b,

sample Cd-11-1; c, d, sample Cd-11-2; e,f, sample Cd-8. Scale bar: 0.5 mm (a, c, d); 0.25 mm (b, e, f).

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

75

Fig. 8 Foraminifera from the uppermost part of the Štramberk-type limestone and the condensed bed in the lower

part of the Braşov Formation. a, b, d, e, g-i Protopeneroplis ultragranulata (Gorbachick). Axial-subaxial (a-b, g-i)

and oblique-tangential (d, e) sections; a, sample 103a; b, sample 101a; d, sample 102-1b; e, sample 104c; g, sample

105, sample Cd-3d; i, sample 104(b). c, f Protopeneroplis cf. banatica Bucur. Subaxial sections; c, sample 323(b); f,

sample 316. j-r Montsalevia salevensis (Charollais, Brönnimann & Zaninetti). Longitudinal (j-m), oblique (n, o) and

transverse (p-r) sections; j, sample Cd-8; k, sample J(1); l, sample J(3); m, sample Nv(3); n, sample 308; o, sample

102-1b; p, sample J(3); q, sample 313; r, sample 312. s ?Meandrospira sp., sample 104(b). t Meandrospira cf. favrei

(Charollais, Brönnimann & Zaninetti), sample Cd-4a. u-v Haplophragoides joukowskyi Charollais, Brönnimann &

Zaninetti. Axial-subaxial sections; u, sample J(3), v, sample Cd-3a; w, sample 313(a). Scale bar: 0.25 mm.

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

76

Fig. 9 Foraminifera from the uppermost part of the Štramberk-type limestone. a, b Coscinoconus elongatus

(Leupold, in Leupold & Bigler). Longitudinal, slightly oblique sections; a, sample Cd-8; b, sample Cd-10. c

Coscinoconus sp. Longitudinal-oblique sections, sample Cd-11; d Coscinoconus cherchiae (Arnaud-Vanneau,

Boisseau & Drasac). Longitudinal section, sample 161-1. e, h Coscinoconus delphinensis (Arnaud-Vanneau,

Boissau & Darsac). Longitudinal sections; e, sample Nv(2); h, sample 314(a). f, g, m Coscinoconus alpinus

(Leupold, in Leupold & Bigler). Longitudinal sections; f, sample d-2; g, sample 303-1; m, sample 106(c). i

Coscinoconus perconigi (Neagu). Longitudinal section; sample Nv(2). j Coscinoconus cf. chiocchinii (Mancinelli

& Coccia). Longitudinal section, sample 314(b). k Coscinoconus cf. campanellus (Arnaud-Vanneau, Boisseau &

Darsac). Longitudinal section, sample 314(a). l, p, u Bullopora/Ramulina sp. l, p, sample 316; u, sample 316(a). n,

o Neotrocholina valdensis Reichel. Longitudinal sections; n, sample b-2; o, sample 309-1. q Coscinoconus

molestus (Gorbachick). Longitudinal section, sample 316. r ?Mayncina sp. Subaxial section, sample 314(b). s

Nautiloculina broennimanni Arnaud-Vanneau & Peybernès. Subaxial sections, sample 314; t Nautiloculina

cretacea Peybernès. Subaxial section, sample J(3). Scale bar: 0.5 mm (a-d, f-k, m, s, t); 0.25 mm (e, l, n-r, u).

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

77

Fig. 10 Foraminifera (a-e), calcareous algae (f-l) and microproblematica (m, n) from the uppermost part of the

Štramberk-type limestone. a-d Mohlerina basiliensis (Mohler). Subaxial (a, b), tangential (c), and oblique (d)

sections; a, sample J(1); b, sample 101-1; c, sample 323(a); d, sample 102. e Troglotella incrutans Wernli &

Fookes inside a Lithocodium-type structure; sample 105-1. f Salpingoporella praturloni (Dragastan). Fragment in

longitudinal-oblique section; sample 316(a). g-i Pseudocymopolia jurassica (Dragastan). Verticils in transverse

(g), oblique (h) and longitudinal (i) sections. G, sample 323; h, sample 311; i, sanple e-2. j-l Parachaetetes

asvapatii Pia. Longitudinal (j) and oblique (k, l) sections; sample 106(b). m Iberopora bodeuri Granier &

Berthou; sample 104. n Lithocodium aggregatum Elliott; sample 104. Scale bar: 0.25 mm (a-j, m); 0.50 mm (k, l,

n).

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

78

Sokač, 1983; Boisseau, 1987; Chiocchini et al., 1988;

Velić, 1988; Altiner, 1991; Bucur et al., 1995; Ivanova,

2000; Husinec & Sokač, 2006; Schlagintweit & Gawlick,

2006; Granier & Bucur, 2011; Bonin et al., 2012).

Zaninetti et al. (1987), the authors of this genus, were the

firsts to notice its similarity to the genus Montsalevia

(they called this species “Montsalevia” salevensis). Other

authors, such as Altiner (1991), Chiocchini et al. (1994),

Bucur et al. (1995), Bulot et al. (1997), Ivanova (2000),

Schroeder et al. (2000), Schlagintweit & Gawlick (2005,

2006), Husinec & Sokač (2006) or Bonin et al. (2012)

have later supported the assignment to this genus.

