e702.1 allowable stress design of rc masonry shear wall 2006-03-29

Upload: mamandawe

Post on 01-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    1/17

     American Concrete Institute®

     Advancing concrete knowledge

    Designing Concrete Structures:

    E702.1

     Allowable-Stress Design of Reinforced

    Concrete Masonry Shear Wall

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    2/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    1

     

    Example #1: Allowable-Stress Design of Reinforced Concrete Masonry Shear Wall

    Using the allowable-stress provisions of the 2005 MSJC Code (ACI 530), design the reinforced concrete

    masonry shear wall shown below. In the context of an entire building design, design loads would be

    obtained using the appropriate provisions of the legally adopted building code (which usually references

    ASCE 7). For this facet of the design, unfactored loads are shown below, and are assumed to be due to

    earthquake. Corresponding shear and moment diagrams are also shown.

    24 ft

    10 ft

    10 ft

    10 ft

    10 ft

    1 224 ft

    10 ft

    10 ft

    10 ft

    10 ft

    1 2

     

    30

    60

    90

    120

    300

    900

    1800

    3000

    Lateral Loads Shear, kips Moment, kip-ft

    30 kips

    30 kips

    30 kips

    30 kips

    30

    60

    90

    120

    300

    900

    1800

    3000

    Lateral Loads Shear, kips Moment, kip-ft

    30 kips

    30 kips

    30 kips

    30 kips

     

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    3/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    2

    Assume an 8-in. nominal concrete masonry wall, grouted solid, with Type S PCL mortar. The total

     plan length of the wall is 24 ft (288 in.), and its specified thickness is 7.63 in. Assume an effective

    depth d of 285 in.

    Concrete MasonryUnit Strength (C90) 1900 psi

     Mortar Type S

     f  ′ m  or f g  1,500 psi

     E m  or E g  1.35 × 106  psi

     Reinforcement = Grade 60; E s = 29 × 106  psi

    Unfactored axial loads on the wall are given in the table below.

    Level DL LL

    (Top of Wall) (kips) (kips)

    4 90 15

    3 180 35

    2 270 55

    1 360 75

    Check shear for the assumed wall thickness.

    Use ASCE 7-05 ASD Load Combination 5: 0.6 D + 0.7 E

    V  = 0.7 x 120,000 lb = 84,000 lb

     M  = 0.7 x 3000 kip-ft = 2100 kip-ft

    P = 0.6 x 360 kips = 216 kips

     By Code Section 2.3.5.2.1,

     psi6.3828563.7

    lb000,84=

    ×==

    bd 

    V  f v  

    05.1

    .in285kips201

    /ft.in12ftkip3000=

    ×

    ×−=

    Vd 

     M  

    By Code Section 2.3.5.2.2(b), where shear reinforcement is not provided to resist the calculated

    shear:

     psi1.381500)05.14(4 3131 =−=′⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −= mv  f 

    Vd 

     M F   

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    4/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    3

     but [ ] GOVERNS 8.32)05.1(4580)(4580   ⇐=−=−≤  psiVd  M F v  

    needed isentreinforcemShear psi6.38   ∴>=vv F  f   

     Now check against the higher allowable shear stresses of Code Section 2.3.5.2.3:

    GOVERNS  psi13.571500)05.14(4 2121 ⇐=−=′⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −= mv  f 

    Vd 

     M F   

     but [ ] OK  psi38.6 psi75.72)/(45120   >=−≤ Vd  M F v  

    Design shear reinforcement using Code Section 2.3.2.1 and Code Section 2.3.5.3:

    F s = 24,000 psi

    2in.29.0.285000,24

    .24000,84=

    ××

    =⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    in psi

    inkips

    d F 

    Vs A

    s

    v  

    Use No. 5 bars horizontally at 24 inches on center

     Now consider the flexural design. The attached spreadsheet for this problem illustrates how to

    calculate an allowable-stress moment-axial force interaction diagram for this wall. That spreadsheet

    is first used to check the wall with reinforcement consisting of #5 bars @ 4 ft. Because the space

     between extreme bars is not quite a multiple of 48 in., the spacing of the interior bars is adjusted

    slightly to fit the 16-in. nominal length of the concrete masonry units.