- Meandrospira favrei (Charollais, Brönnimann &

Zaninetti, 1966). This taxon was described by Charollais

et al. (1966) under Citaella? favrei, besides H. joukowskyi

and M. salevensis. The species was identified in

Valanginian (Boisseau, 1987; Bucur et al., 1995; Pop &

Bucur, 2001) as well as in upper Valanginian to lower

Hauterivian deposits (Bucur, 1988; Altiner, 1991;

Ivanova, 2000; Ivanova & Kołodziej, 2010).

- Coscinoconus cherchiae (Arnaud-Vanneau, Boisseau &

Darsac, 1988), Coscinoconus delphinensis (Arnaud-

Vanneau, Boisseau & Darsac, 1988) and Coscinoconus

perconigi (Neagu, 1994) are species that were cited

exclusively from Berriasian–Valanginian deposits

(Boisseau, 1987; Arnaud-Vanneau et al., 1988; Altiner,

1991; Chiocchini et al., 1994; Bucur et al., 1995;

Mancinelli & Coccia, 1999); these species were assigned

to the genus Trocholina. Only Coscinoconus delphinensis

was cited from the uppermost Tithonian (Gorbachik &

Mohamad, 1997; Ebli & Schlagintweit, 1998). When

describing the species Andersenolina perconigi, Neagu

(1994) has transferred all these species to the genus

Andersenolina. Recently, Rigaud et al. (2013) have

emphasized the differences between the various genera

included in the Trocholinidae family and have

demonstrated the need for restoring the generic name

Coscinoconus Leupold, in Leupold & Bigler, 1936 for the

species originally assigned to the genus Trocholina and

subsequently to the genus Andersenolina (the latter being

considered a recent synonym of the genus Coscinoconus).

- Neotrocholina valdensis Reichel, 1955. This species

was described from Valanginian deposits (Reichel, 1955)

as the type species for the genus Neotrocholina. It has

been frequently cited from deposits assigned exclusively

to the Berriasian–Valanginian (Vila, 1980; Darsac, 1983;

Boisseau, 1987; Granier, 1987; Bucur, 1988; Chiocchini

et al., 1988; Altiner, 1991; Luperto Sinni & Masse, 1994;

Bucur et al., 1995; Neagu, 1995; Clark & Boudagher-

Fadel, 2001).

- Protopeneroplis banatica Bucur, 1993. P. banatica was

first mentioned (as Protopeneroplis aff. trochangulata)

from Hauterivian deposits (Bucur, 1988); the age of these

deposits has been subsequently revised and assigned to

the late Valanginian–early Hauterivian (Bucur, 1991).

Bucur (1993) provided a detailed description of the

species. This foraminifer is relatively poorly known, in

spite of the fact that it was also noticed in southeast

France (Blanc et al., 1992). Subsequently, the species was

identified in Serbia from Valanginian deposits (Bucur et

al., 1995) as well as in Slovenia, from the Valanginian

and Aptian ones (Bucur, 1997).

- A special mention is due to the species Protopeneroplis

ultragranulata (Gorbachik, 1971). Originally described

from Lower Cretaceous deposits from Crimea

(Gorbachik, 1971) under the name Hoeglundina(?)

ultragranulata, this species has been considered a

synonym of Protopenerolis trochangulata Septfontaine,

1974 by Septfontaine et al. (1991). Bucur (1993)

transferred the species ultragranulata to the genus

Protopeneroplis. While it was considered for long time a

marker for the Berriasian–Valanginian, the species has

been subsequently identified in middle Tithonian (Heinz

& Isenschmidt, 1988) or even lower Barremian (Bucur,

1993, 1997; Arnaud-Vanneau & Sliter, 1995, under

Protopeneroplis sp.) deposits. Nevertheless, the most

Fig. 11 Calpionellids from the condensed bed in the lower part of the Braşov Formation. a-e Calpionella alpina

Lorenz; a, sample Cd-4a; b, sample Cd-7e; c, sample 107; d, sample 318-1; e, sample Cd-4e. f Calpionella elliptica

Cadish; sample 103-1b. g-j Tintinnopsella carpathica (Murgeanu & Filipescu); g, sample 310; h, sample 321-1; i,

sample 302-1; j, sample Cd-4e-1. k Calpionellopsis oblonga (Cadish); sample 319-1. l ?cf. Calpionellopsis simplex

(Colom); sample Cd-7e-1. Scale bar: 0.125 mm.

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

79

frequent occurrence of this species is in the Berriasian–

lower Valanginian (Azema et al., 1977; Azema et al.,

1979; Salvini-Bonnard et al., 1984; Boisseau, 1987;

Granier, 1987; Zaninetti et al., 1988; Bucur, 1988;

Chiocchini et al., 1988; Velić, 1988; Chiocchini et al.,

1994; Bucur et al., 1995). Bucur (1993, 1997) presented a

quasi-complete list of synonyms together with additional

remarks on this species.

- Spiraloconulus suprajurasicus Schlagintweit, 2011, also

has a particular significance. This foraminifer was

described from Upper Jurassic–?Berriasian deposits from

the Northern Calcareous Alps (Schlagintweit, 2011), then

mentioned and figured (under Otaina magna and

Foraminifera X, respectively) from upper Tithonian–

Berriasian deposits in Hăghimaş area (Eastern

Carpathians, Romania) by Bucur et al. (2011) and

Dragastan (2011). The basal Cretaceous limestones from

Codlea currently represent the third area of occurrence

for this species.

Table 1 synthesizes the stratigraphic distribution of the

benthic foraminifera identified in the layer at the top of

the Štramberk-type limestone, below the condensed

section under study. It is obvious from this synopsis that

the whole association can be assigned to the Berriasian–

Valanginian interval. The two dasycladalean algae also

present in the association from the base of the condensed

Stratigraphically, among the cited calpionellids, C. alpina

does not extend beyond the lower Valanginian, while the

upper limit of C. elliptica is the middle Berriasian. The

latter is a biozone species with a constrained stratigraphic

distribution: it has not been identified in deposits older or

younger than the Berriasian. Calpionellopsis simplex is

present in the upper Berriasian and basal Valanginian,

while Calpionellopsis oblonga occurs later in the upper

Berriasian and continues untill the upper part of the lower

Valanginian (Pop, 1994). Concerning the calcispheres,

Cadosina fusca fusca was described from the Tithonian–

Hauterivian, Colomisphaera conferta from the lower

section, i.e., Salpingoporella praturloni (Dragastan,

1971) and Pseudocymopolia jurassica (Dragastan, 1968)

are typical for the Berriasian–Valanginian interval

(Masse, 1976, 1993; Peybernès, 1976; Granier, 1987;

Jafrezo, 1980; Granier & Deloffre, 1993; Bucur et al.,

1995; Bucur, 1999; Dragastan, 1999). Accordingly, they

too emphasize the Berriasian–Valanginian age of this

level.

From the condensed section at the base of the Brașov

Formation (Fig. 2) we have identified several

foraminifera such as Meandrospira cf. favrei (Charollais,

Broennimann & Zaninetti) (Fig. 8t), Spirillina italica

Dieni & Massari (Fig. 12s-u), Nodosaria sp. (Fig. 12v),

Lenticulina sp., as well as an association with

calpionellids and calcispheres, with: Calpionella alpina

Lorenz (Fig. 11a-e), Calpionella elliptica Cadisch (Fig.

11f), Tintinopsella carpathica (Murgeanu & Filipescu)

(Fig. 11g-j), Tintinnopsella cf. longa (Colom), cf.

Calpionellopsis simplex (Colom) (Fig. 11l),

Calpionellopsis oblonga (Cadisch) (Fig. 11k), Cadosina

fusca fusca Wanner (Fig. 12a, b), Colomisphaera

conferta Řehánek (Fig. 12c-f), Stomiosphaera moluccana

Wanner (Fig. 11g), Colomisphaera vogleri Borza (Fig.

12h, i), Crustocadosina semiradiata olzae (Nowak) (Fig.

12j, k), Cadosinopsis nowaki Borza (Fig. 12l), and

Stomiosphaera echinata Nowak (Fig. 12m-r).

Valanginian, Colomisphaera vogleri from the

Valanginian–Aptian, Stomiosphaera echinata from the

Valanginian–Barremian while Crustocadosina

semiradiata olzae is known from the Valanginian–

Hauterivian (Borza & Michalik, 1986; Reháková, 2000a,

2000b). To summarize, the calpionellid – calcisphere

association points to a middle Berriasian–Valanginian–

?Hauterivian age. Although the bulk of the ammonite

fauna coming from the condensed layer belongs to the

Verrucosum and Trinodosum Zones of the late

Valanginian, to which few representatives for the latest

early Valanginian are also added (Avram & Grădinaru,

Table 1. General stratigraphic range of the foraminiferal species identified in the uppermost

part of the Štramberk-type limestone from Codlea.

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

80

1993), we conclude that the condensed layer also contains

older deposits, i.e., assigned to the middle Berriasian–

lower Valanginian. Our arguments are supported by the

fact that the calpionellids are identified exclusively within

the macro-oncoids originating from the condensed layer

with ferruginous ooids.

Based on the petrographical description of the condensed

section made by Avram & Grădinaru (1993), in which

“intraformational” fragments of marly limestones are

usually present in oncoids, the condensed layer might

represent a transgressive “lag” that reworked older

deposits during the onset of the drowning of the Getic

Carbonate Platform.

CONCLUDING REMARKS

The Lower Cretaceous deposits studied in the „Piatra

Mare” quarry located south of Codlea have been

investigated for their micropaleontological content. We

have identified an assemblage of foraminifera, calcareous

algae, calpionellids and calcispheres that overall indicates

a Berriasian–Valanginian age for these deposits.