    Depending on the building’s Seismic Design Category, prescriptive seismic provisions might require

    more reinforcement or a closer spacing of reinforcement than those calculated above.

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    5/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    4

     Al lowable-Stress Interact ion Diagram by Spreadsheet

    Concrete Masonry Shear Wall of Example Problem

    f'm=1500 psi, 24 ft long, 7.63 in. thick, #5 bars @ 4'

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 500 1000 1500 2000 2500 3000

     Al lowable M, f t-k ips

       A   l   l  o  w  a   b   l  e   P ,

       k   i  p  s

     

    The interaction diagram shows that the wall, as designed above, can resist the combination of axial

    load and moment (216 kips, 2100 kip-ft).

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    6/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    5

     

    Example #2: Allowable-Stress Design of Reinforced Concrete Masonry Shear Wall (SI Units)

    Using the allowable-stress provisions of the 2005 MSJC Code (ACI 530), design the reinforced concrete

    masonry shear wall shown below. In the context of an entire building design, design loads would be

    obtained using the appropriate provisions of the legally adopted building code (which usually references

    ASCE 7). For this facet of the design, unfactored loads are shown below, and are assumed to be due to

    earthquake. Corresponding shear and moment diagrams are also shown.

    7.32 m

    3.05 m

    3.05 m

    3.05 m

    3.05 m

    1 27.32 m

    3.05 m

    3.05 m

    3.05 m

    3.05 m

    1 2

     

    133.44

    266.88

    400.32

    533.76

    406.8

    1220.4

    2440.8

    4068

    Lateral Loads Shear, kN Moment, kN-m

    133.44 kN

    133.44 kN

    133.44 kN

    133.44 kN

    133.44

    266.88

    400.32

    533.76

    406.8

    1220.4

    2440.8

    4068

    Lateral Loads Shear, kN Moment, kN-m

    133.44 kN

    133.44 kN

    133.44 kN

    133.44 kN

     

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    7/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    6

    Assume an 203.2-mm nominal concrete masonry wall, grouted solid, with Type S PCL mortar. The

    total plan length of the wall is 7.315 m, and its specified thickness is 193.8 mm. Assume an effective

    depth d of 7.239 m.

    Concrete MasonryUnit Strength (C90) 13.10 MPa

     Mortar Type S

     f  ′ m  or f g  10.34 MPa

     E m  or E g  9308 MPa

     Reinforcement = Grade 60; E s = 199,955 MPa

    Unfactored axial loads on the wall are given in the table below.

    Level DL LL

    (Top of Wall) (kN) (kN)

    4 400.32 66.72

    3 800.64 155.68

    2 1200.96 244.64

    1 1601.28 333.60

    Check shear for the assumed wall thickness.

    Use ASCE 7-05 ASD Load Combination 5: 0.6 D + 0.7 E

    V  = 0.7 x 533.76 kN = 373.63 kN

     M  = 0.7 x 4068 kN-m = 2847.6 kN-m

    P = 0.6 x 1601 kN = 960.77 kN

     By Code Section 2.3.5.2.1,

    MPa26632.072398.193

    kN63.3732 =

    ×==

    mmbd 

    V  f v  

    05.1

     239.763.373

    2847=

    ×

    −=

    mkN 

    mkN 

    Vd 

     M  

    By Code Section 2.3.5.2.2(b), where shear reinforcement is not provided to resist the calculated

    shear:

    MPa26.034.10)05.14(028.04028.0   =−=′⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −= mv  f 

    Vd 

     M F   

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    8/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    7

     but [ ] GOVERNS 22.0)05.1(31.055.0)(31.055.0   ⇐=−=−≤  MPaVd  M F v  

    needed isentreinforcemShearMPai266.0   ∴>=vv F  f   

     Now check against the higher allowable shear stresses of Code Section 2.3.5.2.3:

    GOVERNS MPa40.034.10)05.14(42.04042.0   ⇐=−=′⎟ ⎠

     ⎞⎜⎝ 

    ⎛  −= mv  f Vd 

     M F   

     but [ ] OK MPa266.0MPa49.0)/(31.082.0   =>=−≤ vv  f Vd  M F   

    Design shear reinforcement using Code Section 2.3.2.1 and Code Section 2.3.5.3:

    F s = 165.48 MPa

    2mm190723948.165

    6.60963.373=

    ×

    ×=⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    mm MPa

    mmkN 

    d F 

    Vs A

    s

    v  

    Use 16-mm bars horizontally at 609.6 mm on center

     Now consider the flexural design. The attached spreadsheet for this problem illustrates how to

    calculate an allowable-stress moment-axial force interaction diagram for this wall. That spreadsheet

    is first used to check the wall with reinforcement consisting of 16-mm bars @ 1.22 m. Because the

    space between extreme bars is not quite a multiple of 1.22 m., the spacing of the interior bars is

    adjusted slightly to fit the 406.4-mm nominal length of the concrete masonry units.

    Depending on the building’s Seismic Design Category, prescriptive seismic provisions might require

    more reinforcement or a closer spacing of reinforcement than those calculated above.

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    9/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    8

     Al lowable-Stress Interact ion Diagram by Spreadsheet (SI)

    Concrete Masonry Shear Wall of Example Problem

    f'm=10.34 MPa, 7.32 m long, 193.8 mm thick, 16-mm bars @ 1.22 m

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0 500 1000 1500 2000 2500 3000 3500 4000

     Al lowable M, kN-m

       A   l   l  o  w  a   b   l  e   P ,

       k   N

     

    The interaction diagram shows that the wall, as designed above, can resist the combination of axial load

    and moment (960.77 kN, 2847.6 kN-m).

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    10/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    9

     

    Example #3: Strength Design of Reinforced Concrete Masonry Shear Wall

    Using the strength provisions of the 2005 MSJC Code (ACI 530), design the reinforced concrete

    masonry shear wall shown below. In the context of an entire building design, design loads would be

    obtained using the appropriate provisions of the legally adopted building code (which usually references

    ASCE 7). For this facet of the design, unfactored loads are shown below, and are assumed to be due to

    earthquake. Corresponding shear and moment diagrams are also shown.

    24 ft

    10 ft

    10 ft

    10 ft

    10 ft

    1 224 ft

    10 ft

    10 ft

    10 ft

    10 ft

    1 2

     

    30

    60

    90

    120

    300

    900

    1800

    3000

    Lateral Loads Shear, kips Moment, kip-ft

    30 kips

    30 kips

    30 kips

    30 kips

    30

    60

    90

    120

    300

    900

    1800

    3000

    Lateral Loads Shear, kips Moment, kip-ft

    30 kips

    30 kips

    30 kips

    30 kips

     

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    11/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    10

    Assume an 8-in. nominal concrete masonry wall, grouted solid, with Type S PCL mortar. The total

     plan length of the wall is 24 ft (288 in.), and its specified thickness is 7.63 in. Assume an effective

    depth d of 285 in.

    Concrete MasonryUnit Strength 1,900

     Mortar Type S

     f  ′ m  or f g  (psi)  1,500

     Reinforcement = Grade 60; E s = 29 × 106  psi 

    Unfactored axial loads on the wall are given in the table below.

    Level DL LL

    (Top of Wall) (kips) (kips)

    4 90 15

    3 180 35

    2 270 55

    1 360 75

    Use ASCE 7-05 Basic Strength Load Combination 7: 0.9 D + 1.0 E  

    Check shear for assumed wall thickness. By Section 3.3.4.1.2 of the 2005 MSJC Code,

    smn

    V V V    +=  

     M u = 3,000 x 12 x 1,000 in.-lb = 36.0 x 106 in.-lb

    V u = 120,000 lb d v = 285 in.