However, the micropaleontological record does not

provide unequivocal arguments for timing of the

unconformity present between the Štramberk-type

limestone and the condensed section from the basal part

of the Braşov Formation. The limestones at the top of the

Štramberk-type limestone include species typical for the

upper Berriasian–lower Valanginian interval (e.g.,

Montsalevia salevensis), while the condensed section

includes middle Berriasian (Calpionella elliptica) and

late Berriasian–early Valanginian (Calpionellopsis

oblonga) calpionellids, as well as calcispheres that are

more representative for the upper Valanginian–

?Hauterivian (Colomisphaera vogleri, Stomiosphaera

echinata, or Crustocadosina semiradiata olzae). Under

these circumstances, the unconformity at the base of the

condensed section (HG-1) shall be placed into the

Valanginian time interval, most probably in the early

Fig. 12 Calcispherulids and foraminifera from the condensed bed in the lower part of the Braşov Formation. a, b

Cadosina fusca fusca Wanner; a, sample 107; b, sample 108(2). c-f Colomisphaera conferta Řehánek; c, sample 302-1;

d, sample Cd-10-1; e, sample Cd-7e-1; f, sample Cd-4c. g Stomiosphaera sp., sample108(2); h-i Colomisphaera vogleri

(Borza); h, sample 318(1); i, sample 107-1. j-l Crustocadosina semiradiata olzae (Nowak); j, k, sample 108(2); l,

sample Cd-4e-2. m-r Stomiosphaera echinata Nowak; m, sample Cd-4a; n, sample 108(2); o, sample 302(1); p, sample

Cd-7e-3; q, r, sample 318(1). s-u Spirillina italica Dieni & Massari sp.; s, sample f-3; t, sample 318-1; u, sample Cd-4e-

1. v Nodosaria sp.; sample g-3. Scale bar: 0.125 mm (a-r, t,u); 0.25 mm (s, v).

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

81

Valanginian, as already indicated by the ammonite and

duvaliid faunas.

ACKNOWLEDGEMENTS

The study is a contribution to a CNCS project financed

by grant PN-II-ID-PCE-2011-3-0025. We also thank

Felix Schlagintweit (München) for help in identifying

Spiraloconulus suprajurasicus, and the two reviewers,

Wyn Hughes and Mike Kaminski (Dhahran) for their

remarks and corrections.

REFERENCES

Altiner, D., 1991. Microfossil biostratigraphy (mainly

foraminifers) on the Jurassic-Lower Cretaceous

carbonate successions in north-western Anatolia

(Turkey). Geologica Romana, 27: 167-213.

Arnaud-Vanneau, A., 1980. Micropaléontologie,

paléoécologie et sédimentologie d’une plate-forme

carbonatée de la marge passive de la Tethys:

l’Urgonien du Vercors septentrional et de la

Chartreuse (Alpes occidentales). Géologie Alpine,

Mém. 11, 874 pp.

Arnaud-Vanneau, A., Boisseau, T. & Darsac, C., 1988.

Le genre Trocholina Paalzow 1922 et ses principales

espèces au Crétacé. Revue de Paléobiologie, Vol.

Spec. 2 (Benthos 86): 353-377.

Arnaud-Vanneau, A. & Peybernès, B., 1978. Les

representants éocretacés du genre Nautiloculina

Mohler, 1938 (Foraminifera, Fam. Lituolidae ?) dans

les chaines subalpines septentrionales (Vercors) et les

Pyrénées franco-espagnoles. Geobios, 11: 67-81.

Arnaud-Vanneau, A. & Sliter, W.V., 1995. Early

Cretaceous shallow-water benthic foraminifera and

fecal-pellets from Leg-143 compared with coeval

faunas from the Pacific basin, Central America and

Tethys. In: Winterer et al. (eds.) Proceedings of the

Ocean Drilling Program, Scientific Results, 143: 537-

564.

Avram, E. & Grădinaru, E., 1993. A peculiar Upper

Valanginian cephalopod fauna from the Carpathian

Bend (Codlea Town area, Romania): biostratigraphic

and paleobiogeographic implications. Jahrbuch der

Geologischen Bundesanstalt, 136 (4): 665-700.

Avram, E. & Grădinaru, E., 2001. Age of the Brașov

Formation Jekelius, 1915, by cephalopods. Analele

științifice ale Universității “Al.I.Cuza” Iași, Geologie,

47, 135-141.

Azema, J., Chabrier, G., Fourcade, E. & Jaffrezo, M.,

1977. Nouvelles données micropaléontologiques,

stratigraphiques et paléogéographiques sur le

Portlandien et le Néocomien de Sardaigne. Revue de

Micropaléontologie, 20 (3): 125-139.

Azema, J., Chabrier, G., Chauve, P. & Fourcade, E.,

1979. Nouvelles données stratigraphiques sur le

Jurassique et le Crétacé du Nord-Ouest d’Ibiza

(Baleares, Espagnes). Geologica Romana, 18: 1-21.

Bathurst, R.G.C., 1975. Carbonate sediments and their

diagenesis. Developments in Sedimentology, Elsevier

Amsterdam, vol. 12, 620 pp

Boisseau, T., 1987. La plate-forme jurassienne et sa

bordure subalpine au Berriasien-Valanginien

(Chartreuse-Vercors). Analyse et corrélation avec les

séries de bassin. Thèse Univ. Grenoble, 413 pp.

Bonin, A., Vennin, E., Pucéat, E., Guirand, M., Arnaud-

Vanneau, A., Adatte, T., Pittet, B., Mattioli, E., 2012.

Community replacement of neritic carbonate

organisms during the late Valanginian platform

demise: A new record from Provence platform.

Palaeogeography, Palaeoclimatology, Palaeoecology,

365-366: 57-80.