    05.1in.)(285lb120,000

    lb-in.1036/

    6

    =vuu d V  M   

    By Code 3.3.4.1.2.1, (Mu / Vu d v) need not be taken greater than 1.0.

    P f  Ad V 

     M V 

    mnvu

    u

    m

    25.0'75.10.4   +⎥⎥⎦

    ⎢⎢⎣

    ⎟⎟ ⎠

     ⎞

    ⎜⎜⎝ 

    ⎛ −=  

    ( )[ ]

    kipskipsV 

    ininV 

    m

    m

    5.2790.905.189

    lb)000,360(25.0 psi1500.285.63.70.175.10.4

    =+=

    +×−= 

    un V V   >φ    80.0=φ    kipsV V  mn 5.279==  

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    12/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    11

     

    kipsV kipskips u 1206.223)5.279(80.0   =≥=  

    Shear design is satisfactory so far, even without shear reinforcement. Code Section 3.1.3 will be checked

    later.

     Now check flexural capacity using a spreadsheet-generated moment-axial force interaction diagram. Try

    #5 bars @ 4 ft.

    Strength Interaction Diagram by Spreadsheet

    Concrete Masonry Shear Wall of Example Problem

    f'm=1500 psi, 24 ft long, 7.63 in. thick , #5 bars @ 4'

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0 1000 2000 3000 4000 5000 6000 7000 8000

     Mn, ft-kips

     

       P  n ,

       k   i  p  s

     At a factored axial load of 0.9D, or 0.9 x 360 kips = 324 kips, the design flexural capacity of this wall is

    about 4000 ft-kips, and the design is satisfactory for flexure.

     Now check Code Section 3.1.3. First try to meet the capacity design provisions of that section. At an

    axial load of 324 kips, the nominal flexural capacity of this wall is 4000 ft-kips, divided by the strength

    reduction factor of 0.9, or 4,444 ft-kips. The ratio of this nominal flexural capacity to the factored designmoment is 4,444 divided by 3,000, or 1.48. Including the additional factor of 1.25, that gives a ratio of

    1.85.

    kipsV V V V 

    V V 

    uuun

    un

    5.27712031.231.28.0

    85.185.1

    85.1

    =×===≥

    φ 

    φ 

     

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    13/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    12

     

    The wall requires shear reinforcement. Prescriptive seismic reinforcement (for example, for SDC C) will

     probably be satisfied with #5 bars horizontally @ 24 in.

    kipskipsV 

    ininksiin

    sd  f  AkipsV V V 

    n

     yvsmn

    9.3894.1105.329

    .24.28560.31.0

    215.279

    215.379 2

    =+=

    ×⎟ ⎠ ⎞⎜

    ⎝ ⎛ +=⎟

     ⎠ ⎞⎜

    ⎝ ⎛ +=+=

     

    Prescriptive seismic reinforcement is sufficient for shear. Use #5 bars at 2 ft.

    Check ρmax , assuming that the wall is classified as an intermediate reinforced masonry shear wall.

    smu

     ymu

    mu

     ymu

     y

     y

    u

     yma

    mum

     E  f 

    bd 

    P f 

    ε ε ε 

    ε 

    ε ε 

    ε ε ε 

    ε 

     ρ 

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    +−⎟

    ⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    +

    −⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ 

    +=

    35.0

    3

    33

    64.0 '

    max  

    In accordance with MSJC Code Section 3.3.3.5.1(d), the governing axial load combination is

    D + 0.75 L + 0.525 QE , and the axial load is (360,000 + 0.75 x 75,000 lb), or 416,250 lb.