Borza, K. & Michalik, J., 1986. Problems with

delimitation of the Jurassic/Cretaceous boundary in

the Western Carpathians. Acta Geologica Hungarica,

29 (1-2): 133-149.

Bucur, I., 1978. Microfacies of the white limestones from

the northern part of the Piatra Craiului massif.

Biostratigraphic remarks (In Romanian). Dări de

seamă ale şedinţelor, Institutul de Geologie şi

Geofizică, 64 (4): 89-105

Bucur, I.I., 1988. Les foraminifères du Crétacé inférieur

(Berriasien-Hauterivien) de la zone de Reşiţa-

Moldova Nouă (Carpathes Méridionales, Roumanie).

Remarques biostratigraphiques. Revue de

Paléobiologie, Vol. Spéc. 2 (Benthos '86): 379-389.

Bucur, I.I., 1991. The study of Jurassic and Cretaceous

from some areas with perspective for Liassic coals

between Miniş and Nera valley (central part of the

Reşiţa zone, Banat). PhD Thesis, Babeş-Bolyai

University, 203 pp. (in Romanian).

Bucur, I.I., 1993. Les représentants du genre

Protopeneroplis Weynschenk dans les dépôts du

Crétacé inférieur de la zone de Reşiţa-Moldova Nouă

(Carpathes Méridionales, Roumanie). Revue de

Micropaléontologie, 36 (3): 213-223.

Bucur, I.I., 1997. Representatives of the genus

Protopeneroplis (Foraminifera) in the Jurassic and

Lower Cretaceous deposits in Romania. Comparisons

with other regions of the Tethyan area. Acta

Palaeontologica Romaniae, 1: 65-71.

Bucur, I.I., 1999. Stratigraphic significance of some

skeletal algae (Dasycladales, Caulerpales) of the

Phanerozoic. In: Farinacci A. & Lord A.R. (eds.),

Depositional episods and bioevents. Palaeopelagos

Spec. Publ. 2: 53-104.

Bucur, I.I., Conrad, M.A., Radoičić, R., 1995.

Foraminifers and calcareous algae from the

Valanginian limestones in the Jerma River Canyon,

Eastern Serbia. Revue de Paléobiologie, 14 (2): 349-

377.

Bucur, I.I., Săsăran, E., Iacob, R., Ichim, C. & Turi, V.,

2009. Upper Jurassic shallow-water carbonate

deposits from some Carpathian areas: new

micropaleontological results. In: The 8th symposium

of IGCP 506 – Marine and non-marine Jurassic:

global correlation and major geological events.

University of Bucharest, 28 August-3 September

2009, Abstracts and Field Guide, pp.13-14.

Bucur, I.I., Dragastan, O.N., Lazăr, I., Săsăran, E. &

Popa, M. 2011. Mesozoic algae-bearing deposits from

Hăghimaş Mountains (Bicaz Valley area). In: Bucur,

I.I. & Săsăran, E. (eds.) – Calcareous algae from

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

82

Romanian Carpathians. Field Trip Guidebook, 10th

International Symposium on Fossil Algae, Cluj-

Napoca, 12-18 September 2011, pp. 7-16.

Bucur, I.I., Senowbari-Daryan, B. & Abate, B., 1996.

Remarks on some foraminifera from the Upper

Jurassic (Tithonian) reef limestone of Madonie

Mountains (Sicily). Bolletino della Societa

Paleontologica Italiana, 35 (1): 55-80.

Bulot, L.-G. & Thieuloy, J.-P., 1994. Les biohorizons du

Valanginien du Sud-Est de la France: un outil

fondamental pour les correlations au sein de la Téthys

occidentale. Géologie Alpine, Mémoire H.S., 20, 15-

41.

Bulot, L.-G., Masse, J:-P., Moutier, L. & Virgone, A.,

1997. Organisation stratigraphique et dynamique

sédimentaire du Valanginien au passage plate-

forme/bassin en Basse Provence (Se France). Bulletin

de la Societé géologique de France, 168 (2): 171-179.

Charollais, J., Brönnimann, P. & Zaninetti, L., 1966.

Troisième note sur les foraminifères du Crétacé

inférieur de la région genovoise. Remarques

stratigraphiques et description de Pseudotextulariella

salevensis, n. sp.; Haplophragmoides joukowskyi,

n.sp.; Citaella? favrei n. sp. Archives des Sciences

S.P.H.N. Genève, 19 (1): 23-48.

Chiocchini, M., Farinacci, A., Mancinelli, A., Molinari,

V. & Potetti, M., 1994. Biostratigrafia a foraminiferi,

dasicladali e calpionelle delle successioni

carbonatiche mesozoiche dell’Appennino centrale

(Italia). Studi Geologici Camerti, Vol. Spec.

“Biostratigrafia dell’Italia centrale”, pp.9-128.

Chiocchini, M., Mancinelli, A. & Marcucci, C., 1988.

Distribution of benthic foraminfera and algae in the

Lazium-Abruzzi carbonate platform facies (Central

Italy) during Upper Malm-Neocomian. Revue de

Paléobiologie, Vol. Spec. 2 (Benthos ’86): 219-227.

Clark, N. & Boudagher-Fadel, M., 2001. The larger

benthic foraminifera and stratigraphy of the Upper

Jurassic/Lower Cretaceous of Central Lebanon. Revue

de Micropaléontologie, 44 (3): 215-232.