    ( )

    00127.0

    10290025.0)00207.0(30025.0

    0025.0

    5.0(0.00207)30.0025

    3(0.00207)

     psi)000,60(

    in.285in.)(7.63

    lb250,416

    (0.00207)30.0025

    0.0025 psi)500,1(64.0

    max

    6

    max

    =

    ××⎥⎦

    ⎢⎣

    +−⎥⎦

    ⎢⎣

    +

    −⎥⎦

    ⎤⎢⎣

    +=

     ρ 

     ρ 

     psi

     

    Check maximum area of flexural reinforcement per 48 in. of wall length

    2

    maxmax in.0.46in.48in.)63.7(00127.0.48   ==×= inb As   ρ   

    We have 0.31 in.2 every 48 in., and the design is satisfactory.

    Summary:

    Use #5 @ 4 ft vertically, #5 @ 2 ft horizontally.

    Because the space between extreme bars is not quite a multiple of 48 in., the spacing of the interior

     bars is adjusted slightly to fit the nominal 16-in. length of the concrete masonry units.

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    14/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    13

     

    Example #4: Strength Design of Reinforced Concrete Masonry Shear Wall (SI Units)

    Using the strength provisions of the 2005 MSJC Code (ACI 530), design the reinforced concrete

    masonry shear wall shown below. In the context of an entire building design, design loads would be

    obtained using the appropriate provisions of the legally adopted building code (which usually references

    ASCE 7). For this facet of the design, unfactored loads are shown below, and are assumed to be due to

    earthquake. Corresponding shear and moment diagrams are also shown.

    7.32 m

    3.05 m

    3.05 m

    3.05 m

    3.05 m

    1 27.32 m

    3.05 m

    3.05 m

    3.05 m

    3.05 m

    1 2

     

    133.44

    266.88

    400.32

    533.76

    406.8

    1220.4

    2440.8

    4068

    Lateral Loads Shear, kN Moment, kN-m

    133.44 kN

    133.44 kN

    133.44 kN

    133.44 kN

    133.44

    266.88

    400.32

    533.76

    406.8

    1220.4

    2440.8

    4068

    Lateral Loads Shear, kN Moment, kN-m

    133.44 kN

    133.44 kN

    133.44 kN

    133.44 kN

     

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    15/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    14

    Assume an 203.2-mm nominal concrete masonry wall, grouted solid, with Type S PCL mortar. The

    total plan length of the wall is 7.315 m, and its specified thickness is 193.8 mm. Assume an effective

    depth d of 7.239 m.

    Concrete MasonryUnit Strength 13.10 MPa

     Mortar Type S

     f  ′ m  or f g  10.34 MPa

     Reinforcement = Grade 60; E s = 199,955 MPa

    Unfactored axial loads on the wall are given in the table below.

    Level DL LL

    (Top of Wall) (kN) (kN)

    4 400.32 66.72

    3 800.64 155.68

    2 1200.96 244.64

    1 1601.28 333.60

    Use ASCE 7-05 Basic Strength Load Combination 7: 0.9 D + 1.0 E  

    Check shear for assumed wall thickness. By Section 3.3.4.1.2 of the 2005 MSJC Code,

    smn

    V V V    +=  

    05.1m)(7.239kN533.76

    m-kN4068/   ==vuu d V  M   

    By Code 3.3.4.1.2.1, (Mu / Vu d v) need not be taken greater than 1.0.

    P f  Ad V 

     M V  mn

    vu

    um 25.0'75.10.4083.0   +

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ −=  

    ( )[ ]   ( )kN kN V mmmmV 

    m

    m

    5.12424005.842kN)1601(25.0MPa34.1072398.1930.175.10.4083.0

    =+=+×−=  

    un V V   >φ    80.0=φ    kN V V  mn 5.1242==  

    kN V kN kN  u 76.5330.994)5.1242(80.0   =≥=  

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    16/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    15

     

    Shear design is satisfactory so far, even without shear reinforcement. Code Section 3.1.3 will be checked

    later.