Darsac, C., 1983. La plate-forme berriaso-valanginienne

du Jura méridional aux massifs subalpins (Ain,

Savoie). Sédimentologie, minéralogie, stratigraphie,

paléogéographie, micropaléontologie. Thèse, 3e cycle,

Université Grenoble, 319 pp.

Dragastan, O., 1968. Algues calcaires dans le Jurassique

supérieur de Roumanie. Geologica Romana, VII: 59-

74.

Dragastan, O., 1971. New algae in the Upper Jurassic and

Lower Cretaceous in the Bicaz Valley, East

Carpathians (Romania). Revista Española de

Micropaleontologia, 3 (2): 155-192.

Dragastan, O., 1999. Jurassic-Cretaceous calcareous

algae of the Transylvanides, Inner Dacides and

Moesian Platform (Romania). Revista Española de

Micropaleontologia, 31 (2): 185-218.

Dragastan, O. N., 2010. Platforma Carbonatică Getică.

Stratigrafia Jurasicului şi Cretacicului inferior,

reconstituiri paleogeografice, provincii şi

biodiversitate. Editura Universităţii Bucureşti, 621 pp.

Dragastan, O., 2011. Early Cretaceous Foraminifera,

Algal Nodules and Calpionellids from the Lapoş

Valley, Bicaz Gorges (Eastern Carpathians, Romania).

Analele Ştiinţifice ale Universităţii “Al. I. Cuza” din

Iasi, Seria Geologie, 57 (1): 91–113 .

Ebli, O. & Schlagintweit, F., 1998. On some

biostratigraphically important microfossils (benthic

foraminifera, dasycladales) from subsurface Late

Jurassic-Early Cretaceous shallow water of S-

Germany. Mitteilungen der Bayerischen

Staatssamlung für Paläontologie und historische

Geologie, 38: 9-23.

Gorbachik, T.N., 1971. On Early Cretaceous foraminifera

of the Crimea. Akademia Nauk, Voprosy

Micropaleontologii,14: 125-139. (in Russian).

Gorbachik, T. N. & Mohamad, G.K., 1997. New species

of Lituolida (Foraminifera) from the Tithonian and

Berriasian of the Crimea. Paleontological Journal, 31

(4): 345-351 (Translated from Paleontologicheskii

Zhurnal, 4, p.3-9).

Grădinaru, E. & Bărbulescu A., 1989. La faune des

brachiopodes néocomiens de Codlea (Zone de Brașov,

Carpates Orientales). Revue Roumaine de Géologie,

Géophysique et Géographie, Géologie, 33: 97-114.

Grădinaru, E. & Bucur, I., 2001. Early Cretaceous

microfacies evidence for Getic carbonate platform

drowning in the Codlea area (South Carpathians). The

third Romanian Symposium on Paleontology, 2001

September, Iași, Abstracts and Field Trip Guide, p.14.

Granier, B., 1987. Le Crétacé inférieur de la Costa Blanca

entre Busot et Altea (Alicante, Espagne):

biostratigraphie, sédimentologie, évolution tectono-

sédimentaire. Thèse Univ. P. et M. Curie, 281 pp.

Granier, B. & Bucur, I.I., 2011. Stratigraphic range of

some Tithonian-Berriasian foraminifers and

Dasycladales. Re-evaluation of their use in identifying

this stage boundary in carbonate platform sertings. In:

Grosheny, D., Granier, B. & Sanders, N. Platform to

basin correlations in Cretaceous times. Abstracts.

Buletin del Instituto de Fisiografia y Geologia, 2011:

79-81.

Granier, B. & Deloffre, R., 1993. Inventaire critique des

algues dasycladales fossiles IIe partie – les algues

dasycladales du Jurassique et du Crétacé. Revue de

Paléobiologie, 12 (1): 19-65.

Haywick, D. W., Kopaska-Merkel, D. C. & Bersch, M.

G., 2009. A biodetrital coral mound complex: Key to

early diagenetic processes in the Mississippian Bangor

Limestone. Carbonates and Evaporites, 24 (1):77-92.

Heinz, R.A. & Isenschmid, C.H., 1988. Microfazielle und

stratigraphische Untersuchungen im Massivkalk

(Malm) der Préalpes médians. Eclogae Geologicae

Helvetiae, 81 (1): 1-62.

Husinec, A. & Sokač, B., 2006. Early Cretaceous benthic

associations (foraminifera and calcareous algae) of a

shallow tropical-water platform environment (Milet

Island, southern Croatia). Cretaceous Research, 27:

418-441.

Ivanova, D., 2000. Middle Callovian to Valanginian

microfossil biostratigraphy in the West Balkan

Mountain, Bulgaria (SE Europe). Acta

Palaeontologica Romaniae, 2 (for 1999): 231-236.

Ivanova, D. & Kołodziej, B., 2010. Late Jurassic-Early

Cretaceous foraminifera from Štramberk-type

Early Cretaceous micropaleontological assemblages from a condensed section of the Codlea area (Southern Carpathians, Romania)

83

limestones, Polish Outer Carpathians. Studia UBB

Geologia, 55 (2): 3-31.