     Now check flexural capacity using a spreadsheet-generated moment-axial force interaction diagram. Try

    16-mm bars @ 1.22 m.

    Strength Interaction Diagram by Spreadsheet (SI units)

    Concrete Masonry Shear Wall of Example Problem

    f'm=10.34 MPa, 7.32 m long, 193.8 in. thick, 16-mm bars @ 1.22 m

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0 2000 4000 6000 8000 10000 12000

     

    Mn, kN-m

     

       P  n ,

       k   N

     At a factored axial load of 0.9D, or 0.9 x 1601 kN = 1441 kN, the design flexural capacity of this wall is

    about 5400 kN-m, and the design is satisfactory for flexure.

     Now check Code Section 3.1.3. First try to meet the capacity design provisions of that section. At an

    axial load of 1441 kN, the nominal flexural capacity of this wall is 5424 kN-m, divided by the strength

    reduction factor of 0.9, or 6,027 kN-m. The ratio of this nominal flexural capacity to the factored design

    moment is 6,027 divided by 4068, or 1.48. Including the additional factor of 1.25, that gives a ratio of

    1.85.

    kN V V V V 

    V V 

    uuun

    un

    123376.53331.231.28.0

    85.185.1

    85.1

    =×===≥

    φ 

    φ 

     

    The wall requires shear reinforcement. Prescriptive seismic reinforcement (for example, for SDC C) will

     probably be satisfied with 16-mm bars horizontally @ 609.6 mm.

  • 8/9/2019 E702.1 Allowable Stress Design of RC Masonry Shear Wall 2006-03-29

    17/17

     March 29, 2006 E702 Example Problems -- Concrete Masonry Shear Wall R. E. Klingner

    16

     

    kN kipsV 

    mm

    mm MPamm

    s

    d  f  AkN V V V 

    n

     yvsmn

    17341.4915.1242

    6.609

    72397.4139.197

    2

    15.1242

    2

    15.1242 2

    =+=

    ×⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +=⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +=+= 

    Prescriptive seismic reinforcement is sufficient for shear. Use 16-mm bars at 609.6 mm.

    Check ρmax , assuming that the wall is classified as an intermediate reinforced masonry shear wall.

    smu

     ymu

    mu

     ymu

     y

     y

    u

     yma

    mum

     E  f 

    bd 

    P f 

    ε 

    ε ε 

    ε 

    ε ε 

    ε 

    ε ε 

    ε 

     ρ 

    ⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ 

    +

    −⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ 

    +

    −⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    +=

    3

    5.0

    3

    3

    364.0

    '

    max  

    In accordance with MSJC Code Section 3.3.3.5.1(d), the governing axial load combination is

    D + 0.75 L + 0.525 QE , and the axial load is (1601 + 0.75 x 333.6 kN), or 1851.2 kN.

    ( )

    00127.0

    995,1990025.0)00207.0(30025.0

    0025.05.0

    (0.00207)30.0025

    3(0.00207)MPa)7.413(

    mm7239mm)(193.8

    1000kN2.1851

    (0.00207)30.0025

    0.0025MPa)34.10(64.0

    max

    max

    =

    ×⎥⎦

    ⎤⎢⎣

    +−⎥

    ⎤⎢⎣

    +

    ×−⎥

    ⎤⎢⎣

    +=

     ρ 

     ρ 

     MPa

     

    Check maximum area of flexural reinforcement per 1.22 m of wall length

    2

    maxmax mm27.300mm1220mm)8.193(00127.01220   ==×= mmb As   ρ   

    We have 197.9 mm2 every 1.22 m, and the design is satisfactory.

    Summary:

    Use 16-mm bars @ 1.22 m vertically, 16-mm bars @ 606.9 mm horizontally.

    Because the space between extreme bars is not quite a multiple of 1.22 m, the spacing of the interior

     bars is adjusted slightly to fit the nominal 406.4-mm length of the concrete masonry units.