Jaffrezo, M., 1980. Les formations carbonatées des

Corbières (France) du Dogger à l’Aptien:

micropaléontologie, stratigraphie, biozonation,

paléoécologie. Extension des résultats à la Mésogée.

Thèse, Univ. P. et M. Curie, 655 pp.

James, N.P. & Choquette, P.W., 1990a. Limestones - The

sea floor diagenetic environment. In: McIlreath, I.A.

& Morrow, D.W. eds., Diagenesis. Geoscience

Canada Reprint Series, 4:13-34.

James, N.P. & Choquette, P.W., 1990b. Limestones - The

meteoric diagenetic environment. In McIlreath, I.A.

& Morrow, D.W. eds., Diagenesis. Geoscience

Canada Reprint Series, 4:35-74.

Leupold, W. & Bigler, H., 1936. Coscinoconus, eine neue

Foraminiferenform aus Tithon-Unterkreide-Gesteinen

der helvetischen Zone der Alpen. Eclogae Geologicae

Helvetiae, 28 (2): 606-624.

Longman, M.W., 1980. Carbonate diagenetic textures

from nearsurface diagenetic environments. American

Association of Petroleum Geologists Bulletin,

64:461–487

Luperto Sinni, E. & Masse, J.-P., 1994. Precisazioni

micropaleontologiche sulle formazioni di piattaforma

carbonatica del Giurasico superiore e del Cretacico

basale del massicio del Gargano (Italia Meridionale) e

implicazioni stratigrafiche. Palaeopelagos, 4: 243-266.

Mancinelli, A. & Coccia, B., 1999. Le Trocholine dei

sedimenti mesozoici di piattaforma carbonatica

dell’Appennino centro-meridionale (Abruzzo e

Lazio). Revue de Paléobiologie, 18 (1): 147-171.

Masse, J.P., 1976. Les calcaires urgoniens de la

Provence. Valanginien-Aptien. Stratigraphie,

paléontologie, les paléoenvironments et leur

évolution. Thèse, Univ. D’Aix-Marseille II, 511 pp.

Masse, J.P., 1993. Early Cretaceous Dasycladales

biostratigraphy from Provence and adjacent regions

(South of France, Switzerland, Spain). A reference for

Mesogean correlations. In: Barattolo et al. (eds.) –

Studies on fossil benthic algae. Bolletino della Società

Paleontologica Italiana, Vol. Spec. 1: 311-324.

Neagu, Th., 1975. Monographie de la faune des

foraminifѐres éocretacés du Couloir de

Dîmbovicioara, de Codlea et des Monts Perșani

(couches de Carhaga). Mémoire, Inst. Géol.,

Géophys., 25, 141 pp.

Neagu, Th., 1994. Early Cretaceous Trocholina group

and some related genera from Romania. Part I.

Revista Espanola de Micropaleontologia, 26 (3): 117-

143.

Patrulius, D. (1969). Geologia Masivului Bucegi și a

Culoarului Dâmbovicioara. Editura Academiei R. S.

R., București, 321 pp.

Patrulius, D., 1976. Upper Jurassic-Lower Cretaceous

carbonate rocks in the eastern part of the Getic

Carbonate Platform and the adjacent flysh troughs. In:

Patrulius, D., Drăgănescu, A., Baltreș, A., Popescu, B.

& Rădan, S. – Carbonates rocks and evaporates-

Guidebook. International Colloquium on Carbonates

Rocks and Evaporites, Institute of Geology and

Geophysics, Bucharest, Guidebook series 15, pp. 71-

82.

Patrulius, D. & Avram, E., 1976. Stratigraphie et

corrélations des terrains néocomiens et barrémo-

bédouliens du couloir de Dâmbovicioara (Carpathes

Orientales). Dări de Seamă ale şedinţelor, Institutul de

Geologie şi Geofizică, 52 (4): 135-160.

Patrulius, D, Popa, E, Avram, E, Baltreș¸ A, Pop, G, Iva,

M, Antonescu, E, Dumitrică, P, Iordan, M., (1980).

Studiul petrologic și biostratigrafic complex al

formațiunilor jurasice și neocomiene din Carpații

Românești și Dobrogea în vederea evaluării

potențialului de resurse minerale. Sectorul Leaota-

Brașov-Munții Perșani. Raport IGG, Tema Nr.

47/1979.

Peybernès, B., 1976. Le Jurassique et le Crétacé inférieur

des Pyrénées franco-espagnoles entre la Ggaronne et

la Méditéranée. Thèse, Univ. Paul Sabatier Toulouse,

459 pp.

Pop, Gr., 1994. Systematic revision and biochronology of

some Berriasian-Valanginian calpionellids (genus

Remaniella). Geologica Carpathica, 45 (6): 323-331.

Pop, Gr. & Bucur, I.I., 2001. Upper Jurassic and Lower

Cretaceous sedimentary formations from the Vâlcan

Mountains (South Carpathians). Studia Universitatis

Babeş-Bolyai, Geologia, 46 (2): 77-94.

Popescu, I., 1967. Contribuţii la cunoaşterea stratigrafiei

şi structurii geologice a masivului Piatra Craiului.

Dări de seamă ale şedinţelor, Institutul Geologic, 52

(2): 157-176.

Reháková, D., 2000a. Evolution and distribution of the

Late Jurassic and Early Cretaceous calcareous

dinoflagellates recorded in the Western Carpathians

pelagic carbonate facies. Mineralia Slovaca, 32: 79-

88.

Reháková, D., 2000b. Calcareous dinoflagellates and

calpionellid bioevents versus sea-level fluctuations

recorded in the West Carpathians (Late Jurassic/Early

Cretaceous) pelagic environments. Geologica

Carpathica, 51 (4): 229-243.

Reichel, M., 1955. Sur une trocholine du Valanginien

d’Arzier. Eclogae Geologicae Helvetiae., 48 (2): 396-

408.

Rigaud, S., Blau, J., Martini, R. & Rettori, R., 2013.

Taxonomy and phylogeny of the Trocholinidae

(Involutinina). Journal of Foraminiferal Research, 43

(4): 317-339.

Salvini-Bonnard, G., Zaninetti, L. & Charollais, J., 1984.

Les foraminifèrs dans le Crétacé inférieur (Berriasien

moyen-Valanginien inférieur) de la région de la

Corraterie, Grand-Salève (Haute Savoie, France):

inventaire préliminaire et remarques stratigraphiques.

Revue de Paléobiologie, 3 (2). 175-184.

Săsăran, E., Bucur, I.I., Lazăr, I. & Grădinaru, M., 2011.

Lower Cretaceous carbonate deposits and calcareous

algae from Dâmbovicioara basin. In: Bucur, I.I. &

Săsăran, E. (eds.) – Calcareous algae from Romanian

Carpathians. Field Trip Guidebook, 10th International

Symposium on Fossil Algae, Cluj-Napoca, 12-18

September 2011, pp 97-114.

Schlagintweit, F., 2011. Spiraloconulus suprajurasicus n.

Ioan I. Bucur, Eugen Grădinaru, Iuliana Lazăr & Mihaela Grădinaru

84

sp. – a new benthic foraminifer from the Late Jurassic

of the Northern Calcareous Alps of Austria. Jahrbuch

der Geologischen Bundesanstalt, 151 (3-4): 397-406.

Schlagintweit, F. & Gawlick, H.-J., 2005. Vercorsella

hallainensis n. sp., a new cuneoliniform foraminifera

from the Late Tithonian to Early Berriasian

(Barmstein Limestones, Plassen Carbonate Platform)

of the Northern Calcareous Alps. Jahrbuch der

Geologischen Bundesanstalt, 145 (2): 159-169.

Schlagintweit, F. & Gawlick, H.-J., 2006.

“Subdelloidina” luterbacheri Riegraf 1987 (encrusting

Foraminifera) from Late Jurassic to Early Cretaceous

reefal limestones of Albania and the Northern

Calcareous Alps (Austria). Jahrbuch der Geologischen

Bundesanstalt, 146 (1-2): 53-63.

Schroeder, R., Clavel, B., Conrad, M.A., Zaninetti, L.,

Busnardo, R., Charollais, J. & Cherchi, A., 2000.

Correlations biostratigraphiques entre la coupe

d’Organyà (Pyrénées Catalanes, NE de l’Espagne) et

le Sud-Est de la France pour l’intervalle Valanginien-

Aptien. Treballs del Museu de Geologia de Barcelona,

9: 5-41.

Septfontaine, M., 1974. Protopeneroplis trochangulata

sp. nov. (Foraminifère) dans le Crétacé inférieur du

Jura méridional et révision de Protopeneroplis

Weynschenk, 1950. Eclogae Géologicae Helvetiae, 67

(3): 605-628.

Septfontaine, M., Arnaud-Vanneau, A., Bassoullet, J.-P.,

Gusič, Y., Ramalho, M. & Velić, I., 1991. Les forami-

nifères imperforés des plates-formes carbonatées

jurassiques: état des connaissances et perspectives

d’avenir. Bulletin de la Societé Vaudoise des Sciences

naturelles 80(3) (Bull. 312 Géol. Musée Lausanne):

255-277.

Velić, I., 1988. Lower Cretaceous benthic foraminiferal

biostratigraphy of the shallow-water carbonates of the

Dinarids. Revue de Paléobiologie, Vol. Spéc. 2

(Benthos’86): 467-475.

Velić, I. & Sokač, B., 1983. Stratigraphy of the Lower

Cretaceous index fossils in the Karst Dinarids

(Yougoslavia). Zitteliana, 10: 485-491.

Vila, J.M., 1980. La chaine alpine d’Algérie orientale et

des confins algéro-tunisiens. Thèse, Univ. P. et M.

Curie, 665 pp.

Zaninetti, L., Charollais, J., Clavel, B., Decrouez, D.,

Salvinni-Bonnard, G. & Steinhauser, N., 1988.

Quelques remarques sur les fossiles du Salève (Haute-

Savoie, France). Archives des Sciences Genève, 41

(1): 43-63.

Zaninetti, L., Salvini-Bonnard, G. & Decrouez, D., 1987.

Montsalevia, n. gen. (Montsaleviidae, n. fam.,

Foraminifère), dans le Crétacé inférieur (Berriasien

moyen-Valanginien) du Mont Salève et du Jura

Méridional (Haute-Savoie, France). Note préliminaire.

Revue de Paléobiologie, 6 (1): 165-168.